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Abstract
In this paper we adopt Skew Symmetric Bilin-
ear (SSB) utility functions to compare policies in
Markov Decision Processes (MDPs). By consid-
ering pairs of alternatives, SSB utility theory gen-
eralizes von Neumann and Morgenstern’s expected
utility (EU) theory to encompass rational decision
behaviors that EU cannot accommodate. We pro-
vide a game-theoretic analysis of the problem of
identifying an SSB-optimal policy in finite horizon
MDPs and propose an algorithm based on a double
oracle approach for computing an optimal (possibly
randomized) policy. Finally, we present and discuss
experimental results where SSB-optimal policies
are computed for a popular TV contest according
to several instantiations of SSB utility functions.

1 Introduction
Decision-theoretic planning deals with planners involving
decision-theoretic tools [Blythe, 1999; Boutilier et al., 1999].
As emphasized by Blythe [1999], AI planning and decision
theory appear indeed to be complementary, and there has
been interest in merging the two approaches for a consider-
able time. The study of Markov Decision Processes (MDPs)
constitute perhaps the biggest part of decision-theoretic plan-
ning, because MDPs can be considered as a natural frame-
work both for modeling and solving complex structured deci-
sion problems [Puterman, 1994]. In an MDP, scalar rewards,
assumed to be additive, are granted along the process, and a
policy is evaluated according to the expectation of the sum
of rewards. Yet, expectation is far from being the only possi-
ble decision criterion. In particular, expectation is not a risk
sensitive criterion, in the sense that it assumes risk neutrality
(e.g., a sure $500 gain is equivalent to having a probability
1/2 of a $1000 gain or nothing). One of the topics of decision
theory is precisely to provide risk sensitive criteria.

The most popular risk-sensitive criterion in decision theory
is the expected utility (EU) model [von Neumann and Mor-
genstern, 1947]. In this model, an agent is endowed with a
utility function u that assigns a numerical value u(x) to each
consequence x in the set X of possible outcomes. A proba-
bility distribution p is preferred to q, denoted by p � q, iff
u(p) > u(q), where u(p) =

∑
x∈X p(x)u(x). According

to the shape of the utility function used, the maximization
of expected utility will favor risk-averse or risk-seeking be-
haviors. Solution algorithms for MDPs with expected utility
objective functions have been proposed by Liu [2005] and
Liu and Koenig [2005; 2006; 2008]. Nevertheless, despite its
intuitive appeal, the EU model does not make it possible to
account for all rational decision behaviors. For instance, it
is unable to explain the paradox of nontransitive dice as de-
signed by statistician Efron and reported by Gardner [1970].
The specific variant we present here is due to Rowett.
Example 1 (Rowett Dice). Consider a two-player game in-
volving the following set of six-sided dice: die A with sides
(1, 4, 4, 4, 4, 4), die B with sides (3, 3, 3, 3, 3, 6) and die C
with sides (2, 2, 2, 5, 5, 5). The players, each equipped with
a personal set of Rowett dice, simultaneously choose a die to
throw; the winner is the player who rolls the highest number.
It is easy to realize that die A rolls higher than B most of
the time, so die A should be preferred to B. Similarly die B
rolls higher thanC most of the time, and the same can be said
about C against A. In other words, the relation “more likely
to win” is not transitive, and in fact it is even cyclic.

This example can be formalized by characterizing dice
A,B,C by probability distributions pA, pB , pC over the set
X = {1, 2, . . . , 6} of possible outcomes. The expected utility
model is obviously unable to accommodate the above prefer-
ences pA � pB � pC � pA because it is impossible to have
u(pA) > u(pB) > u(pC) > u(pA). Actually, every binary
preference relation solely based on a unary functional u over
distributions would fail to explain the paradox.

Interestingly, the skew symmetric bilinear (SSB) utility
theory [Fishburn, 1984], which extends expected utility the-
ory, enables to accommodate this type of intransitivities by
using a binary functional ϕ over distributions, and governing
the preference between p and q by the sign of ϕ(p, q), where
p � q iff ϕ(p, q) > 0. It is indeed possible that inequalities
ϕ(pA, pB) > 0, ϕ(pB , pC) > 0 and ϕ(pC , pA) > 0 simul-
taneously hold. As we will see later on, the relation “more
likely to win” can be modeled by SSB utility theory.

The possibility of cyclic preferences in SSB utility the-
ory could be seen as a significant barrier to its use in au-
tomated decision. However, in a finite set of distributions,
there always exists a convex combination of these distribu-
tions (probability mixture) that is preferred or indifferent to
each mixture in the convex hull [Fishburn, 1984]. For in-



stance, coming back to our dice example, playing dieA (resp.
B,C) with probability 3

13 (resp. 3
13 , 7

13 ) is a maximal strategy
for the relation “more likely to win”. Consequently, choice by
maximal preference using SSB utility theory is well defined
for finite horizon MDPs even if there are preference cycles
between deterministic policies. Note that, as emphasized by
Fishburn [1984], not only does SSB utility theory enable to
explain cases of intransitivity, but it also accommodates rea-
sonable behaviors that involves widely observed violations of
the von Neumann-Morgenstern independence axiom [Allais,
1953; Kahneman and Tversky, 1979].

We model the problem of computing an SSB optimal pol-
icy in an MDP as the search for a Nash equilibrium in a zero-
sum two-player symmetric game defined from the MDP and
the SSB utility function. The set of pure strategies in this
game is the set of deterministic policies after transforming
the given MDP in an “augmented” MDP [Liu, 2005], and the
payoff function is inferred from the SSB utility function. The
set of deterministic policies is combinatorial in nature, which
makes impractical the generation of the whole payoff matrix
of the game. We therefore adopt a double oracle approach
[McMahan et al., 2003] that makes it possible to solve the
game without generating the whole payoff matrix.

We provide the results of numerical experiments, notably
on a famous TV game, Who Wants to Be a Millionaire?. Our
results illustrate the enhanced possibilities offered by the use
of an SSB utility function for controlling the shape of the
probability distribution over payoffs.

2 SSB Utility Theory
Any policy in an MDP induces a probability distribution over
possible final wealth levels (cumulated reward scores). Com-
paring policies amounts then to comparing their induced dis-
tributions. We assume throughout the paper that the outcome
set, denoted W , of policies is the real line, interpreted as
wealth, and that the agent’s preferences between distributions
are described by the SSB model as presented and axiomatized
by Fishburn [1984]. In this model, an agent is endowed with a
binary functional ϕ over ordered pairs (x, y) ∈ W2 of wealth
levels, with x > y ⇔ ϕ(x, y) > 0. The value ϕ(x, y) can
be interpreted as the intensity with which the agent prefers x
to y. Functional ϕ is assumed to be skew symmetric, i.e.,
ϕ(x, y) = −ϕ(y, x) and bilinear w.r.t. the usual mixture
operation on distributions. The SSB criterion for comparing
probability distributions p and q is then written:

ϕ(p, q) =
∑

x,y∈W
p(x)q(y)ϕ(x, y)

where p(x) (resp. q(y)) denotes the probability of wealth
level x (resp. y) in distribution p (resp. q). We have p �
(resp. ≺) q if ϕ(p, q) > (resp. <) 0 (strict preference), and
p ∼ q if ϕ(p, q) = 0 (indifference).

The SSB model is very general as it can represent prefer-
ences observed in Example 1.
Example 2. (Example 1 cont’d) Distributions pA, pB , pC are
defined in Figure 1. By setting ϕ(x, y) = 1 if x > y, and
ϕ(x, y) = −1 if x < y, ϕ(p, q) corresponds then to the prob-
ability that p beats q minus the probability that q beats p. The

1 2 3 4 5 6
pA 1/6 0 0 5/6 0 0
pB 0 0 5/6 0 0 1/6
pC 0 1/2 0 0 1/2 0

Figure 1: Distributions pA, pB , pC .

obtained SSB utilities in the example are:
ϕ(pA, pB) = 25/36− 11/36 = 14/36,
ϕ(pB , pC) = 21/36− 15/36 = 6/36,
ϕ(pC , pA) = 21/36− 15/36 = 6/36.

Therefore we have ϕ(pA, pB) > 0, ϕ(pB , pC) > 0 and
ϕ(pC , pA) > 0, which is consistent with the relation “more
likely to win” between dice (i.e., pA � pB � pC � pA).

Moreover, the SSB model can represent different risk at-
titudes via an adequate choice of functional ϕ. It accounts
for a risk-averse (resp. risk-seeking) behavior (in the weak
sense) if the certainty equivalent of a distribution p is less
(resp. greater) than or equal to its expected value, where the
certainty equivalent of a distribution p is the wealth level x
such that ϕ(p, x) = 0 (which implies p ∼ x). For existence
and unicity of the certainty equivalent, the following condi-
tions on ϕ should hold for all x, y, t ∈ W: (1) for x 6= y,
ϕ(x, y)/ϕ(y, z) is continuous for all z ∈ W except z = y,
(2) ϕ(y, t)/ϕ(x, t) is strictly increasing in t for x, y, t with
x < t < y. Condition 1 implies that every distribution has at
least one certainty equivalent [Fishburn, 1986], while condi-
tion 2 implies that the certainty equivalent is unique [Naka-
mura, 1989]. By defining ϕ1(x, y) = ∂ϕ(x, y)/∂x, Naka-
mura showed that, when ϕ1(x, x) 6= 0 exists, ϕ is weakly
risk-averse (risk-seeking) if and only if ϕ1(y, y)/ϕ(x, y) ≥
(≤) 1/(x− y). We return to this point later in Section 6.

The SSB model encompasses many decision criteria, e.g.:
- ϕ(x, y) = x− y yields the expectation criterion;
- ϕ(x, y) = u(x)− u(y) yields the EU model;
- ϕ(x, y) = δθ(x) − δθ(y), where δθ(x) = 1 (0) if x ≥(<)
θ, yields the probability threshold criterion [Yu et al., 1998],
which states that p � q if

∑
x≥θ p(x) >

∑
x≥θ q(x);

- ϕ(x, y) = 1 (resp. 0, −1) if x > y (resp. x = y, x < y)
yields the dominance relation of Example 1, which states that
p � q if

∑
x>y p(x)q(y) >

∑
y>x p(x)q(y); this is called

probabilistic dominance (PD) in the sequel.
Consequently, designing and implementing an algorithm

for solving MDPs with SSB also gives us a tool to compute
optimal policies for all these special cases. Although dedi-
cated algorithms exist for solving MDPs with an EU objective
[Liu and Koenig, 2008] or a threshold probability objective
[Hou et al., 2014], it is interesting to have a generic algorithm
easily adaptable to a large class of decision criteria. The next
section presents the augmented MDP framework that will be
used to determine SSB optimal policies.

3 Markov Decision Processes with SSB utility
3.1 Background
We study in this paper MDPs with finite state and action
spaces, modeling finite horizon problems. As usual, an MDP
is formally defined by M = (T,S,A,P,R, c) where: T ,
a positive integer, is the time horizon; S is a finite collec-
tion of states, one of which is designated as the initial state;



A = {As|s ∈ S} is a collection of finite sets of possible
actions, one set for each state; P = {Pt|t = 0, . . . , T − 1}
is a collection of transition probabilities where Pt(s′|s, a) is
the probability that the state at time step t + 1 is s′ given
that the state at time step t was s and that we have per-
formed action a; R is the set of possible immediate rewards;
c = {ct|t = 0, . . . T − 1} is a collection of reward functions
where ct(s, a, s′) is the reward obtained if the state at time
step t + 1 is s′ given that the state at time step t was s and
that we have performed action a. To illustrate our notations
on a voluntarily simple sequential decision problem, we (ar-
tificially) modify Example 1 from the introduction.
Example 3 (One-agent sequential variant of Rowett dice). An
agent has first to choose whether she wants to throw (action
a1) or not (action a′1) dieA; if this is not the case, she needs to
choose between dieB (action a2) or C (action a3). Whatever
die is chosen, we distinguish two cases: success (state s3) if
one of the advantageous faces of the die is rolled (e.g., a face
4 for die A), or failure (state s2) otherwise. The objective
function is the number rolled, to maximize.

The decision problem can be modeled by the MDP rep-
resented in Figure 2 with T = 2,S = {s1, s

′
1, s2, s3},A =

{{a1, a
′
1}, {a2, a3}, · · · , {a5}}, R = {0, · · · , 6} and where

c1, c2 and c3 are the chance nodes induced by P . The val-
ues ct(s, a, s′) | Pt(s′|s, a) (that do not depend on t in this
example) are shown along the edges.

We call t-history a succession of state-action pairs of length
t, ht = (s0,a0,s1,. . . ,st−1,at−1,st) .

A decision rule δt indicates which action to perform in each
state for a given time step t. A decision rule can be history-
dependent meaning that it takes as argument the entire history
generated so far or Markovian if it only takes as argument the
current state. A decision rule will be deterministic if it always
prescribes an action per state or randomized if it prescribes a
probability distribution over actions per state.

A policy π at an horizon T is a sequence of T decision rules
(δ0, . . . , δT−1). Note that our policies are non-stationary in
the sense that the decision rules can be different, depending
on the time step. A policy can be history-dependent, Marko-
vian, deterministic or randomized according to the type of
decision rules. We use the notations of Table 1 for the sets
of the different types of policies. Importantly, given a set
Π = {π1, π2, . . .} of policies, we define an enlarged set Π̃ of
policies, that denotes the set consisting of mixtures of poli-
cies, i.e., Π̃={π̃=(π1|α1, π2|α2, . . .) :

∑
i αi=1, αi ≥ 0},

where π̃ is the mixed policy1 that randomly selects policy πi
with probability αi.

1Not to be confused with the notion of randomized policies.

s1

start
c1s′1 s2s3

c2

c3

a1

a′1

a3

a2
a4, 0|1

a5, 0|1
1| 16

4| 56

3| 56

6| 16

2| 12

5| 12

Figure 2: The MDP in Example 3.

Markovian history-dependent
deterministic Πt

s Πh

randomized Πt
s,r Πh,r

Table 1: Policy Notations

3.2 Comparing Two Policies
To compute the SSB criterion for comparing two policies,
pairs of histories have to be compared (via the ϕ functional).
In order to embed histories in the wealth level space W , we
assume that the value of a history is completely defined by
the final wealth level accumulated along the history. Let
WT = {w1, . . . , wm} be the set of attainable wealth levels at
horizon T . Following Iwamoto [2004], we define the wealth
level, ω(hT ) ∈ WT of a T -history, hT , as an aggregation of
rewards along hT :

ω(h0) = λ

ω(ht) = ω(ht−1) ◦ ct−1(st−1, at−1, st)

where ◦ is a binary operator defined onW×R and λ ∈ W is
a left identity element with respect to ◦. Note that no special
property is required for ◦ as only final wealth levels need to
be compared. Therefore, many different ways of evaluating
T -histories are compatible with this setting.

The agent’s SSB utility function ϕ defines a preference
relation on probability distributions over possible wealth
level outcomesWT = {w1, . . . , wm} and therefore defines a
preference relation % on policies :

ϕ(π, π′) =

m∑
i=1

m∑
j=1

pπwi
pπ

′

wj
ϕ(wi, wj) (1)

π % π′ ≡ϕ(π, π′) ≥ 0 (2)

where pπx denotes the probability of x when applying pol-
icy π. As % depends on wealth levels, optimal policies will
also depend on them. For this reason, we incorporate those
values in the state space. Following Liu and Koenig [2008],
we transform the given MDP into an augmented MDP whose
states are pairs (s, w) where s is a state of the original MDP
and w ∈ W a wealth level attainable by executing actions in
the given MDP.
Example 4. We illustrate the notion of augmented MDP on
our modified Rowett dice problem, represented in Figure 2.
In this example wealth levels are combined with the standard
summation operator; w ◦ ct(s, a, s′) = w + ct(s, a, s

′) and
λ = 0. The augmented MDP is represented in Figure 3.

To avoid any confusion, we denote by s = (s, w) a state
in the augmented MDP. For instance, Πt

s (resp. Πt
s,r) de-

notes the set of deterministic (resp. randomized) Markovian

s1, 0
start

c1s′1, 0

s2, 1

s3, 4c2 s2, 3s3, 6

c3 s2, 2s3, 5

a1

a′1

a3

a2

a4, 0|1

a5, 0|1

1| 16

4| 56

3| 56
6| 16

a4, 0|1a5, 0|1

2| 125| 12
a4, 0|1a5, 0|1

Figure 3: The augmented MDP in Example 4.



policies in the augmented MDP. Note that, in the augmented
MDP, Markovian decision rules take into account both the
current state and the wealth level accumulated so far.

Let ST ⊆ S × WT the set of final states in the aug-
mented MDP. Now, in the augmented MDP, the preference
relation over policies only depends on the probability distri-
butions induced by policies over final wealth levels. Those
distributions can be computed in the following way. Re-
call that in any MDP (augmented or not), a policy induces
a probability distribution over histories and a fortiori over fi-
nal states. The probability distribution over final states as-
sociated to a policy can be easily computed by a standard
dynamic programming procedure. In the augmented MDP,
assuming a probability distribution (pπs )s∈ST

has been com-
puted, the associated probability distribution over final wealth
levels (pπw)w∈WT

can simply be obtained by marginalization:
pπw =

∑
s=(s,w)∈ST

pπs .
Collins and McNamara [1998] showed that, provided we

are only interested in the probabilities of the final states, it
is not a restrictive assumption to focus on mixed policies in
Π̃t
s. They indeed showed that for any mixed policy π̃ in Π̃h,r

there exists a mixed policy π̃′ in Π̃t
s such that pπ̃s = pπ̃

′

s for
all s ∈ ST .

Besides, from a mixed policy, it is possible to recover an
equivalent (w.r.t. SSB) randomized policy. This is useful, in
situations where an agent may prefer to apply a randomized
policy instead of a mixed strategy. Strauch and Veinott [1966]
showed how2 to compute a randomized policy π in Πt

s,r from
any mixed policy π̃ in Π̃t

s in such a way that pπs = pπ̃s for
all s ∈ ST . Consequently, in the remainder of the paper, we
focus on policies in Π̃t

s in the augmented MDP.

4 A Game on Policies
Assuming it exists, finding a preferred policy for our cri-
terion is not straightforward. Not only can preference %
be intransitive (as illustrated by the Rowett dice problem),
but the SSB criterion also does not respect Bellman’s prin-
ciple of optimality. The violation of Bellman’s princi-
ple of optimality is illustrated by our one-agent sequen-
tial variant of the Rowett dice problem represented in Fig-
ure 2. Indeed, the PD-optimal policy is the randomized pol-
icy (s1→(a1| 3

13 , a
′
1| 10

13 ),s′1→(a2| 3
10 , a3| 7

10 )) (play dice A, B
and C with probabilities 3

13 , 3
13 and 7

13 ). However, the PD-
optimal sub-policy when in state s′1 with T = 1 is to play a2

(die B) with probability 1 as only dice B and C remain and
that die B rolls higher than C most of the time. Therefore
dynamic programming cannot be used directly and we turn
to a game-theoretic analysis of the problem of identifying an
SSB-optimal policy from the initial state.

When an MDP and a time step T are fixed, Equations 1 and
2 induce a zero-sum two-player symmetric game where the

2The randomized policy π corresponding to mixed policy π̃ =
(π1|α1, π2|α2, . . .) is obtained by the following:

P(at=a|st=s, π)=
∑

i αiP(st=s, at=a|πi)∑
a′∈As

(
∑

k αkP(st=s, at=a′|πk))

set of pure strategies can be reduced to Πt
s. Each player i ∈

{1, 2} chooses simultaneously a strategy πi (pure or mixed).
The resulting payoff is then given by ϕ(π1, π2).

In a zero-sum symmetric game of payoff function ϕ, it is
well-known that there exists a symmetric Nash equilibrium
(NE). The following holds for an NE (π∗, π∗):

∀π, ϕ(π∗, π) ≥ ϕ(π∗, π∗) = 0.

We aim at computing such an NE of the game on policies
characterized by payoff function ϕ (solving the game) since
strategy π∗ will be SSB preferred to any other strategy and
will therefore be an SSB optimal policy in the MDP.

Thanks to this game-theoretic view, it is now straightfor-
ward to prove that an SSB-optimal policy exists for any finite
horizon MDP (M, T ).

Theorem 1. For any finite horizon MDP (M, T ) and any
SSB utility function ϕ, an SSB-optimal policy exists in Π̃t

s.

Proof. The set Πt
s is finite (T,S andA are finite) and thus the

game induced by the SSB criterion restricted to Πt
s is finite.

Therefore, the von Neumann minimax theorem ensures that
an optimal strategy exists as a mixed policy in Π̃t

s.

Once realized that an NE of the game on policies of Πt
s

provides us an SSB optimal policy, our aim becomes to solve
this game. However, note that the large size of Πt

s prohibits
solving it directly. We address this issue in the next section.

5 Solving the Game
In this section, we first describe the double oracle approach
[McMahan et al., 2003] that enables to solve large-size games
by avoiding the ex-ante enumeration of all pure strategies.
Then, we adapt this procedure to our problem by providing a
best response procedure (oracle) to a given mixed policy.

In our setting, the double oracle approach is implemented
by the procedure described in Algorithm 1, which is a simpli-
fied version of the initial proposal by McMahan et al..

Algorithm 1: Double Oracle Algorithm
Data: Finite horizon MDP (M, T ), singleton Π′ = {π}

including an arbitrary policy π ∈ Πt
s

Result: an SSB optimal mixed policy π̃ ∈ Π̃t
s

1 converge = False
2 while converge is False do
3 Find Nash equilibrium (π̃, π̃) ∈ G = (Π′,Π′, ϕ|Π′)
4 Find π = BR(π̃) ∈ Πt

s
5 if ϕ(π, π̃) > 0 then
6 add π to Π′

7 else
8 converge =True

9 return π̃

Double oracle approach. The double oracle algorithm
finds a Nash equilibrium for a finite two player game where
a best response procedure BR(·) exists. Given a mixed strat-
egy π̃, BR(π̃) returns a pure strategy π (a policy in Πt

s) that



maximizes ϕ(π, π̃). The original double oracle algorithm ap-
plies to any zero-sum two-player game. The operation can
be described as follows in the symmetric case. The algo-
rithm starts with a small set Π of pure strategies (a single-
ton in Algorithm 1), and then grows this set in every itera-
tion by applying the best-response oracle to the optimal strat-
egy (given by NE) the players can play in the restricted game
G = (Π′,Π′, ϕ|Π′), where Π′ is the set of available strategies
for both players and ϕ|Π′ is the restriction of function ϕ to
domain Π′×Π′. An NE in a zero-sum two-player symmetric
game can be computed by linear programming [Raghavan,
1994]. Execution continues until convergence is detected.
Convergence is achieved when the best-response oracle does
not generate a pure strategy π that is better than the current
mixed strategy π̃. In other words, convergence is obtained if
the payoff ϕ(π, π̃) given by the best-response oracle is not
better than the payoff given by the current NE (0 for a zero-
sum two-player symmetric game).

The correctness of best-response-based double oracle algo-
rithms for two-player zero-sum games has been established
by McMahan et al [2003]; the intuition for this correct-
ness is as follows. Once the algorithm converges, the cur-
rent solution must be an equilibrium of the game, because
each player’s current strategy is a best response to the other
player’s current strategy. This stems from the fact that the
best-response oracle, which searches over all possible strate-
gies, cannot find anything better. Furthermore, the algorithm
must converge, because at worst, it will generate all pure
strategies. In practice, we expect the restricted-game to stay
relatively small as many pure strategies will never enter the
restricted strategy set.

Best response oracle. In order to use the double oracle
approach, we look for a procedure to find a policy which is a
best response to a fixed mixed policy π̃ = (π1|α1,. . .,πk|αk).
This best response is an optimal policy according to the deci-
sion criterion maximizing the value function v(π) = ϕ(π, π̃)
and amounts to taking π̃ as a reference point.

Let Φ denote the skew-symmetric matrix where Φi,j =
ϕ(wi, wj), and pπw denote vector (pπw1

, . . . , pπwm
). With such

notations we can express ϕ(π, π̃) as:

ϕ(π, π̃) =
t
pπwΦpπ̃w.

Denoting by ei the i-th canonical vector, we can interpret
Φpπ̃w as a reward function where one would receive (Φpπ̃w).ei
as a reward each time one obtains a final wealth value of wi,
and 0 at each previous time step. More formally, the reward
function in the augmented MDP is then defined by:

ct((s, w), a, (s′, w′)) = 0 for t < T − 1

cT−1((s, w), a, (s′, wi)) = (Φpπ̃w).ei

Using this reward function, maximizing the classic expecta-
tion criterion is equivalent to maximizing t

pπwΦpπ̃w. A policy
maximizing such criterion is classically found by backward
induction in the augmented MDP, leading to a deterministic
Markovian policy in Πt

s.
Example 5. Coming back to the sequential Rowett dice ex-
ample, we show how to find the best response to the pol-
icy π̃ that chooses die A with probability 1. Assume that

one uses the probabilistic dominance criterion, i.e., Φ is the
skew-symmetric matrix with ones below the diagonal. In
this example, (w1, . . . , wm) = (1, 2, . . . , 6) and pπ̃w =
( 1

6 , 0, 0,
5
6 , 0, 0). Determining BR(π̃) amounts then to com-

puting the policy maximizing expectation in the augmented
MDP represented in Figure 3, where the reward function is
replaced by :

c0((s, w), a, (s′, w′)) = 0

c1((s, w), a, (s′, wi)) = Φpπ̃w = (−5

6
,−4

6
,−4

6
,

1

6
, 1, 1).ei

Unsurprisingly, the policy obtained will play die C.

6 Experiments
We provide here experimental results in order to demonstrate
the operationality of the method and to provide a deeper in-
sight on the interest of using an SSB utility function.

Who Wants to Be a Millionaire? In this popular televi-
sion game show, a contestant tries to answer a sequence of 15
multiple-choice questions of increasing difficulty. Questions
(four possible answers are given) are played for increasingly
large sums, roughly doubling the pot. At each time step, the
contestant may decide to walk away with the money currently
won. If she answers incorrectly then all winnings are lost be-
sides what has been earned at a “guarantee point” (questions
5 and 10). The player is given the possibility of using 3 life-
lines (50:50, removing two of the possible choices, ask the
audience and call a friend for suggestions); each can only be
used once in the whole game.

We used the two models of the Spanish 2003 version of
the game presented by Perea and Puerto [2007].3 In the first
model the probability of answering correctly is a function of
the question’s number and the lifelines (if any) used; lifelines
increase the probability of answering correctly (the model is
fitted using real data). This first model is overly simplistic as
it does not actually take into account whether the player does

3The possible wealth values are 0, 150, 300, 450, 900, 1800,
2100, 2700, 3600, 4500, 9k, 18k, 36k, 72k, 144k, 330k.
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Figure 4: First model of the game. (Left) Optimal mixed
policies according to the following criteria : Exp=Expectation,
PD=Probabilistic Dominance, RA=Risk-averse, Th=Threshold.
(Right) Optimal randomized policy according to the PD criterion
(NL=No Lifelines, P=Call a friend, A=Audience, S=Stop)
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Figure 5: Second model of the game. Decumulative probability dis-
tribution of wealth according to the different SSB utility functions.
The dashed vertical line indicates the expected wealth.

in fact know the answer or not. The second model represents
the hesitation of the contestant by distinguishing four epis-
temic cases, corresponding to the number of answers (among
the four given) that are believed possible correct answers for
the current question. At each step of the game, when a new
question is asked, a categorical distribution dictates the prob-
ability of each of the epistemic cases. As the game pro-
ceeds, questions are more difficult, and the distribution is then
skewed towards hesitating between larger sets of answers.

We computed the optimal policies for the two models ac-
cording to several instantiations of the SSB utility function:
the expectation (Exp), probabilistic dominance (PD), thresh-
old probability (Th) criteria (threshold set to 2700) and a risk
averse SSB utility function (RA) defined by ϕRA(x, y) =

(x − y)/(x + y)
2
3 , which is indeed risk averse since Naka-

mura’s condition holds (Section 2).
Given the simplicity of the first model of the game, poli-

cies can be compactly displayed; the optimal policies are re-
ported on the left of Figure 4. The Exp, RA and Th criteria are
associated with deterministic policies, while the PD-optimal
policy can be seen either as a mixed policy or as a random-
ized policy (see right of Figure 4). According to intuition, the
preferred policies for PD and RA make use of lifelines much
earlier in the game, in order to secure a significant gain; the
preferred policy for Th uses the lifelines to reach 2700 with
high probability and stops playing thereafter. Finally, with
Exp, one keeps aside the lifelines for later (more difficult)
questions, even at a cost of a premature end of the game.

When using the second model, the state space is much
larger and policies are too complex to be represented com-
pactly. As we are interested in comparing their overall per-
formance, we plot in Figure 5 the decumulative distribution
of wealth (as the pot sky-rockets if the contestant reaches the
very last questions, but this happens for all policies with low
probabilities, we plot only the 9 first wealth levels for empha-
sizing the differences between the wealth distributions).

Unsurprisingly, the expectation-optimal policy yields the
highest wealth expectancy (2387 and 1717 in the two mod-
els of the game). While the optimal policy according to PD
achieves a lower expected value, it scores better very often: it
achieves a wealth level at least as good as 75% (resp. 70%)
of the time and strictly better 44% (resp. 48%) of the time,

when considering the first (resp. second) model. The policy
obtained with the RA criterion is safer than the expectation-
optimal policy. Regarding the threshold-optimal policy, it ob-
tains with higher probability (23%) the threshold objective as
can be seen in Figure 5 (second model).

Regarding the computational aspect, the initial MDP in this
problem consists of 9 (resp. 136) states for the first model
(resp. second model) and the corresponding augmented MDP
has 33 (resp. 496) states. The computation time (resp. num-
ber of iterations of the double oracle algorithm) for finding
each optimal policy for the second model of the game was
respectively of 7.6s (resp. 1) for the Exp criterion, 9.0s (resp.
8) for PD criterion, 7.8s (resp 3) for the RA criterion and 7.6s
(resp 1) for the Th criterion.4

Other domains. To have a deeper insight into the oper-
ationality of our method, we have carried out some prelimi-
nary experiments on other domains, notably on a simple grid
world (GW) domain (with randomly generated instances) and
a cancer clinical trials (CCT) domain (with a model proposed
by Cheng et al. [2011]). In both domains, we used the
probabilistic dominance criterion. In the GW domain, the
initial state space includes from 100 to 400 states, and the
augmented state space from thousands to tens of thousands
states. The computation times vary from a few seconds to
half an hour. Regarding the CCT domain, the initial state
space includes 5078 states, and the augmented state space
5129 states. The method takes about two minutes to compute
an optimal policy. Generally speaking, provided the structure
of the MDP prevents the augmentation of the state space to
be too costly (as can bee seen in the two previous examples,
there is an important variability in the increase of the num-
ber of states after augmentation of the MDP), we believe the
method is rather scalable. A more thorough study of its scal-
ability is underway.

7 Conclusion

Skew Symmetric Bilinear utility functions (SSB) is a use-
ful general decision model that encompasses many decision
criteria (e.g., EU, threshold probability, probabilistic domi-
nance...). We showed that there exists an optimal (potentially
randomized) Markovian policy in an augmented MDPs where
preferences are described with an SSB utility function and
we proposed an iterative solution method based on a game-
theoretic view of the optimization of an SSB utility function.

Our current work can be extended in several natural ways.
First, a theoretical study in order to guarantee an upper bound
on the number of iterations of the double oracle algorithm is
needed. Besides, it would be useful to extend this work to fac-
tored MDP in order to tackle large size problems. Moreover,
it would be interesting to investigate the use of SSB utility
functions in reinforcement learning settings.

4All times are wall-clock times on a 2,4 GHz Intel Core i5 ma-
chine with 8G main memory. Our implementation is in Python, with
an external call to GUROBI version 5.6.3 in order to solve the linear
programs required to find the Nash equilibria.
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