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Computing an Aggregator’s Long Term Profit

under Uncertain Behavior of the Agents

Philippe Coló∗ Hélène Le Cadre†

Abstract

In the retail electricity market, consumers can subscribe a contract
with a conventional retailer or cooperate through an aggregator who takes
forward positions in the wholesale electricity market, modeled as a two-
tiered system. We characterize analytically the core of the game and give
conditions for its non emptiness. Then we propose a Machine Learning
algorithm to forecast the consumers’ demand and use these forecasts as
inputs to optimize the aggregator’s pricing strategy. The viability of the
aggregator’s pricing strategy is finally evaluated on a case study containing
the power consumptions of 370 Portuguese consumers over four years.

Keywords: Sequential Games; Core; Hierarchical Learning

1 Introduction

Up to now, conventional consumers have a contractual relation with a retail
electricity provider that supplies them electricity at a price defined through
contract mechanisms (such as flat rate, HP/HC, Blue/White/Red, Time of Use,
etc.). The arrival of aggregators could encourage consumers to become smarter.
In France, various business models for the aggregator coexist: for example, the
electricity provision from Enercoop relies exclusively on a cooperative network
of local renewable producers; Grid Pocket uses behavioral economics and the
analysis of the consumers’ data patterns to optimize his clients’ daily power
consumption so as to reduce their energy bill; Energy Pool also aims at reducing
his clients’ energy bill but through the intelligent scheduling of the daily loads.

In this paper, smart consumers are members of a smart load balancing group
that is managed by an aggregator. The group size might evolve dynamically
and will be denoted G(t) at period t. The aggregator buys electricity in the day-
ahead (wholesale) electricity market. From the market operator point of view,
the aggregator is a single buyer of electricity. In our model, the aggregator takes
forward positions in the day-ahead market which coincide with the aggregation
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of his clients’ forward positions. If real-time consumption differs from day-ahead
estimation, the aggregator, and through him the smart coalition of consumers, is
charged for this difference at a higher unit price. However, the aggregator might
compensate overestimation errors of his clients by underestimation and vice
versa. He might make profit through two different ways: firstly, by his classical
activity of selling energy which gives rise to an activity profit. Secondly, by
following the covering mechanism described above, leading to a covering profit.
The sum of both gives the aggregator’s total profit.

We define a coalition of consumers as a set of end users who agree on a joint
demand profile to be contracted in the wholesale electricity market with the
mediation of an aggregator. We let N be the set containing all the consumers
(both the aggregator’s and the conventional retailer’s clients), of cardinality
N ∈ N∗.

Over each day, each consumer has exactly one base load, that cannot be
shifted, and several shiftable loads. The scheduling of the shiftable loads, which
is out of the scope of this paper, might be based on decentralized control [3],
priority mechanisms or economic incentives such as rebates. Under this latter
mechanism, consumers can be refunded provided they agree to defer their loads
in case of peak demands to fill valleys where power consumption is lower.

In this paper, we assume that only the base load may differ from the esti-
mated one since all the shiftable loads are assumed to be scheduled automatically
[5] and focus exclusively on the base load management over a long term period
such as months.

We start by describing the interactions between the aggregator and the elec-
tricity market, utility functions and judgment accuracy issues in Section 2. In
Section 3, we give our main analytical results. Finally, in Section 4, the viability
of the aggregator’s pricing strategy is evaluated in a case study.

2 Utility functions and uncertainty representa-
tion

We let pf (t) be the day-ahead wholesale market price and p0(t) be the real-time
wholesale market price at period t. In the balancing, we introduce p+(t), the unit
penalty when excess power must be sold by the aggregator and p−(t), the unit
penalty when more power must be purchased by the aggregator. Following the
French Transmission System Operator’s balancing rules1, we have the relations:
p0(t) < p−(t) and p+(t) < p0(t) at any period t. Smart consumer i is penalized
on the basis of the difference between his estimated demand (in the day ahead)

d̂i(t) and the realization of his demand (in real time) di(t) depending on whether
he has chosen a long or short position. We now describe more precisely the
penalty mechanism. In case of a long position, the forecast of consumer i is
higher than the realization of his demand. The aggregator must sell the total
excess power bought in the day-ahead market, in the balancing market, at price

1http://rei.revues.org/4053 [Online September 2015]

2

http://rei.revues.org/4053


p+(t). Consumer i is then penalized on the basis of p0(t) − p+(t) per excess

power unit leading to: (p0(t) − p+(t))
(
d̂i(t) − di(t)

)
+

2. In case of a short

position, the forecast of consumer i is smaller than the realization of his demand.
The aggregator buys the total missing power on the balancing. Consumer i is

penalized on the basis of p−(t) per missing power unit leading to: p−(t)
(
d̂i(t)−

di(t)
)
−

. The aggregator simply transfers the cost of buying the missing power

to her clients having short positions.
We assume that there is a noise deforming the welfare provided by a power

unit. We let µ∗i (t) ∼ f(θ∗i ) be the noise affecting consumer i’s evaluation of the
provider *’s offer where θi is a parameter characterizing this density function
(its mean for example). We assume that at any period t, µaggi (t) and µreti (t) are
independent. Furthermore, noises are assumed to be independent and identi-
cally distributed (iid) between two distinct consumers and and there is no time
dependence between two consecutive noises. This modeling allows us to quan-
tify the intrinsic preferences of the agents when comparing the welfare brought
by each provider.

In the following, we let: yagg(i, t) = ωµaggi (t)−pagg(t) be the surplus created
by the aggregator at period t by providing any consumer i with one power unit,
where pagg(t) is the unit price charged by the aggregator and ω > 0 is the
welfare created by that power unit. Symmetrically for the retailer: yret(i, t) =
ωµreti (t)−pret(t) denotes the surplus created by the retailer, where pagg(t) is the
unit price charged by the aggregator. We define the utility function for consumer
i depending on which provider * he subscribes, as follows: U∗i (t) = y∗(i, t)d(i, t)
where d(i, t) > 0 is the demand of consumer i. Consumer i prefers the aggregator
to the conventional retailer if, and only if Ureti (t) < Uaggi (t) which is equivalent

to µreti (t) − µaggi (t) < pret(t)−pagg(t)
ω . We let ∆µi = µreti (t) − µaggi (t) be the

difference between the noises introduced by consumer i regarding his evaluation
of the retailer and the aggregator’s offers and F∆µi

be the associated cumulative
distribution function.

3 A sequential game

ΠC(t) is the aggregator’s covering profit resulting from the covering of opposite
positions among his clients and ΠA(t) is the aggregator’s activity profit: ΠA(t) =∑
i∈G(t) di(t)p

agg(t).
The aggregator’s objective is to maximize the expectation of his total profit

over T periods: maxE
[∑T

t=1

(
ΠA(t) + ΠC(t)

)]
such that 0 ≤ pagg(t) ≤ p̄,∀t =

1, ..., T where p̄ > 0 is a price cap fixed on the providers’ retail price.
Similarly the conventional retailer’s objective is:

maxE
[∑T

t=1

∑
i∈N−G(t) p

ret(t)di(t)
]

such that 0 ≤ pret(t) ≤ p̄,∀t = 1, ..., T.

The solving of these sequential optimization problems gives rise to sequences

2For any real x, we set: x+ , max{0;x} and x− , min{0;x}
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of prices
{
p∗(t)

}
t=1,...,T

. We now describe the game that takes place at each

period:

1) Each consumer enters the decision process or remains inert according
to a parameter β. When consumers are used to a certain provider for
one of their needs, they will not always consider alternative options. This
tendency takes into account the general preferences of economic agents to
choose the status quo: putting oneself together in order to make a decision
has a cost in itself.

2) The consumers who have entered the decision process, choose one
provider depending on the providers’ prices and of the intrinsic prefer-
ences of the consumers.

To solve the two steps game for the base loads, we will proceed backwards.
One major concern regarding Step 2) is whether the optimal price fixed by the
aggregator guarantees the stability of his coalition. In the following, we will
characterize analytically how the aggregator should share his cost among his
clients to stabilize his coalition.

Definition of the cost of the coalition: We let εi(t) = d̂i(t) − di(t)
be the error between the forecasted demand and the real demand of consumer
i. To enable analytical tractability, we assume that: εi(t) ∼ N (0;σ2

i ) is error
distributed according to a Gaussian density function centered in zero and of
standard deviation σi > 0. The εi(t) are iid, there is no time dependence
between two consecutive errors and µ∗i (t) is independent of any εi(t). In turn∑
i∈G(t) εi(t) is distributed according to a Gaussian density function centered in

zero and of variance
∑
i∈G(t) σ

2
i > 0.

According to the stylized market design introduced in [2], the cost of coalition
G(t) for the aggregator at time period t is:

c
(
G(t)

)
= pf (t)

∑
i∈G(t)

d̂i(t) + p−(t)
( ∑
i∈G(t)

εi(t)
)
−
− p+(t)

( ∑
i∈G(t)

εi(t)
)

+
(1)

The cooperative game that we consider is with Transferable Utility (TU)

because the coalitional value/cost, c
(
G(t)

)
, defined in Equation (1) can be

divided amongst the aggregator’s clients in any way that the aggregator’s clients
choose. We introduce the notion of core which characterizes the stability of the
coalition made of the aggregator’s clients. For TU game, the core is defined as

the set of imputations
{
zagg(i, t)

}
i∈G(t)

such that no consumer has an incentive

to switch from the aggregator to the conventional retailer. In other words, the
core is a set of joint strategies with which all consumers want to cooperate in a
smart consumer group and any deviating coalition (i.e., consumers switching to
the conventional retailer) cannot guarantee higher utilities to all of its members.
With this respect, the core strategies are stable.
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We assume that for any consumer i, the opposite of his expected utility is

associated to a unique imputation: z∗(i, t) = −E
[
U∗i (t)

]
. Using U∗i (t) defini-

tion, consumer i’s imputation is completely determined by the provider’s price,
estimated demand and game parameters: z∗(i, t) = −ωθ∗i d̂i(t) + pagg(t)d̂i(t).

Definition of the core: The imputation
{
zagg(i, t)

}
i∈G(t)

is in the core if,

and only if: ∑
j∈G(t)

zagg(j, t) = E
[
c
(
G(t)

)]
GR

zagg(i, t) ≤ zret(i, t), ∀i ∈ G(t) IR

GR stands for Group Rationality and IR, for Individual Rationality. Our game
follows a γ-model [4]: all consumers outside a coalition subscribe to the con-
ventional retailer’s offer and build single player coalitions without direct partic-
ipation to the market. The game is with characteristic function V (., t) de-

fined as follows: V (G, t) , E
[
c
(
G(t)

)]
if Card

(
G(t)

)
≥ 2 and V (i, t) ,

E
[
cret(i, t)

]
,∀i ∈ N where the cost charged by the conventional retailer is

cret(i, t) = pret(t)di(t).

Non emptiness of the core: Characterizing the aggregator’s coalition
stability is equivalent to prove that the core of the associated TU game is non
empty. To check that the core is non empty, we rely on the Bondareva-Shapley
Theorem i.e., we need to prove that the TU game is balanced.

Proposition 1. The core is non empty if, and only if: mini∈N

{
d̂i(t)

}
≥ 1

N
pf (t)
pret(t)

∑
j∈N d̂j(t) + 1

N
p−(t)−p+(t)
pret(t)

√∑
j∈N σ

2
j .

Proof of Proposition 1. We recall that the TU game is balanced if, and only
if: ∑

i

λret(i)E[cret(i, t)] + λaggE[c
(
G(t)

)
] ≥ E[c

(
G(t)

)
] (2)

for all the collections of weights
{
λret(i)

}
i
, λagg such that λret(i) ∈ [0; 1],∀i,

λagg ∈ [0; 1] and λret(i)+λagg = 1,∀i. This implies that λagg = 1−λret(i),∀i; a
fortiori: λagg = 1− 1

N

∑
i λret(i). By substitution in Inequality (2), we infer that

it is equivalent to:
∑
i λret(i)

{
E[cret(i, t)] − 1

NE[c
(
G(t)

)
]
}
≥ 0 for all the col-

lections of weights
{
λret(i)

}
i
, λagg defined above. According to the Bondareva-

Shapley Theorem, the core of our TU game is non empty if, and only if,

E[cret(i, t)]− 1
NE[c

(
G(t)

)
] ≥ 0,∀i. Therefore, we need to check whether this rela-

tion holds. Analytically, we have: E[cret(i, t)]− 1
NE[c

(
G(t)

)
] = E

[
pret(t)di(t)

]
−

1
NE
[
pf (t)

∑
j d̂j(t)+p−(t)

(∑
j(d̂j(t)−dj(t))

)
−
−p+(t)

(∑
j(d̂j(t)−dj(t))

)
+

]
.
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The first term of the equation can be rewritten as: pret(t)d̂i(t). Furthermore we
recall that any real x can be decomposed as a linear combination of its positive
and negative parts: x = x+ − x−. This implies that:

E[cret(i, t)]−
1

N
E[c
(
G(t)

)
]

=
(
pret(t)− 1

N
pf (t)

)
d̂i(t)−

1

N
pf (t)

∑
j 6=i

d̂j(t)−
1

N
p−(t)E

[∑
j

(d̂j(t)− dj(t))
]

︸ ︷︷ ︸
=0

+
1

N

(
p+(t)− p−(t)︸ ︷︷ ︸

<0

)
E
[(∑

j

(d̂j(t)− dj(t))
)

+

]
(3)

Equation (3) can be rewritten as follows: E[cret(i, t)] − 1
NE[c

(
G(t)

)
] ≥ 0,∀i ∈

N ⇔ pret(t)d̂i(t)− 1
N p

f (t)
∑
j∈N d̂j(t) + 1

N (p+(t)− p−(t))
√∑

j∈N σ
2
j ≥ 0,∀i ∈

N . This is equivalent to:

min
i∈N

{
d̂i(t)

}
≥ 1

N

pf (t)

pret(t)

∑
j∈N

d̂j(t) +
1

N

p−(t)− p+(t)

pret(t)

√∑
j∈N

σ2
j

Fairness: The Shapley value attributes to each consumer in the coalition
an imputation which is a function of its marginal contribution to the coalition.
To check the axiom of Pareto optimality, the Shapley value is averaged over
all the interactions that each consumer can have with other consumers in the
coalition. Formally, the Shapley value associated with consumer i ∈ G(t) is:

ϕi(V, t) =
∑
G⊆G(t),i∈G

(Card(G(t))−Card(G))!(Card(G)−1)!
Card(G(t))!

(
V (G)− V (G − {i})

)
. In

the framework of our γ-model, it can easily be computed analytically: ϕi(V, t) =
1

Card(G(t))

{
pf (t)d̂i(t) + 1√

2π

(
p−(t)− p+(t)

)(√∑
j∈G(t) σ

2
j −

√∑
j∈G(t) σ

2
j

)}
+ 1

Card(G(t))p
ret(t)d̂i(t). It is straightforward to show that our TU game is not

convex3. As such we have no guarantee that the Shapley value belongs to the
core. But we now give conditions for the Shapley value to be in the core. GR
being checked immediately by definition of the Shapley value, we now focus on
IR i.e., ϕi(V, t) ≤ zret(i, t),∀i ∈ G(t) which give the following condition on the
consumers’ data and game parameters.

Proposition 2. The Shapley value of the TU game belongs to the core if, and
only if:

d̂i(t)√∑
j∈G(t) σ

2
j −

√∑
j∈G(t)−{i} σ

2
j

≤ 1√
2π

p−(t)− p+(t)

pf (t) +
(

1− Card(G(t))
)
pret(t)

,∀i ∈ G(t)

3We recall the convexity definition: let G and G′ be two coalitions such that G ⊂
G′, Card(G) ≥ 2 and let i ∈ N\G′, to prove that the game is convex we need to check

that: V
(
G′ ∪ {i}, t

)
− V

(
G′, t

)
< V

(
G ∪ {i}, t

)
− V

(
G, t

)
.
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Inertia and its consequences: In Step 1), inertia is captured by a param-
eter β ∈ [0; 1] which denotes, at every period, the probability for the consumer
to get himself into the situation of making a decision on his energy supplier.
We will assume β 6= 0 and β 6= 1, meaning we are neither in a situation of
monopoly, nor in a situation of competition à la Bertrand. This first step will
have a consequence on the aggregator’s pricing policy.

The introduction of inertia changes the demand dynamics i.e., we have:∑
i∈G(t) di(t) = (1−β)

∑
i∈G(t−1) di(t) +β

∑
i∈N di(t)s(i, t) where s(i, t) ∈ [0; 1]

is the probability that at the beginning of period t consumer i enters a de-
cision process on the choice of his energy retailer and chooses the aggrega-

tor. s(i, t) can be computed analytically: s(i, t) = P
(
zret(i, t) > zagg(i, t)

)
=

F∆µi

(
pret(t)−pagg(t)

ω

)
.

4 Simulations

Solving this sequential optimization game described in Section 3 requires to
forecast the demand of each individual consumer over horizon T . To that pur-
pose we use a hierarchical learning algorithm: At the lower level, we run in
parallel three experts Support Vector Regression (SVR), Neural Network (NN)
and Conditional External Regret. While SVR and NN produce point forecast,
Regret produces a probabilistic forecast of the consumers’ demand. We there-
fore sample a forecast according to the estimated density function. We observe
that the NN achieves excellent performance. This can be explained by the high
dependence of the data on features such as hour, day, month, season, etc. We
observe that to achieve pretty good performance the Regret [1] has to be run
on a larger training set than the two other algorithms. Based on the data char-
acteristics, we implement (at the lower level) a Conditional External Regret
algorithm. More precisely, we classify a priori the forecasted densities obtained
through External Regret based on features such as the day, week and season.
At the upper level, the aggregator runs an External Regret algorithm which
associated a weight to the forecasts produced by each of the three experts. The
combinations of these experts’ forecasts gives the aggregator’s forecast of each
individual consumer demand. Note that the weights associated with each expert
are updated following the rule described in [1].

We run our algorithm on a database containing the power consumption of
370 Portugese consumers that can be either residentials or industrials4. We take
as parameters: ω = 1, which enables us to normalize our surplus, and consider
two scenarios β = 0.3 and β = 0.9. The power consumption of each individual
is monitored every 15 minutes on a 4 year basis (to be precise, from the 1-st of
January 2011 to December 31, 2014). In the data base, consumers are classified
in 8 categories: retail/shopping, continuous laboring, weekly laboring, hotel
businesses, catering industry, schools, logistics and others.

4Trindade A., artur.trindade@elergone.pt, Elergone, NORTE-07-0202-FEDER-038564,
https://archive.ics.uci.edu/ml/datasets.html [Online September 2015]
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SVR NN Cond.
Ext.
Regret

Agg.

MSE 0.122 0.127 0.233 0.107

Table 1: Hierarchical Learning algorithm performance.

To test the hierarchical learning algorithm performance, we use it to forecast
the individual consumption of one consumer over one month, having trained the
each algorithm and the hierarchical learning algorithm over a whole year (the
granularity of the measurements being of 15 minutes). We report the resulting
Mean Square Errors (MSEs) in Table 1.

In Figure 1, we represent the dynamics of the providers’ profit evaluated on
our 24 month test set for two scenarios of inertia: β = 0.3 in (a) and β = 0.9 in
(b). We observe that the aggregator’s profit always remains positive for both
values of inertia parameter.

5 Conclusion

We consider a two-tiered electricity market where consumers can either buy
power from a conventional retailer or through an aggregator who purchases
power from the electricity market and then distributes it (for a subscription
price) to his clients. In this article, we propose a coalition-based game-theoretic
formulation of the problem, determine the game’s core, and then provide a
hierarchical learning algorithm for planning the aggregator’s pricing strategy.

Extensions will be made by considering more general probabilistic models
of error generation and characterizing the core and Shapley value under each
model.
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