
HAL Id: hal-01212760
https://hal.science/hal-01212760

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Waterpixels
Vaïa Machairas, Matthieu Faessel, David Cárdenas-Peña, Théodore

Chabardes, Thomas Walter, Etienne Decencière

To cite this version:
Vaïa Machairas, Matthieu Faessel, David Cárdenas-Peña, Théodore Chabardes, Thomas Walter,
et al.. Waterpixels. IEEE Transactions on Image Processing, 2015, 24 (11), pp.3707 - 3716.
�10.1109/TIP.2015.2451011�. �hal-01212760�

https://hal.science/hal-01212760
https://hal.archives-ouvertes.fr


IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Waterpixels
Vaïa Machairas, Matthieu Faessel, David Cárdenas-Peña, Théodore Chabardes,

Thomas Walter, and Etienne Decencière

Abstract— Many approaches for image segmentation rely on a1

first low-level segmentation step, where an image is partitioned2

into homogeneous regions with enforced regularity and adherence3

to object boundaries. Methods to generate these superpixels have4

gained substantial interest in the last few years, but only a few5

have made it into applications in practice, in particular because6

the requirements on the processing time are essential but are not7

met by most of them. Here, we propose waterpixels as a general8

strategy for generating superpixels which relies on the marker9

controlled watershed transformation. We introduce a spatially10

regularized gradient to achieve a tunable tradeoff between the11

superpixel regularity and the adherence to object boundaries.12

The complexity of the resulting methods is linear with respect13

to the number of image pixels. We quantitatively evaluate our14

approach on the Berkeley segmentation database and compare15

it against the state-of-the-art.16

Index Terms— Superpixels, watershed, segmentation.17

I. INTRODUCTION18

SUPERPIXELS (SP) are regions resulting from19

a low-level segmentation of an image and are typically20

used as primitives for further analysis such as detection,21

segmentation, and classification of objects (see Figure 122

for an illustration). The underlying idea is that this first23

low-level partition alleviates the computational complexity of24

the following processing steps and improves their robustness,25

as not single pixel values but pixel set features can be used.26

Superpixels should have the following properties:

AQ:1

AQ:2
AQ:3

27

1) homogeneity: pixels of a given SP should present28

similar colors or gray levels;29
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Fig. 1. Superpixels illustration. The original image comes from the Berkeley
segmentation database. (a) Original image. (b) Waterpixels.

2) connected partition: each SP is made of a single 30

connected component and the SPs constitute a partition 31

of the image; 32

3) adherence to object boundaries: object boundaries 33

should be included in SP boundaries; 34

4) regularity: SPs should form a regular pattern on the 35

image. This property is often desirable as it makes the 36

SP more convenient to use for subsequent analysis steps. 37

The requirements on regularity and boundary adherence 38

are to a certain extent oppositional, and a good solution 39

typically aims at finding a compromise between these two 40

requirements. 41

In addition to these requirements on superpixel quality, 42

computational efficiency is an absolutely essential aspect, as 43

the partition into superpixels is typically only the first step of 44

an often complex and potentially time consuming workflow. 45

Methods of linear complexity are consequently of particular 46

interest. 47

We therefore hypothesized that the Watershed transforma- 48

tion [1], [2] should be an interesting candidate for superpixel 49

generation, as it has been shown to achieve state-of-the-art 50

performance in many segmentation problems, it is 51

non-parametric, and there exist linear-complexity algorithms 52

to compute it, as well as efficient implementations [3], [4]. 53

The only often cited drawback, oversegmentation, does not 54

seem to be problematic for superpixel generation, as long as 55

we can control the degree of oversegmentation (number of 56

superpixels), and the regularity of the resulting partition. 57

Given these considerations, we propose a strategy for 58

applying the watershed transform to superpixel generation, 59

where we use a spatially regularized gradient to achieve a 60

tunable trade-off between superpixel regularity and adherence 61

to object boundaries. We quantitatively evaluate our method 62

on the Berkeley segmentation database and show that we 63

outperform the best linear-time state-of-the art method: Simple 64

Linear Iterative Clustering (SLIC) [5]. We call the resulting 65

superpixels “waterpixels.” 66

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

RECAP CHART OF EXISTING METHODS TO COMPUTE REGULAR

SUPERPIXELS (n IS THE NUMBER OF PIXELS IN THE IMAGE; i IS

THE NUMBER OF ITERATIONS REQUIRED; N THE NUMBER

OF SUPERPIXELS). “WP” CORRESPONDS TO OUR

METHOD, CALLED “WATERPIXELS”

This paper is an extended version of [6]. It proposes a

AQ:4

67

more general approach (elaborating a whole family of water-68

pixels generation methods), with a more thorough validation69

and improved results with regard to the trade-off between70

boundary adherence and regularity, as well as computation71

time. Moreover, we have developed and made available a fast72

implementation of waterpixels.73

II. RELATED WORK74

Low-level segmentations have been used for a long time as75

first step towards segmentation [7], [8]. The term superpixel76

was coined much later [9], albeit in a more constrained frame-77

work. This approach has raised increasing interest since then.78

Various methods exist to compute SPs, most of them based on79

graphs [10], geometrical flows [11] or k-means [5]. We will80

focus on linear complexity methods generating regular SPs.81

Methods for SP generation are all based on two steps:82

an initialization step where either seeds or a starting par-83

tition are defined and a (potentially iterative) assignment84

step, where each pixel is assigned to one superpixel, starting85

from the initialization. In the next section, we are going to86

review previously published approaches for SP generation with87

respect to these aspects and compare them regarding various88

performance criteria. We limit the presentation of existing89

methods to those with linear complexity.90

A. Choosing the Seeds91

In the first step, a set of seeds is chosen, which are typically92

spaced regularly over the image plane and which can be either93

regions or single pixels:94

• Type A seeds are independent of the image content. These95

are typically the cells or the centers of a regular grid.96

• Type B seeds depend on the content of the image97

(compromise between a regular cover of the image plane98

and an adaption to the contour).99

• Type C seeds are initially image independent, then they100

are iteratively refined to take into account the image101

contents.102

If the seed does not depend on the image, an iterative103

refinement is usually preferable, and therefore more time104

is spent on the computation of the SP. Type B methods 105

may spend more time on finding appropriate seeds, but can 106

therefore afford not to iterate the SP generation. 107

B. Building Superpixels From Seeds 108

In the second step, the partition into superpixels is built 109

from the seeds. Among the methods with linear complexity, 110

there are two main strategies for this: 111

Shortest Path Methods (Type 1) [11], [13]: these methods 112

are based on region growing: they start from a set of seeds 113

(points or regions) and successively extend them by incor- 114

porating pixels in their neighborhood according to a usually 115

image dependent cost function until every pixel of the image 116

plane has been assigned to exactly one superpixel. This process 117

may or may not be iterated. 118

Shortest Distance Methods (Type 2) [5], [12]: these are 119

iterative procedures inspired by the field of unsupervised 120

learning, where at each iteration step, seeds (such as centroids) 121

are calculated from the previous partition and pixels are then 122

re-assigned to the closest seed (like for example the k-means 123

approach). 124

Even though methods inspired by general clustering meth- 125

ods (type 2) seem appealing at first sight, in particular when 126

they globally optimize a cost function, this class of methods 127

does not guarantee connectivity of the superpixels for arbi- 128

trary choices of the pixel-seed distance (see [5], [12]). For 129

instance, the distance metric proposed in [5] (a combination 130

of Euclidean and grey level distance), leads to non-connected 131

superpixels, which is undesirable. To solve this issue, a post- 132

processing step is necessary, consisting either in relabeling the 133

image so that every connected component has its own label 134

(see [12]), leading to a more irregular distribution of SP sizes 135

and shapes, or in reassigning isolated regions to the closest and 136

large enough Superpixel, as in [5], leading to non-optimality 137

of the solution and an unpredictable number of superpixels. 138

In addition, such postprocessing increases the computational 139

cost and can turn out to be the most time-consuming step when 140

the image contains numerous small objects/details compared 141

to the size of the Superpixel. 142

On the contrary, methods based on region growing (type 1) 143

inherently implement a “path-type” distance, where the dis- 144

tance between two pixels does not only depend on value 145

and position of the pixels themselves, but on values and 146

positions along the path connecting them. Type 1 methods 147

imply connected superpixel regions, for which the number of 148

superpixels is exactly the number of seeds. 149

C. Other Properties 150

It is generally accepted that a good superpixel-generation 151

method should provide to the user total control over the num- 152

ber of resulting Superpixels. While this property is achieved 153

by [11]–[14], some only reach approximatively this num- 154

ber because of post-processing (either by splitting too big 155

superpixels, or removing small isolated superpixels as in [5]). 156

Another parameter is the control on superpixels regularity in 157

the trade-off between regularity and adherence to contours. 158

Only [5] and [12] enable the user to weight the importance 159
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of regularity compared to boundary adherence, so it can be160

adapted to the application.161

As far as performance is concerned, one of the main162

criteria is undoubtedly the complexity that the method163

requires. Indeed, for Superpixels to be used as primitives for164

further analysis such as classification, their computation should165

neither take too long nor too much memory. This is the reason166

why we focus on linear complexity methods. Among them,167

SLIC appears to offer the best performance with regards to the168

trade-off between adherence to boundaries and regularity [5].169

Moreover, since its recent inception, this method has become170

very popular in the computer vision community. We will171

therefore use it as reference for the quantitative evaluation of172

our method.173

D. Superpixels and Watershed174

In principle, the watershed transformation (see [15] for a175

review) is well suited for SP generation:176

1) It gives a good adherence to object boundaries when177

computed on the image gradient.178

2) It allows to control the number and spatial arrangement179

of the resulting regions through the choice of markers.180

3) The connectivity of resulting regions is guaranteed and181

no postprocessing is required.182

4) It offers linear complexity with the number of pixels in183

the image.184

Indeed, it has been used to produce low-level segmentations185

in several applications, including computation intensive186

3D applications [16], [17], in particular when shape regularity187

of the elementary regions was not required.188

Previous publications claimed that the watershed transfor-189

mation does not allow for the generation of spatially regular190

SP [5], [11]. Recently, we and others [6], [18] have shown191

that in principle the watershed transformation can be applied192

to SP generation.193

Here, we introduce waterpixels, a family of methods based194

on the watershed transformation to compute superpixels.195

III. WATERPIXELS196

As most watershed-based segmentation methods,197

waterpixels are based on two steps: the definition of198

markers, from which the flooding starts, and the definition of199

a gradient (the image to be flooded). We propose to design200

these steps in such a way that regularity is encouraged.201

A waterpixel-generation method is characterized by the202

following steps:203

1) Computation of the gradient of the image;204

2) Definition of regular cells on the image, centered on the205

vertices of a regular grid;206

3) Selection of one marker per cell;207

4) Spatial regularization of the gradient with the help of a208

distance function;209

5) Application of the watershed transformation on the210

regularized gradient defined in step 4 from the markers211

defined in step 2.212

These steps are illustrated in figure 2 and developed in the213

next paragraphs.214

A. Gradient and Cells Definition 215

Let f : D → V be an image, where D is a rectangular 216

subset of Z2, and V a set of values, typically {0, . . . , 255} 217

when f is a grey level image, or {0, . . . , 255}3 for color 218

images. 219

The first step consists in computing the gradient image g 220

of the image f . The choice of the gradient operator depends 221

on the image type, e.g. for grey level images we might 222

choose a morphological gradient. This gradient will be used 223

to choose the seeds (section III-B) and to build the regularised 224

gradient (III-C). 225

For the definition of cells, we first choose a set of N points 226

{oi}1≤i≤N in D, called cell centers, so that they are placed on 227

the vertices of a regular grid (a square or hexagonal one for 228

example). Given a distance d on D, we denote by σ the grid 229

step, i.e. the distance between closest grid points. 230

A Voronoi tesselation allows to associate to each oi a 231

Voronoi cell . For each such cell, a homothety centered on oi 232

with factor ρ (0 < ρ ≤ 1) leads to the computation of the 233

final cell Ci . This last step allows for the creation of a margin 234

between neighbouring cells, in order to avoid the selection of 235

markers too close from each other. 236

B. Selection of the Markers 237

As each cell is meant to correspond to the generation of 238

a unique waterpixel, our method, through the choice of one 239

marker per cell, offers total control over the number of SP, 240

with a strong impact on their size and shape if desired. 241

First, we compute the minima of the gradient g. Each 242

minimum is a connected component, composed of one or more 243

pixels. These minima are truncated along the grid, i.e. pixels 244

which fall on the margins between cells are removed. 245

Second, every cell of the grid serves to define a region of 246

interest in the gradient image. The content of g in this very 247

region is then analyzed to select a unique marker, as explained 248

in the next paragraph. 249

For each cell, the corresponding marker is chosen among 250

the minima of g which are present in this very cell. 251

If several minima are present, then the one with the highest 252

surface extinction value [19] is used. We have found surface 253

extinction values to give the best performances compared with 254

volume and dynamic extinction values (data not shown). 255

It may happen that there is no minimum in a cell. This 256

is an uncommon situation in natural images. In such cases, 257

we must add a marker for the cell which is not a minimum 258

of g, in order to keep regularity. One solution could be to 259

simply choose the center of the cell; however, if this point 260

falls on a local maximum of the gradient g, the resulting 261

SP may coincide with the maximum region and therefore be 262

small in size (leading to a larger variability in size of the SP). 263

We propose instead to take, as marker, the flat zone with 264

minimum value of the gradient inside this very cell. 265

In both cases (i.e. either there exists at least one minimum in 266

the cell or there is not), the selected marker has to be composed 267

of a unique connected component to ensure regularity and 268

connectivity of the resulting superpixel. However, it might 269

not be the case, respectively if more than one minimum 270
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Fig. 2. Illustration of waterpixels generation: (a): original image; (b) corresponding Lab gradient; (c): selected markers within the regular grid of hexagonal
cells (step σ = 40 pixels); (d): distance function to markers; (g): distance function to cell centers; (e) and (h): spatially regularized gradient respectively
with distance functions to selected markers (d) and to cell centers (g); (f) and (i): Resulting waterpixels obtained by respectively applying the watershed
transformation to (e) and (h), with markers (c).

have the same highest extinction value, or if more than one271

flat zone present the same lowest gradient value in the cell.272

Therefore, an additional step enables to keep only one of273

the connected components if there is more than one potential274

“best” candidate.275

The set of resulting markers is denoted {Mi }1≥i≥N,276

Mi ⊂ D. The result of the marker selection procedure is277

illustrated in Figure 2.c.278

C. Spatial Regularization of the Gradient and Watershed279

The selection of markers has enforced the pertinence of280

future superpixel-boundaries but also the regularity of their281

pattern (by imposing only one marker per cell). In this282

paragraph, we design a spatially regularized gradient in283

order to further compromise between boundary adherence and284

regularity.285

Let Q = {qi}1≤i≤N be a set of N connected components286

of the image f . For all p ∈ D, we can define a distance287

function dQ with respect to Q as follows:288

∀p ∈ D, dQ(p) = 2

σ
min

i∈[1,N]
d(p, qi ) (1)289

where σ is the grid step defined in the previous section. The 290

normalization by σ is introduced to make the regularization 291

independent from the chosen SP size. 292

We have studied two possible choices of the qi . The first one 293

is to choose them equal to the markers: qi = Mi . Resulting 294

waterpixels are called m-waterpixels. The second one consists 295

in setting them at the cell centers: qi = oi , which leads to 296

c-waterpixels. We have found that the first gives the best 297

adherence to object boundaries, while the second produces 298

more regular superpixels. 299

The spatially regularized gradient greg is defined as follows: 300

greg = g + kdQ (2) 301

where g is the gradient of the image f , dQ is the distance 302

function defined above and k is the spatial regularization 303

parameter, which takes its values within �+. The choice of k is 304

application dependent: when k equals zero, no regularization 305

of the gradient is applied; when k → ∞, we approach the 306

Voronoi tessellation of the set {qi}1≥i≥N in the spatial domain. 307

In the final step, we apply the watershed transformation on 308

the spatially regularized gradient greg , starting the flooding 309

from the markers {Mi }1≤i≤N , so that an image partition 310

{si }1≤i≤N is obtained. The si are the resulting waterpixels. 311
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IV. EXPERIMENTS312

In order to evaluate waterpixels, the proposed method has313

been applied on the Berkeley segmentation database [20]314

and benchmarked against the state-of-the-art. This database is315

divided into three subsets, “train”, “test” and “val”, containing316

respectively 200, 200 and 100 images of sizes 321 × 481 or317

481 × 321 pixels. Approximately 6 human-annotated318

ground-truth segmentations are given for each image. These319

ground-truth images correspond to manually drawn contours.320

A. Implementation321

We have found that it is beneficial to pre-process the images322

from the database using an area opening followed by an area323

closing, both of size σ 2/16 (where σ is the chosen step size324

of the regular grid). This operation efficiently removes details325

which are clearly smaller than the expected waterpixel area and326

which should therefore not give rise to a superpixel contour.327

The Lab-gradient is adopted here in order to best reflect our328

visual perception of color differences and hence the pertinence329

of detected objects. The margin parameter ρ, described330

in III-A, is set to 2
3 .331

The cell centers correspond to the vertices of a square or an332

hexagonal grid of step σ . The grid is computed in one pass333

over the image, by first calculating analytically the coordinates334

of the set of pixels belonging to each cell and then assigning335

to them the label of their corresponding cell. We will display336

the results for the hexagonal grid, as hexagons are more337

isotropic than squares. Interestingly, they also lead to a better338

quantitative performance, which was intuitively expected.339

The implementation of the waterpixels was done using the340

Simple Morphological Image Library (SMIL) [21]. SMIL is a341

Mathematical Morphology library that aims to be fast, light-342

weight and portable. It brings most classical morphological343

operators re-designed in order to take advantage of recent344

computer features (SIMD, parallel processing, …) to allow345

handling of very large images and real time processing.346

B. Qualitative Analysis347

Figure 3 shows various images from the Berkeley348

segmentation database and their corresponding waterpixels349

(m-waterpixels and c-waterpixels, hexagonal and square grids,350

different steps). Figures 3.b and 3.c (zooms of original image351

presented in 3.a for m-waterpixels and c-waterpixels respec-352

tively) show the influence of the regularization parameter k353

(0, 4, 8, 16) for an homogeneous (blue sky) and a354

textured (orange rock) regions. As expected, when k → ∞,355

m-waterpixels tend towards the Voronoi tessellation of the356

markers, while c-waterpixels approach the regular grid of357

hexagonal cells. Both show good adherence to object bound-358

aries, as shown in Figures 3.d, 3.e, 3.f. Of course, enforcing359

regularity decreases the adherence to object boundaries (see360

the zoom in Figure 3.f for k = 16). One advantage of361

waterpixels is that the user can choose the shape (and size) of362

resulting superpixels depending on the application requisites.363

Figure 3.d, for example, presents waterpixels for hexagonal364

(second and third columns) and square (fourth column) grids.365

As a gradient-based approach, the quality of the watershed366

is dependant on the borders contrast. If we look at the contours367

of objects missed by waterpixels, we see that it is due to the 368

weakness of the gradient, as illustrated in Figure 4. 369

C. Evaluation Criteria 370

SP methods produce an image partition {si }1≤i≤N . In order 371

to compute the SP borders, we use a morphological gradient 372

with a 4 neighborhood. Note that the resulting contours are 373

two pixels wide. To this set Sc, we add the one pixel wide 374

image borders Sb . The final set is denoted C . The ground 375

truth image corresponding to the contours of the objects to be 376

segmented, provided in the Berkeley segmentation database, 377

is called GT . 378

In superpixel generation, we look for an image decomposi- 379

tion into regular regions that adhere well to object boundaries. 380

We propose to use three measures to evaluate this trade- 381

off, namely boundary-recall, contour density and average 382

mismatch factor, as well as computation time. 383

There are two levels of regularity: (1) the number of pixels 384

required to describe the SP contours, which can be seen as a 385

measure of complexity of individual SP, and (2) the similarity 386

in size and shape between SP. 387

The first property is evaluated by the Contour Density, 388

which is defined as the number of SP contour pixels divided 389

by the total number of pixels in the image: 390

C D =
1
2 |Sc| + |Sb|

|D| (3) 391

Note that |Sc| is divided by 2 since contours are 392

two-pixel-wide. 393

The second property, i.e. similarity in size and shape, is 394

evaluated by an adapted version of the mismatch factor [22]. 395

The mismatch factor measures the shape and size dissimilarity 396

between two regions. Given two sets, A and B , the mismatch 397

factor m f between them is defined as: 398

m f (A, B) : = |A ∪ B \ A ∩ B|
|A ∪ B| 399

= 1 − |A ∩ B|
|A ∪ B| (4) 400

The mismatch factor and the Jaccard index thus sum to 401

one. Aiming to measure the superpixel regularity, we adapted 402

the mismatch factor to estimate the spread of size and shape 403

distribution. Hence, the average mismatch factor M F is 404

proposed as: 405

M F = 1

N

N∑

i=1

m f (s∗
i , ŝ ∗) (5) 406

where s∗
i is the centered version of superpixel si , and ŝ∗ is 407

the average centered shape of all superpixels. The complete 408

definition of the average mismatch factor is given in Appendix. 409

Note that although compactness is sometimes used in super- 410

pixels evaluation (see [23]), it is a poor measurement for 411

region regularity. For example, perfectly-rectangular regions 412

are regular but not compact (because they are different from 413

discs). Waterpixels can in principle tend towards differently 414

shaped superpixels (rectangles, hexagons or other), depending 415

on the grid and the regularization function used. Since the 416

average mismatch factor compares each superpixel against an 417
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Fig. 3. Illustrations of waterpixels on the Berkeley segmentation database: All waterpixels images are computed with an hexagonal grid with step
σ = 30 pixels and a regularization parameter k = 8, unless otherwise specified. (a): original image (middle) with corresponding m-waterpixels (left) and
c-waterpixels (right). σ = 25 pixels, k = 16. (c): zooms of m-waterpixels (a) for k = 0, 4, 8, 16. (c): zooms of c-waterpixels (a) for k = 0, 4, 8, 16.
(d): original image - m-wat. - c-wat. - m-wat. with square grid and σ = 40 pixels. (e): original image - m-wat. - c-wat. - zoom of c-wat..
(f): original image - m-wat. - c-wat. - zoom of m-wat. with k = 16.

image dependent template, this measure is more appropriate418

to evaluate regularity than compactness.419

To quantify the adherence to object boundaries, a classical420

measure used in the literature is the boundary-recall (BR).421

Boundary-recall is defined as the percentage of ground-truth422

contour pixels GT which fall within strictly less than 3 pixels423

from superpixel boundaries C:424

B R = |{p ∈ GT, d(p, C) < 3}|
|GT | (6)425

where d is the L1 (or Manhattan) distance.426

While precision cannot be directly used in the context of 427

over-segmentations, boundary-recall has to be, in this partic- 428

ular case of superpixels, interpreted with caution. Indeed, as 429

noted also by Kalinin and Sirota [24], very tortuous contours 430

systematically lead to better performances: because of their 431

higher number, SP contour pixels have a higher chance of 432

matching a true contour, increasing artificially the boundary- 433

recall. Hence, we propose to always consider the trade-off 434

between boundary-recall and contour density to properly 435

evaluate the adherence to object boundaries, penalizing at the 436

same time the cost in pixels to describe SP contours. 437
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Fig. 4. Contours missed by waterpixels: (a): original image from the
Berkeley segmentation database. (b): m-waterpixels with step = 27 and
k = 10. (c): c-waterpixels with step = 27 and k = 10. (d), (e), (f): zoom
of (a), (b), (c) respectively. (g): zoom of the non-regularized gradient image.
(h) and (i): reached (green) and missed (red) contours, respectively by
m-waterpixels and c-waterpixels.

D. Quantitative Analysis and Comparison438

With State-of-the-Art439

In this paragraph, we will use m-waterpixels and denote440

them directly as “waterpixels” for the sake of simplicity.441

During the design of the algorithm, we used intermedi-442

ate results from the train and test subsets of the Berkeley443

database. Therefore, we report the results obtained for the444

validation subset (“val”), which contains 100 images. Results445

for boundary-recall, average mismatch factor and contour446

density are averaged for this subset and shown in Figure 5.447

Blue and red curves correspond to varying regularization448

parameters k and k ′ respectively for waterpixels and SLIC.449

The values for k and k ′ have been chosen such that they450

cover a reasonable portion of the regularization space between451

no regularization (k = 0) and a still acceptable level of452

regularization.453

Figure 5(a) shows contour density against boundary-recall454

for waterpixels and SLIC. The ideal case being the lowest con-455

tour density for the highest boundary-recall, we can see that456

the trade-off between both properties improves for decreasing457

regularization, as expected. On the other hand, SLIC shows458

another behavior: the trade-off improves, then gets worse459

with regularization. At any rate, it is important to note that460

waterpixels achieves a better “best” trade-off than SLIC461

(see waterpixel k = 0 and SLIC k ′ = 15). Besides, this obser-462

vation is valid for the whole family of waterpixel-methods as463

the zero-value regularization does not take into account dQ .464

In order to do a fair comparison between waterpixels and465

SLIC over all criteria, we choose corresponding curves in the466

trade-off contour density/boundary-recall, i.e. waterpixels with467

k = 8 and SLIC with k ′ = 15, and compare this couple for468

the other criteria.469

Figure 5(b) shows that, for a given number of superpixels,470

contour density of waterpixels is more stable and most of471

the time lower than SLIC when varying regularization. More472

particularly, contour density is lower for waterpixels (k = 8)473

Fig. 5. Benchmark: performance comparison between waterpixels and SLIC.
(a) Contour Density against Boundary-recall. (b) Contour Density against
Number of Superpixels. (c) Mismatch factor against Boundary-recall.

than for SLIC (k ′ = 15). This means that for the same number 474

of superpixels, waterpixels contours are shorter than SLIC 475

contours, which is partly explained by less tortuous contours. 476

Figure 5(c) shows average mismatch factor against 477

boundary-recall for waterpixels and SLIC. We can see that 478

the curves for waterpixels with k = 8 and SLIC with k ′ = 15 479

are here again close to each other. 480



IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 6. Comparison between Waterpixels and SLIC superpixels for
σ = 25 pixels on a zoom of an image from the Berkeley segmentation
database. (a) SLIC k′ = 15. (b) Waterpixels k = 8.

These properties are illustrated in Figure 6, where we can481

see examples of reached and missed contours by both methods,482

as well as their different behaviours in terms of regularity483

(shape, size, tortuosity).484

E. Computation Time485

Computing time was measured on a personal computer486

based on Intel(R) Core(TM) i7 central processing units487

(4 physical cores, 4 virtual ones), operating at 2.93GHz. Both488

methods have linear complexity with the number of pixels in489

the image. For an image of size 481×321, average computing490

time for SLIC was 149 ms, and 132 ms for waterpixels491

(82 ms without pre-filtering). A more detailed comparison of492

computation times is presented in Figure 7 (showing average493

and standard deviation for different numbers of superpixels).494

We can see that waterpixels are generally faster to compute495

than SLIC superpixels. Contrary to the latter’s, their compu-496

tation time decreases slightly with the number of superpixels.497

An analysis of computation times for the different steps of498

waterpixels reveals that this variability is only introduced by499

the grid computation and the minima selection procedure.500

Concerning grid computation time, it rises from 2 ms for501

small numbers of waterpixels to 27 ms for large numbers of502

waterpixels. This simply means that we still have to optimize503

this step. Concerning the computation time of the minima504

selection procedure, it decreases as waterpixels become larger505

because of pre-filtering step. Indeed, the size of this filtering506

is directly proportional to the cell size. As such, resulting507

images contain less minima, which simplifies the selection508

procedure. Besides, the variance observed when we change509

images is explained by the fact that the difficulty of minima510

evaluation/computation depends on the content of each image.511

Fig. 7. Computation time comparison with images of the Berkeley database.

We are currently working on a new implementation of minima 512

computation/evaluation which would be less dependent on the 513

number of superpixels. 514

To conclude this section, waterpixels are generally faster 515

to compute than SLIC superpixels, and they are at least 516

as performant in the trade-off between adherence to object 517

boundaries and regularity in shape and size, while using much 518

less pixels to describe their contours. 519

V. DISCUSSION AND PERSPECTIVES 520

We have shown that waterpixels produce competitive results 521

with respect to the state-of-the-art. These advantages are 522

valuable in the classification/detection/segmentation pipeline, 523

where superpixels play the part of primitives. Moreover, there 524

is one major difference in the construction of the algorithm: 525

the SLIC approach does not impose any connectivity con- 526

straint. The resulting superpixels are therefore not necessarily 527

connected, which requires some ad hoc postprocessing step. 528

In contrast, waterpixels are connected by definition, and the 529

connectivity constraint is actually implemented in the distance 530

used. 531

The proposed approach is gradient-based. Standard methods 532

can be used to compute this gradient, or a specific gradient 533

computation method can be designed for a given application. 534

In any case, this offers flexibility to waterpixels. One limitation 535

though is the quality of the signal in such a gradient image. 536

As seen in 4, alteration by noise or insufficiently contrasted 537

contours may lead to the prevalence of regularity over adher- 538

ence to object boundaries. If filtering steps are usually enough 539

to deal with noise and remove non pertinent small details, 540

parameter values have to be optimized for each database. 541

Future work will aim at overcoming this limitation by adding a 542

learning step of optimal filtering values for specific databases. 543

The general design of waterpixels offers many prospects. 544

Among them, one promising field of improvement resides 545

in the placement of markers, as they constitute the main 546

degree of freedom of the method. We are currently inves- 547

tigating the possibility to select the markers in an optimal 548

manner, for example by formulating the marker placement as a 549

p-dispersion problem (see [25]) in an augmented space. 550
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The speed of waterpixels contributes to expanding their551

possible applications. For example, it could be interest-552

ing to compute different sets of waterpixels, by changing553

design options (different cells, gradients, grid steps, etc.),554

and then use ensemble clustering methods to obtain a final555

segmentation [26], [27].556

Last buy not least, waterpixels lead to the efficient construc-557

tion of hierarchical partitions based on superpixels. Indeed,558

the computation of the watershed can produce at the same559

time a segmentation and a hierarchy of partitions based on560

that segmentation, with only minor overhead computation561

times [28]–[30].562

VI. CONCLUSION563

This paper introduces waterpixels, a family of methods564

for computing regular superpixels based on the watershed565

transformation. Both adherence to object boundaries and regu-566

larity of resulting regions are encouraged thanks to the choice567

of the markers and the gradient to be flooded. Different568

design options, such as the distance function used to spatially569

regularized the gradient, lead to different trade-offs between570

both properties. The computational complexity of waterpixels571

is linear. Our current implementation makes it one of the572

fastest superpixel methods. Experimental results show that573

waterpixels are competitive with respect to the state-of-the art.574

They outperform SLIC superpixels, both in terms of quality575

and speed. The trade-off between speed and segmentation576

quality achieved by waterpixels, as well as their ability to577

generate hierarchical segmentations at negligible extra cost,578

offer interesting perspectives for this superpixels generation579

method.580

An implementation of waterpixels is available from581

http://cmm.ensmp.fr/~machairas/waterpixels.582

APPENDIX583

MEAN MISMATCH FACTOR DEFINITION584

Let {si }1≤i≤N be a set of superpixels. The centered version585

s∗
i of si is obtained by translating si so that its barycenter is586

the origin of the coordinates system.587

The average shape ŝ ∗ of the {si } is computed as follows.588

Let first define function S:589

S : D −→ N

x p �−→
N∑

i=1
1i (x p)

(7)590

where 1i is the indicator function of s∗
i . Thus, image S cor-591

responds to the summation image of all centered superpixels.592

Let furthermore μA = 1/n
∑N

i=1 |si | be the average area of593

the considered superpixels, and let St be the threshold of S at594

level t : St (x) = {x p ∈ D
∣∣∣

∣∣S(x p)
∣∣ ≥ t}.595

The average centered shape ŝ ∗ is then the set St0 , where t0596

is the maximal threshold value which enables ŝ ∗ to have an597

area greater than or equal to μA:598

t0 = max{t
∣∣∣ |St | ≥ μA} (8)599

ŝ ∗ = St0 (9)600

Finally, the mean mismatch factor of superpixels 601

{si }1≤i≤N is: 602

M F = 1

N

N∑

i=1

m f (s∗
i , ŝ ∗). (10) 603
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Waterpixels
Vaïa Machairas, Matthieu Faessel, David Cárdenas-Peña, Théodore Chabardes,

Thomas Walter, and Etienne Decencière

Abstract— Many approaches for image segmentation rely on a1

first low-level segmentation step, where an image is partitioned2

into homogeneous regions with enforced regularity and adherence3

to object boundaries. Methods to generate these superpixels have4

gained substantial interest in the last few years, but only a few5

have made it into applications in practice, in particular because6

the requirements on the processing time are essential but are not7

met by most of them. Here, we propose waterpixels as a general8

strategy for generating superpixels which relies on the marker9

controlled watershed transformation. We introduce a spatially10

regularized gradient to achieve a tunable tradeoff between the11

superpixel regularity and the adherence to object boundaries.12

The complexity of the resulting methods is linear with respect13

to the number of image pixels. We quantitatively evaluate our14

approach on the Berkeley segmentation database and compare15

it against the state-of-the-art.16

Index Terms— Superpixels, watershed, segmentation.17

I. INTRODUCTION18

SUPERPIXELS (SP) are regions resulting from19

a low-level segmentation of an image and are typically20

used as primitives for further analysis such as detection,21

segmentation, and classification of objects (see Figure 122

for an illustration). The underlying idea is that this first23

low-level partition alleviates the computational complexity of24

the following processing steps and improves their robustness,25

as not single pixel values but pixel set features can be used.26

Superpixels should have the following properties:

AQ:1

AQ:2
AQ:3

27

1) homogeneity: pixels of a given SP should present28

similar colors or gray levels;29
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Fig. 1. Superpixels illustration. The original image comes from the Berkeley
segmentation database. (a) Original image. (b) Waterpixels.

2) connected partition: each SP is made of a single 30

connected component and the SPs constitute a partition 31

of the image; 32

3) adherence to object boundaries: object boundaries 33

should be included in SP boundaries; 34

4) regularity: SPs should form a regular pattern on the 35

image. This property is often desirable as it makes the 36

SP more convenient to use for subsequent analysis steps. 37

The requirements on regularity and boundary adherence 38

are to a certain extent oppositional, and a good solution 39

typically aims at finding a compromise between these two 40

requirements. 41

In addition to these requirements on superpixel quality, 42

computational efficiency is an absolutely essential aspect, as 43

the partition into superpixels is typically only the first step of 44

an often complex and potentially time consuming workflow. 45

Methods of linear complexity are consequently of particular 46

interest. 47

We therefore hypothesized that the Watershed transforma- 48

tion [1], [2] should be an interesting candidate for superpixel 49

generation, as it has been shown to achieve state-of-the-art 50

performance in many segmentation problems, it is 51

non-parametric, and there exist linear-complexity algorithms 52

to compute it, as well as efficient implementations [3], [4]. 53

The only often cited drawback, oversegmentation, does not 54

seem to be problematic for superpixel generation, as long as 55

we can control the degree of oversegmentation (number of 56

superpixels), and the regularity of the resulting partition. 57

Given these considerations, we propose a strategy for 58

applying the watershed transform to superpixel generation, 59

where we use a spatially regularized gradient to achieve a 60

tunable trade-off between superpixel regularity and adherence 61

to object boundaries. We quantitatively evaluate our method 62

on the Berkeley segmentation database and show that we 63

outperform the best linear-time state-of-the art method: Simple 64

Linear Iterative Clustering (SLIC) [5]. We call the resulting 65

superpixels “waterpixels.” 66

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

RECAP CHART OF EXISTING METHODS TO COMPUTE REGULAR

SUPERPIXELS (n IS THE NUMBER OF PIXELS IN THE IMAGE; i IS

THE NUMBER OF ITERATIONS REQUIRED; N THE NUMBER

OF SUPERPIXELS). “WP” CORRESPONDS TO OUR

METHOD, CALLED “WATERPIXELS”

This paper is an extended version of [6]. It proposes a

AQ:4

67

more general approach (elaborating a whole family of water-68

pixels generation methods), with a more thorough validation69

and improved results with regard to the trade-off between70

boundary adherence and regularity, as well as computation71

time. Moreover, we have developed and made available a fast72

implementation of waterpixels.73

II. RELATED WORK74

Low-level segmentations have been used for a long time as75

first step towards segmentation [7], [8]. The term superpixel76

was coined much later [9], albeit in a more constrained frame-77

work. This approach has raised increasing interest since then.78

Various methods exist to compute SPs, most of them based on79

graphs [10], geometrical flows [11] or k-means [5]. We will80

focus on linear complexity methods generating regular SPs.81

Methods for SP generation are all based on two steps:82

an initialization step where either seeds or a starting par-83

tition are defined and a (potentially iterative) assignment84

step, where each pixel is assigned to one superpixel, starting85

from the initialization. In the next section, we are going to86

review previously published approaches for SP generation with87

respect to these aspects and compare them regarding various88

performance criteria. We limit the presentation of existing89

methods to those with linear complexity.90

A. Choosing the Seeds91

In the first step, a set of seeds is chosen, which are typically92

spaced regularly over the image plane and which can be either93

regions or single pixels:94

• Type A seeds are independent of the image content. These95

are typically the cells or the centers of a regular grid.96

• Type B seeds depend on the content of the image97

(compromise between a regular cover of the image plane98

and an adaption to the contour).99

• Type C seeds are initially image independent, then they100

are iteratively refined to take into account the image101

contents.102

If the seed does not depend on the image, an iterative103

refinement is usually preferable, and therefore more time104

is spent on the computation of the SP. Type B methods 105

may spend more time on finding appropriate seeds, but can 106

therefore afford not to iterate the SP generation. 107

B. Building Superpixels From Seeds 108

In the second step, the partition into superpixels is built 109

from the seeds. Among the methods with linear complexity, 110

there are two main strategies for this: 111

Shortest Path Methods (Type 1) [11], [13]: these methods 112

are based on region growing: they start from a set of seeds 113

(points or regions) and successively extend them by incor- 114

porating pixels in their neighborhood according to a usually 115

image dependent cost function until every pixel of the image 116

plane has been assigned to exactly one superpixel. This process 117

may or may not be iterated. 118

Shortest Distance Methods (Type 2) [5], [12]: these are 119

iterative procedures inspired by the field of unsupervised 120

learning, where at each iteration step, seeds (such as centroids) 121

are calculated from the previous partition and pixels are then 122

re-assigned to the closest seed (like for example the k-means 123

approach). 124

Even though methods inspired by general clustering meth- 125

ods (type 2) seem appealing at first sight, in particular when 126

they globally optimize a cost function, this class of methods 127

does not guarantee connectivity of the superpixels for arbi- 128

trary choices of the pixel-seed distance (see [5], [12]). For 129

instance, the distance metric proposed in [5] (a combination 130

of Euclidean and grey level distance), leads to non-connected 131

superpixels, which is undesirable. To solve this issue, a post- 132

processing step is necessary, consisting either in relabeling the 133

image so that every connected component has its own label 134

(see [12]), leading to a more irregular distribution of SP sizes 135

and shapes, or in reassigning isolated regions to the closest and 136

large enough Superpixel, as in [5], leading to non-optimality 137

of the solution and an unpredictable number of superpixels. 138

In addition, such postprocessing increases the computational 139

cost and can turn out to be the most time-consuming step when 140

the image contains numerous small objects/details compared 141

to the size of the Superpixel. 142

On the contrary, methods based on region growing (type 1) 143

inherently implement a “path-type” distance, where the dis- 144

tance between two pixels does not only depend on value 145

and position of the pixels themselves, but on values and 146

positions along the path connecting them. Type 1 methods 147

imply connected superpixel regions, for which the number of 148

superpixels is exactly the number of seeds. 149

C. Other Properties 150

It is generally accepted that a good superpixel-generation 151

method should provide to the user total control over the num- 152

ber of resulting Superpixels. While this property is achieved 153

by [11]–[14], some only reach approximatively this num- 154

ber because of post-processing (either by splitting too big 155

superpixels, or removing small isolated superpixels as in [5]). 156

Another parameter is the control on superpixels regularity in 157

the trade-off between regularity and adherence to contours. 158

Only [5] and [12] enable the user to weight the importance 159
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of regularity compared to boundary adherence, so it can be160

adapted to the application.161

As far as performance is concerned, one of the main162

criteria is undoubtedly the complexity that the method163

requires. Indeed, for Superpixels to be used as primitives for164

further analysis such as classification, their computation should165

neither take too long nor too much memory. This is the reason166

why we focus on linear complexity methods. Among them,167

SLIC appears to offer the best performance with regards to the168

trade-off between adherence to boundaries and regularity [5].169

Moreover, since its recent inception, this method has become170

very popular in the computer vision community. We will171

therefore use it as reference for the quantitative evaluation of172

our method.173

D. Superpixels and Watershed174

In principle, the watershed transformation (see [15] for a175

review) is well suited for SP generation:176

1) It gives a good adherence to object boundaries when177

computed on the image gradient.178

2) It allows to control the number and spatial arrangement179

of the resulting regions through the choice of markers.180

3) The connectivity of resulting regions is guaranteed and181

no postprocessing is required.182

4) It offers linear complexity with the number of pixels in183

the image.184

Indeed, it has been used to produce low-level segmentations185

in several applications, including computation intensive186

3D applications [16], [17], in particular when shape regularity187

of the elementary regions was not required.188

Previous publications claimed that the watershed transfor-189

mation does not allow for the generation of spatially regular190

SP [5], [11]. Recently, we and others [6], [18] have shown191

that in principle the watershed transformation can be applied192

to SP generation.193

Here, we introduce waterpixels, a family of methods based194

on the watershed transformation to compute superpixels.195

III. WATERPIXELS196

As most watershed-based segmentation methods,197

waterpixels are based on two steps: the definition of198

markers, from which the flooding starts, and the definition of199

a gradient (the image to be flooded). We propose to design200

these steps in such a way that regularity is encouraged.201

A waterpixel-generation method is characterized by the202

following steps:203

1) Computation of the gradient of the image;204

2) Definition of regular cells on the image, centered on the205

vertices of a regular grid;206

3) Selection of one marker per cell;207

4) Spatial regularization of the gradient with the help of a208

distance function;209

5) Application of the watershed transformation on the210

regularized gradient defined in step 4 from the markers211

defined in step 2.212

These steps are illustrated in figure 2 and developed in the213

next paragraphs.214

A. Gradient and Cells Definition 215

Let f : D → V be an image, where D is a rectangular 216

subset of Z2, and V a set of values, typically {0, . . . , 255} 217

when f is a grey level image, or {0, . . . , 255}3 for color 218

images. 219

The first step consists in computing the gradient image g 220

of the image f . The choice of the gradient operator depends 221

on the image type, e.g. for grey level images we might 222

choose a morphological gradient. This gradient will be used 223

to choose the seeds (section III-B) and to build the regularised 224

gradient (III-C). 225

For the definition of cells, we first choose a set of N points 226

{oi}1≤i≤N in D, called cell centers, so that they are placed on 227

the vertices of a regular grid (a square or hexagonal one for 228

example). Given a distance d on D, we denote by σ the grid 229

step, i.e. the distance between closest grid points. 230

A Voronoi tesselation allows to associate to each oi a 231

Voronoi cell . For each such cell, a homothety centered on oi 232

with factor ρ (0 < ρ ≤ 1) leads to the computation of the 233

final cell Ci . This last step allows for the creation of a margin 234

between neighbouring cells, in order to avoid the selection of 235

markers too close from each other. 236

B. Selection of the Markers 237

As each cell is meant to correspond to the generation of 238

a unique waterpixel, our method, through the choice of one 239

marker per cell, offers total control over the number of SP, 240

with a strong impact on their size and shape if desired. 241

First, we compute the minima of the gradient g. Each 242

minimum is a connected component, composed of one or more 243

pixels. These minima are truncated along the grid, i.e. pixels 244

which fall on the margins between cells are removed. 245

Second, every cell of the grid serves to define a region of 246

interest in the gradient image. The content of g in this very 247

region is then analyzed to select a unique marker, as explained 248

in the next paragraph. 249

For each cell, the corresponding marker is chosen among 250

the minima of g which are present in this very cell. 251

If several minima are present, then the one with the highest 252

surface extinction value [19] is used. We have found surface 253

extinction values to give the best performances compared with 254

volume and dynamic extinction values (data not shown). 255

It may happen that there is no minimum in a cell. This 256

is an uncommon situation in natural images. In such cases, 257

we must add a marker for the cell which is not a minimum 258

of g, in order to keep regularity. One solution could be to 259

simply choose the center of the cell; however, if this point 260

falls on a local maximum of the gradient g, the resulting 261

SP may coincide with the maximum region and therefore be 262

small in size (leading to a larger variability in size of the SP). 263

We propose instead to take, as marker, the flat zone with 264

minimum value of the gradient inside this very cell. 265

In both cases (i.e. either there exists at least one minimum in 266

the cell or there is not), the selected marker has to be composed 267

of a unique connected component to ensure regularity and 268

connectivity of the resulting superpixel. However, it might 269

not be the case, respectively if more than one minimum 270
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Fig. 2. Illustration of waterpixels generation: (a): original image; (b) corresponding Lab gradient; (c): selected markers within the regular grid of hexagonal
cells (step σ = 40 pixels); (d): distance function to markers; (g): distance function to cell centers; (e) and (h): spatially regularized gradient respectively
with distance functions to selected markers (d) and to cell centers (g); (f) and (i): Resulting waterpixels obtained by respectively applying the watershed
transformation to (e) and (h), with markers (c).

have the same highest extinction value, or if more than one271

flat zone present the same lowest gradient value in the cell.272

Therefore, an additional step enables to keep only one of273

the connected components if there is more than one potential274

“best” candidate.275

The set of resulting markers is denoted {Mi }1≥i≥N,276

Mi ⊂ D. The result of the marker selection procedure is277

illustrated in Figure 2.c.278

C. Spatial Regularization of the Gradient and Watershed279

The selection of markers has enforced the pertinence of280

future superpixel-boundaries but also the regularity of their281

pattern (by imposing only one marker per cell). In this282

paragraph, we design a spatially regularized gradient in283

order to further compromise between boundary adherence and284

regularity.285

Let Q = {qi}1≤i≤N be a set of N connected components286

of the image f . For all p ∈ D, we can define a distance287

function dQ with respect to Q as follows:288

∀p ∈ D, dQ(p) = 2

σ
min

i∈[1,N]
d(p, qi ) (1)289

where σ is the grid step defined in the previous section. The 290

normalization by σ is introduced to make the regularization 291

independent from the chosen SP size. 292

We have studied two possible choices of the qi . The first one 293

is to choose them equal to the markers: qi = Mi . Resulting 294

waterpixels are called m-waterpixels. The second one consists 295

in setting them at the cell centers: qi = oi , which leads to 296

c-waterpixels. We have found that the first gives the best 297

adherence to object boundaries, while the second produces 298

more regular superpixels. 299

The spatially regularized gradient greg is defined as follows: 300

greg = g + kdQ (2) 301

where g is the gradient of the image f , dQ is the distance 302

function defined above and k is the spatial regularization 303

parameter, which takes its values within �+. The choice of k is 304

application dependent: when k equals zero, no regularization 305

of the gradient is applied; when k → ∞, we approach the 306

Voronoi tessellation of the set {qi}1≥i≥N in the spatial domain. 307

In the final step, we apply the watershed transformation on 308

the spatially regularized gradient greg , starting the flooding 309

from the markers {Mi }1≤i≤N , so that an image partition 310

{si }1≤i≤N is obtained. The si are the resulting waterpixels. 311
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IV. EXPERIMENTS312

In order to evaluate waterpixels, the proposed method has313

been applied on the Berkeley segmentation database [20]314

and benchmarked against the state-of-the-art. This database is315

divided into three subsets, “train”, “test” and “val”, containing316

respectively 200, 200 and 100 images of sizes 321 × 481 or317

481 × 321 pixels. Approximately 6 human-annotated318

ground-truth segmentations are given for each image. These319

ground-truth images correspond to manually drawn contours.320

A. Implementation321

We have found that it is beneficial to pre-process the images322

from the database using an area opening followed by an area323

closing, both of size σ 2/16 (where σ is the chosen step size324

of the regular grid). This operation efficiently removes details325

which are clearly smaller than the expected waterpixel area and326

which should therefore not give rise to a superpixel contour.327

The Lab-gradient is adopted here in order to best reflect our328

visual perception of color differences and hence the pertinence329

of detected objects. The margin parameter ρ, described330

in III-A, is set to 2
3 .331

The cell centers correspond to the vertices of a square or an332

hexagonal grid of step σ . The grid is computed in one pass333

over the image, by first calculating analytically the coordinates334

of the set of pixels belonging to each cell and then assigning335

to them the label of their corresponding cell. We will display336

the results for the hexagonal grid, as hexagons are more337

isotropic than squares. Interestingly, they also lead to a better338

quantitative performance, which was intuitively expected.339

The implementation of the waterpixels was done using the340

Simple Morphological Image Library (SMIL) [21]. SMIL is a341

Mathematical Morphology library that aims to be fast, light-342

weight and portable. It brings most classical morphological343

operators re-designed in order to take advantage of recent344

computer features (SIMD, parallel processing, …) to allow345

handling of very large images and real time processing.346

B. Qualitative Analysis347

Figure 3 shows various images from the Berkeley348

segmentation database and their corresponding waterpixels349

(m-waterpixels and c-waterpixels, hexagonal and square grids,350

different steps). Figures 3.b and 3.c (zooms of original image351

presented in 3.a for m-waterpixels and c-waterpixels respec-352

tively) show the influence of the regularization parameter k353

(0, 4, 8, 16) for an homogeneous (blue sky) and a354

textured (orange rock) regions. As expected, when k → ∞,355

m-waterpixels tend towards the Voronoi tessellation of the356

markers, while c-waterpixels approach the regular grid of357

hexagonal cells. Both show good adherence to object bound-358

aries, as shown in Figures 3.d, 3.e, 3.f. Of course, enforcing359

regularity decreases the adherence to object boundaries (see360

the zoom in Figure 3.f for k = 16). One advantage of361

waterpixels is that the user can choose the shape (and size) of362

resulting superpixels depending on the application requisites.363

Figure 3.d, for example, presents waterpixels for hexagonal364

(second and third columns) and square (fourth column) grids.365

As a gradient-based approach, the quality of the watershed366

is dependant on the borders contrast. If we look at the contours367

of objects missed by waterpixels, we see that it is due to the 368

weakness of the gradient, as illustrated in Figure 4. 369

C. Evaluation Criteria 370

SP methods produce an image partition {si }1≤i≤N . In order 371

to compute the SP borders, we use a morphological gradient 372

with a 4 neighborhood. Note that the resulting contours are 373

two pixels wide. To this set Sc, we add the one pixel wide 374

image borders Sb . The final set is denoted C . The ground 375

truth image corresponding to the contours of the objects to be 376

segmented, provided in the Berkeley segmentation database, 377

is called GT . 378

In superpixel generation, we look for an image decomposi- 379

tion into regular regions that adhere well to object boundaries. 380

We propose to use three measures to evaluate this trade- 381

off, namely boundary-recall, contour density and average 382

mismatch factor, as well as computation time. 383

There are two levels of regularity: (1) the number of pixels 384

required to describe the SP contours, which can be seen as a 385

measure of complexity of individual SP, and (2) the similarity 386

in size and shape between SP. 387

The first property is evaluated by the Contour Density, 388

which is defined as the number of SP contour pixels divided 389

by the total number of pixels in the image: 390

C D =
1
2 |Sc| + |Sb|

|D| (3) 391

Note that |Sc| is divided by 2 since contours are 392

two-pixel-wide. 393

The second property, i.e. similarity in size and shape, is 394

evaluated by an adapted version of the mismatch factor [22]. 395

The mismatch factor measures the shape and size dissimilarity 396

between two regions. Given two sets, A and B , the mismatch 397

factor m f between them is defined as: 398

m f (A, B) : = |A ∪ B \ A ∩ B|
|A ∪ B| 399

= 1 − |A ∩ B|
|A ∪ B| (4) 400

The mismatch factor and the Jaccard index thus sum to 401

one. Aiming to measure the superpixel regularity, we adapted 402

the mismatch factor to estimate the spread of size and shape 403

distribution. Hence, the average mismatch factor M F is 404

proposed as: 405

M F = 1

N

N∑

i=1

m f (s∗
i , ŝ ∗) (5) 406

where s∗
i is the centered version of superpixel si , and ŝ∗ is 407

the average centered shape of all superpixels. The complete 408

definition of the average mismatch factor is given in Appendix. 409

Note that although compactness is sometimes used in super- 410

pixels evaluation (see [23]), it is a poor measurement for 411

region regularity. For example, perfectly-rectangular regions 412

are regular but not compact (because they are different from 413

discs). Waterpixels can in principle tend towards differently 414

shaped superpixels (rectangles, hexagons or other), depending 415

on the grid and the regularization function used. Since the 416

average mismatch factor compares each superpixel against an 417
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Fig. 3. Illustrations of waterpixels on the Berkeley segmentation database: All waterpixels images are computed with an hexagonal grid with step
σ = 30 pixels and a regularization parameter k = 8, unless otherwise specified. (a): original image (middle) with corresponding m-waterpixels (left) and
c-waterpixels (right). σ = 25 pixels, k = 16. (c): zooms of m-waterpixels (a) for k = 0, 4, 8, 16. (c): zooms of c-waterpixels (a) for k = 0, 4, 8, 16.
(d): original image - m-wat. - c-wat. - m-wat. with square grid and σ = 40 pixels. (e): original image - m-wat. - c-wat. - zoom of c-wat..
(f): original image - m-wat. - c-wat. - zoom of m-wat. with k = 16.

image dependent template, this measure is more appropriate418

to evaluate regularity than compactness.419

To quantify the adherence to object boundaries, a classical420

measure used in the literature is the boundary-recall (BR).421

Boundary-recall is defined as the percentage of ground-truth422

contour pixels GT which fall within strictly less than 3 pixels423

from superpixel boundaries C:424

B R = |{p ∈ GT, d(p, C) < 3}|
|GT | (6)425

where d is the L1 (or Manhattan) distance.426

While precision cannot be directly used in the context of 427

over-segmentations, boundary-recall has to be, in this partic- 428

ular case of superpixels, interpreted with caution. Indeed, as 429

noted also by Kalinin and Sirota [24], very tortuous contours 430

systematically lead to better performances: because of their 431

higher number, SP contour pixels have a higher chance of 432

matching a true contour, increasing artificially the boundary- 433

recall. Hence, we propose to always consider the trade-off 434

between boundary-recall and contour density to properly 435

evaluate the adherence to object boundaries, penalizing at the 436

same time the cost in pixels to describe SP contours. 437
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Fig. 4. Contours missed by waterpixels: (a): original image from the
Berkeley segmentation database. (b): m-waterpixels with step = 27 and
k = 10. (c): c-waterpixels with step = 27 and k = 10. (d), (e), (f): zoom
of (a), (b), (c) respectively. (g): zoom of the non-regularized gradient image.
(h) and (i): reached (green) and missed (red) contours, respectively by
m-waterpixels and c-waterpixels.

D. Quantitative Analysis and Comparison438

With State-of-the-Art439

In this paragraph, we will use m-waterpixels and denote440

them directly as “waterpixels” for the sake of simplicity.441

During the design of the algorithm, we used intermedi-442

ate results from the train and test subsets of the Berkeley443

database. Therefore, we report the results obtained for the444

validation subset (“val”), which contains 100 images. Results445

for boundary-recall, average mismatch factor and contour446

density are averaged for this subset and shown in Figure 5.447

Blue and red curves correspond to varying regularization448

parameters k and k ′ respectively for waterpixels and SLIC.449

The values for k and k ′ have been chosen such that they450

cover a reasonable portion of the regularization space between451

no regularization (k = 0) and a still acceptable level of452

regularization.453

Figure 5(a) shows contour density against boundary-recall454

for waterpixels and SLIC. The ideal case being the lowest con-455

tour density for the highest boundary-recall, we can see that456

the trade-off between both properties improves for decreasing457

regularization, as expected. On the other hand, SLIC shows458

another behavior: the trade-off improves, then gets worse459

with regularization. At any rate, it is important to note that460

waterpixels achieves a better “best” trade-off than SLIC461

(see waterpixel k = 0 and SLIC k ′ = 15). Besides, this obser-462

vation is valid for the whole family of waterpixel-methods as463

the zero-value regularization does not take into account dQ .464

In order to do a fair comparison between waterpixels and465

SLIC over all criteria, we choose corresponding curves in the466

trade-off contour density/boundary-recall, i.e. waterpixels with467

k = 8 and SLIC with k ′ = 15, and compare this couple for468

the other criteria.469

Figure 5(b) shows that, for a given number of superpixels,470

contour density of waterpixels is more stable and most of471

the time lower than SLIC when varying regularization. More472

particularly, contour density is lower for waterpixels (k = 8)473

Fig. 5. Benchmark: performance comparison between waterpixels and SLIC.
(a) Contour Density against Boundary-recall. (b) Contour Density against
Number of Superpixels. (c) Mismatch factor against Boundary-recall.

than for SLIC (k ′ = 15). This means that for the same number 474

of superpixels, waterpixels contours are shorter than SLIC 475

contours, which is partly explained by less tortuous contours. 476

Figure 5(c) shows average mismatch factor against 477

boundary-recall for waterpixels and SLIC. We can see that 478

the curves for waterpixels with k = 8 and SLIC with k ′ = 15 479

are here again close to each other. 480
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Fig. 6. Comparison between Waterpixels and SLIC superpixels for
σ = 25 pixels on a zoom of an image from the Berkeley segmentation
database. (a) SLIC k ′ = 15. (b) Waterpixels k = 8.

These properties are illustrated in Figure 6, where we can481

see examples of reached and missed contours by both methods,482

as well as their different behaviours in terms of regularity483

(shape, size, tortuosity).484

E. Computation Time485

Computing time was measured on a personal computer486

based on Intel(R) Core(TM) i7 central processing units487

(4 physical cores, 4 virtual ones), operating at 2.93GHz. Both488

methods have linear complexity with the number of pixels in489

the image. For an image of size 481×321, average computing490

time for SLIC was 149 ms, and 132 ms for waterpixels491

(82 ms without pre-filtering). A more detailed comparison of492

computation times is presented in Figure 7 (showing average493

and standard deviation for different numbers of superpixels).494

We can see that waterpixels are generally faster to compute495

than SLIC superpixels. Contrary to the latter’s, their compu-496

tation time decreases slightly with the number of superpixels.497

An analysis of computation times for the different steps of498

waterpixels reveals that this variability is only introduced by499

the grid computation and the minima selection procedure.500

Concerning grid computation time, it rises from 2 ms for501

small numbers of waterpixels to 27 ms for large numbers of502

waterpixels. This simply means that we still have to optimize503

this step. Concerning the computation time of the minima504

selection procedure, it decreases as waterpixels become larger505

because of pre-filtering step. Indeed, the size of this filtering506

is directly proportional to the cell size. As such, resulting507

images contain less minima, which simplifies the selection508

procedure. Besides, the variance observed when we change509

images is explained by the fact that the difficulty of minima510

evaluation/computation depends on the content of each image.511

Fig. 7. Computation time comparison with images of the Berkeley database.

We are currently working on a new implementation of minima 512

computation/evaluation which would be less dependent on the 513

number of superpixels. 514

To conclude this section, waterpixels are generally faster 515

to compute than SLIC superpixels, and they are at least 516

as performant in the trade-off between adherence to object 517

boundaries and regularity in shape and size, while using much 518

less pixels to describe their contours. 519

V. DISCUSSION AND PERSPECTIVES 520

We have shown that waterpixels produce competitive results 521

with respect to the state-of-the-art. These advantages are 522

valuable in the classification/detection/segmentation pipeline, 523

where superpixels play the part of primitives. Moreover, there 524

is one major difference in the construction of the algorithm: 525

the SLIC approach does not impose any connectivity con- 526

straint. The resulting superpixels are therefore not necessarily 527

connected, which requires some ad hoc postprocessing step. 528

In contrast, waterpixels are connected by definition, and the 529

connectivity constraint is actually implemented in the distance 530

used. 531

The proposed approach is gradient-based. Standard methods 532

can be used to compute this gradient, or a specific gradient 533

computation method can be designed for a given application. 534

In any case, this offers flexibility to waterpixels. One limitation 535

though is the quality of the signal in such a gradient image. 536

As seen in 4, alteration by noise or insufficiently contrasted 537

contours may lead to the prevalence of regularity over adher- 538

ence to object boundaries. If filtering steps are usually enough 539

to deal with noise and remove non pertinent small details, 540

parameter values have to be optimized for each database. 541

Future work will aim at overcoming this limitation by adding a 542

learning step of optimal filtering values for specific databases. 543

The general design of waterpixels offers many prospects. 544

Among them, one promising field of improvement resides 545

in the placement of markers, as they constitute the main 546

degree of freedom of the method. We are currently inves- 547

tigating the possibility to select the markers in an optimal 548

manner, for example by formulating the marker placement as a 549

p-dispersion problem (see [25]) in an augmented space. 550
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The speed of waterpixels contributes to expanding their551

possible applications. For example, it could be interest-552

ing to compute different sets of waterpixels, by changing553

design options (different cells, gradients, grid steps, etc.),554

and then use ensemble clustering methods to obtain a final555

segmentation [26], [27].556

Last buy not least, waterpixels lead to the efficient construc-557

tion of hierarchical partitions based on superpixels. Indeed,558

the computation of the watershed can produce at the same559

time a segmentation and a hierarchy of partitions based on560

that segmentation, with only minor overhead computation561

times [28]–[30].562

VI. CONCLUSION563

This paper introduces waterpixels, a family of methods564

for computing regular superpixels based on the watershed565

transformation. Both adherence to object boundaries and regu-566

larity of resulting regions are encouraged thanks to the choice567

of the markers and the gradient to be flooded. Different568

design options, such as the distance function used to spatially569

regularized the gradient, lead to different trade-offs between570

both properties. The computational complexity of waterpixels571

is linear. Our current implementation makes it one of the572

fastest superpixel methods. Experimental results show that573

waterpixels are competitive with respect to the state-of-the art.574

They outperform SLIC superpixels, both in terms of quality575

and speed. The trade-off between speed and segmentation576

quality achieved by waterpixels, as well as their ability to577

generate hierarchical segmentations at negligible extra cost,578

offer interesting perspectives for this superpixels generation579

method.580

An implementation of waterpixels is available from581

http://cmm.ensmp.fr/~machairas/waterpixels.582

APPENDIX583

MEAN MISMATCH FACTOR DEFINITION584

Let {si }1≤i≤N be a set of superpixels. The centered version585

s∗
i of si is obtained by translating si so that its barycenter is586

the origin of the coordinates system.587

The average shape ŝ ∗ of the {si } is computed as follows.588

Let first define function S:589

S : D −→ N

x p �−→
N∑

i=1
1i (x p)

(7)590

where 1i is the indicator function of s∗
i . Thus, image S cor-591

responds to the summation image of all centered superpixels.592

Let furthermore μA = 1/n
∑N

i=1 |si | be the average area of593

the considered superpixels, and let St be the threshold of S at594

level t: St (x) = {x p ∈ D
∣∣∣

∣∣S(x p)
∣∣ ≥ t}.595

The average centered shape ŝ ∗ is then the set St0 , where t0596

is the maximal threshold value which enables ŝ ∗ to have an597

area greater than or equal to μA:598

t0 = max{t
∣∣∣ |St | ≥ μA} (8)599

ŝ ∗ = St0 (9)600

Finally, the mean mismatch factor of superpixels 601

{si }1≤i≤N is: 602

M F = 1

N

N∑

i=1

m f (s∗
i , ŝ ∗). (10) 603
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