
HAL Id: hal-01212722
https://hal.science/hal-01212722v1

Submitted on 8 Oct 2015 (v1), last revised 2 Jul 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Approach for Composing RESTful Linked Services
on the Web

Mahdi Bennara, Michael Mrissa, Youssef Amghar

To cite this version:
Mahdi Bennara, Michael Mrissa, Youssef Amghar. An Approach for Composing RESTful Linked
Services on the Web. World Wide Web, Apr 2014, Seoul, South Korea. �10.1145/2567948.2579222�.
�hal-01212722v1�

https://hal.science/hal-01212722v1
https://hal.archives-ouvertes.fr

Composing RESTful Linked Services on the Web

Mahdi Bennara
Université de Lyon, CNRS

INSA-Lyon, LIRIS UMR5205,
F-69621, France

mahdi.bennara@liris.cnrs.fr

Michael Mrissa
Université de Lyon, CNRS
Université Lyon 1, LIRIS

UMR5205, F-69622, France
michael.mrissa@liris.cnrs.fr

Youssef Amghar
Université de Lyon, CNRS

INSA-Lyon, LIRIS UMR5205,
F-69621, France

youssef.amghar@liris.cnrs.fr

ABSTRACT
In this paper, we present an approach to compose linked services
on the Web based on the principles of linked data and REST. Our
contribution is a unified method for discovering both the interaction
possibilities a service offers and the available semantic links to
other services. Our composition engine is implemented as a generic
client that allows exploring a service API and interacting with other
services to answer user’s goal. We rely on a typical scenario in
order to illustrate the benefits of our composition approach. We
implemented a prototype to demonstrate the applicability of our
proposal, experiment and discuss the results obtained.

Keywords
RESTful Web services; linked services; semantic Web; composition

Categories and Subject Descriptors
H.3.5.2 [Web-based Services]: RESTful Web services; Service
discovery and interfaces

1. INTRODUCTION
During the last decade, the emergence of Web services has been

a major success to enable interoperability on the Web. For almost
every simple task we would make on the Web, we can easily find one
or several Web services that realize this task. Moreover, service com-
position, or mashups, enables valued-added processes that combine
several services to answer complex user needs. The success of Web
services is highlighted via Web sites such as ProgrammableWeb1

that referenced 105 APIs available on the Web in 2005 and more
than 10000 APIs in 2014, not counting mashups.

However, while service-oriented computing becomes adopted,
the supporting technologies change. During the last few years, the
typical Web service protocol stack (SOAP, WSDL, UDDI) is slowly
being abandoned for the profit of REST-based approaches. On
the 14/01/2014, ProgrammableWeb counts 2125 SOAP-based APIs
for 6833 REST-based ones. A RESTful service respects several
constraints [4]:

• It exposes the operations a service offers as a set of one or
more Web resources (resource identification).

1http://www.programmableweb.com

Copyright is held by the author/owner(s).
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579222 .

• It links to others resources to allow for further interaction
according to the HATEOAS principle (resource linking).

• It follows the semantics of HTTP verbs to interact with the
exposed resource (stateless interaction), thus unifying the
interaction possibilities (uniform interface).

• It exchanges self-describing messages.

The adoption of RESTful services changes the way services are
designed and implemented. The uniform interface, that comes with
the correct use of HTTP verbs and their semantics, replaces the
typical API built around functions and input/output parameters. The
management of the application state, which was usually handled
server-side, is now at the charge of the client software (the browser).

In addition, recent advances in the semantic Web research area
have been promoting linked data [3] and a set of languages and tools
such as JSON-LD [13], RDF [10], OWL [5], SPARQL [15] and
POWDER [2], that allow to annotate Web data, resources and ser-
vices with explicit, machine-readable semantics that can be utilized
in conjunction with advanced reasoning mechanisms to connect
resources to each other in a way that makes sense. Indeed, Web
services also benefit from these advances, and can now be annotated
with machine-readable, explicit semantics and exchange semanti-
cally annotated data. These services are referred to as linked services
[12]2. Therefore, the typical approaches to discover, compose, or-
chestrate and utilize services on the Web need a complete rethinking
to comply with -and get the benefits of- the REST principles and the
semantic Web. Reaping the benefits from these advances requires
adapting the way information systems and applications interact with
the Web.

In this paper, we propose a solution to facilitate service composi-
tion based on the REST and linked data principles. In the remainder
of this paper, services are semantic Web resources, they are identi-
fied via a URI and they are accessed through HTTP verbs. They also
are semantically described and represented as JSON-LD documents
to make semantics explicit when needed. The contribution of this
paper is to propose a unified approach to discover the interaction
patterns a resource offers and the orchestration possibilities with
other resources, in order to enable resource composition, using the
principles of REST and linked data.

Our paper is organized as follows. Section 2 introduces the
scenario to illustrate our proposal and gives details on the motivation
of our contribution. Section 3 details our contribution and shows
its innovation. Section 4 shows how our prototype operates in
the context of our scenario and demonstrates the applicability of

2Linked services are Web services that exchange linked data and
are described with linked data. We do not use the term linked data
services to avoid confusion with data services that only provide data.

http://www.programmableweb.com
http://dx.doi.org/10.1145/2567948.2579222

our solution. Section 5 presents related work and highlights the
advantages our solution offers. Section 6 discusses our results and
gives some guidelines for future work.

2. SCENARIO AND MOTIVATION
In order to motivate our approach, we consider a typical scenario

similar to the scenario presented in [11] involving a customer who
buys a book from an online seller. At the beginning of the scenario,
we assume the user only knows the URI of the book selling service.
The user also knows his/her objective: ordering a book, paying
online and getting delivered in less than 48h if possible. After
choosing a book and creating an order, the client must choose a
specific shipment method, give the address to which he/she wants to
be delivered, and finally perform the payment operation.

In this scenario we identify a set of elementary services, which
are, according to the REST principles, exposed as resources. The re-
sources modeled within this scenario are the Book, Order, Shipment
Method, Shipment and Payment resources.

Generic
machine-client

Update the order

Submit a payment

Update the shipment Request/response

client

resource

Book selling
service

Online payment
service

Shipping
service

Figure 1: Resources and data exchanges in our scenario

Fig. 1 shows the resources and the different exchanges involved
in the scenario, described as follows:

• Book selling service: it is composed of two sub-resources,
a list of books and a list of orders. Book descriptions can
be retrieved using GET and new orders can be created using
POST and updated with the list of books to buy and payment
confirmation with PUT (or PATCH)

• Payment service: a new payment can be created with POST
and confirmed with PUT (or PATCH)

• Shipment service: a shipment method can be selected with
GET and a new shipment can be created with POST and
validated with PUT (or PATCH)

In a typical service-oriented architecture, the user’s high level
objective is described in a business process that is located server-
side and orchestrated/executed by the composition engine. Service
orchestration is typically either hard-coded under the form of a
business process (or mashup) or dynamically generated on the server
side using well-known reasoning techniques. Such a solution is not
an option according to the REST principles as the handling of the
composition needs to be performed client-side, relieving the server
from handling the composition process and offering better scalability.
Therefore, this scenario underlines the following scientific locks
that motivate our work:

• There is a need for the user to interact with all these services
using the same generic client.

• There is also a need for the client to be able to use several
services together without manually connecting them, and to
locally handle the state of the composite application.

• There is a need to provide semantically explicit links that
allow the generic client to go from one service to another.

This scenario highlights our motivation: we want to show how the
service discovery and composition tasks can be achieved using the
Web, linked services and the REST paradigm. To do so, we provide
a unified method for discovering resource interaction possibilities
as well as external semantically linked resources that can be used
in conjunction. This contribution is a first step towards automated
discovery and composition of linked resources (or RESTful linked
services) on the Web.

3. CONTRIBUTION
In this section, we explain how our unified method explores

the features resources offer in terms of what HTTP operations are
allowed, and how it allows discovering other resources that are
semantically linked to the resource currently explored, according
to the composition possibilities they offer. Then, it becomes very
simple for a client-side software program to interact with resources
and crawl from a resource to another to fulfill the user’s objectives.

3.1 Resource Interaction Model
Our model involves specific interaction possibilities with re-

sources on the Web. We extend a resource with a descriptor that
contains meta-data about the resource together with information
about related resources. Then, when the URI of a resource is avail-
able, it is possible to get its descriptor too, following a generic
interaction pattern. To make this interaction possible, we use the
HTTP LINK header and the POWDER [2] describedby property,
expressed in RDF3, in order to give a link with explicit semantics to
the descriptor of a resource. Fig 2 shows the discovery of a resource
and how the LINK field is accessed in the HTTP header.

Generic
machine-client

HTTP HEAD (or GET)
http://example.com/resource

Header
…
LINK: <http://example.com/resource/resource.md>;
 rel=describedby

…

Body
…

(Not present if HEAD)

HTTP response

Message

request/
response

client

resource

Web
resource

message

Figure 2: Discovering a resource

The descriptor describes the resources pointing at it by giving
information on what HTTP operation are available on the resource,
together with information on available sub-resources and on other
related external resources, as illustrated in Fig. 3.

We must underline the fact that all descriptors are resources also
according to the REST principles. Then, as the descriptor is also

3Alternative solutions are available at http://www.w3.org/TR/
powder-dr/#httplink

http://www.w3.org/TR/powder-dr/#httplink
http://www.w3.org/TR/powder-dr/#httplink

Generic
machine‐client

HTTPvGET
http:DDexampleYcomDresourceDresourceYmd

Header
…
LINK:v<http:DDexampleYcomDresourceDresourceYmdDuniversalYmd>;v

…

Body

Message

Links to other
resources

…
Linkva Informationva
Linkvb Informationvb
…
Linkvz Informationvz
…

Interaction model

…
GET InformationW
POST InformationX
PUT InformationY
DELETE InformationZ
…

HTTPvresponse

requestD
response

client

resource
descriptor

message

Web
resource

descriptor

Figure 3: Discovery of a resource descriptor

modeled as a resource, the mechanism recursively applies. Ac-
cording to our proposition every resource must have a descriptor
containing meta-data about it. One can get the descriptor of a de-
scriptor via the Link field of the HTTP header received after a GET
or HEAD operation. However, in such a case, the body of the an-
swer contains meta-data about the descriptor, and the Link field
in the HTTP header contains a link to the universal descriptor that
describes all descriptors4. Figure 4 shows how resources, descrip-
tors and the universal descriptor are linked to each other. At the
moment, the meta data that describes a descriptor does not provide
link to external resources, but such a possibility could be explored,
for example for meta-data crawling.

Resource 2 Descriptor 2

Resource 1 Descriptor 1

Resource 3 Descriptor 3

Resource n Descriptor n

Universal
Descriptor

… …

describedby

descriptor
(resource)

resource

Figure 4: Links between resources, descriptors and the univer-
sal descriptor

3.2 Unified Resource Discovery
The way clients get access to internal and external resources is

homogeneous. A client accesses related resources with the required
information about each of them, helping to decide which path to
follow.

The information available in the link to another resource must be
helpful for the client to decide whether it should interact with the
target resource or not. It must describe the semantics of the relation
with the current resource and any other useful piece of information.
However, the link information must not give too much details on the
resource. Details about a resource can be found in its own descriptor.
4Note that a GET or HEAD on the descriptor of all descriptors
returns a link to itself. As the universal descriptor is at the same
time a descriptor, it should imperatively describe itself.

In addition, giving too much information at this stage can generate
data redundancy or bandwidth related issues. The best compromise
is to only give the information that allows the client, at a given point,
to decide whether to use the linked resource or not.

As well, describing the HTTP operations allowed on a given
resource with information on how to correctly use the corresponding
operation is useful. Our work relies on the Siren project [14] in order
to describe resources, links and HTTP operations. The information
consists first of all in a description of the data-models expected
and to be returned when the HTTP operation is called. The HTTP
status codes that can be returned with additional details on the
circumstances of each code gives details on the use of the HTTP
operation. Other annotations on the operation itself, such as the
CRUD basic operations (creates/reads/updates/deletes) and other
advanced operations (initializes, cancels, confirms, etc.) can be
useful for certain clients. Annotations on the data manipulated by
the operation makes its semantics explicit in order to allow a better
exploitation by the client. The HTTP operations that can be executed
on the current resource can also be detailed in order to allow clients
for unambiguous interaction. In particular, the semantics of the
POST operation can be semantically linked to explicit descriptions
to help the client drive the interaction.

While the definition of precise semantics is to be completed in
future work, we envision also to semantically annotate the relation
to external services with several properties that characterize how
the other resource can be used with the original resource. We deem
appropriate to use different interaction patterns such as precedes,
follows, complements, replaces, and so on, that may help the user
know what is the next link to follow and discover. These different
patterns help clients build the different paths available to our generic
client during a composition Additional information on the resource
itself, such as provider, description, service area, language, location
etc. can be integrated to the descriptor as well, but such details
remains out of the scope of the current paper. Our resource discovery
and composition model relies on the fact that resources can keep
track of the interactions they have been involved in, and publish these
traces, after processing, via their descriptor. Several possibilities
exist to record resource interaction, such as storing the addresses
of incoming requests, these addresses may lead to other related
resources. Another solution is to extract well-known mashups from
Web sites such as ProgrammableWeb. In this paper, we assume
the list of connectible resources is maintained for each resource
available on the Web. How to build and maintain such a list is
subject to future work.

The applicability of our proposal and in particular of the unified
discovery process is demonstrated with our scenario. We implement
a generic client that takes advantage of the given descriptors in
order to decide, at every moment and according to its user’s needs,
what resource links it should follow. While interacting with the
different resources, the generic client handles the application state
until it fulfills the user’s goal. Figure 5 shows how our generic client
discovers the different resources needed in our scenario.

4. IMPLEMENTATION
In the following, we first present our implementation setup, then

we explain how the scenario runs with this setup. We give details
about how each service is implemented and how it interacts with
the client software and the other services using the elements of
our contribution. Our prototype implementation is available on our
development platform 5.

5 http://soc.univ-lyon1.fr

http://soc.univ-lyon1.fr

Shipments Payments

Orders

Books

Shipping
Methods

Book selling
service

Online
payment
service

Shipping
service

Generic
machine-client

discovers

client

resource

Figure 5: Service Discovery in our Scenario

4.1 Setup
We implemented the services defined in the scenario using the

JavaTMJersey framework for developing RESTful Web services
based on the JAX-RS API. We used Eclipse as an IDE and the
Glassfish application server to accommodate our services. We have
developed 3 services, each in a single JavaTMproject, to keep the ser-
vices independent from each other. Other service URIs are obtained
by retrieving the book selling (the entry point) descriptor that leads
also to its own resources, books and orders. The communication
between the generic client and the services is ensured using the
application/ld+json media type. We use the json/POJO serial-
ization in order to convert the data transferred into a manipulable
format in Java. We currently rely on the Siren project[14] to describe
Web resources.

Our client is currently a Java application but we plan to quickly
implement it in Javascript as a browser plugin. The client takes
the URI of the first resource to discover as input. According to our
scenario and contribution, the client follows links found in the meta-
data retrieved from the entry point (book selling service resource)
and calls HTTP operations on the right resources with the right data
in order to answer the client needs. At the moment, this process is
manually performed via user interaction through the client interface,
but future work includes developing a reasoner to be able to reason
about the user’s objectives and match these objectives with the states
of the different resources available to the client.

The structure of the descriptor is implemented via a Java class that
encapsulates both allowed HTTP operations of the resource with
its associated information and links to other external and internal
resources also with their associated information, as well as the
properties of the resource itself. Therefore, all the descriptors as
well as the universal descriptor are instances of this class. They are
considered as resources just like the three services of the scenario.

4.2 Revised Scenario
We present here the scenario and how it operates according to

the elements of our contribution. Typically, a HEAD (or GET)
HTTP operation on any resource should return the URI of the re-
source description (http://example.com/resource/resource.
md, where md stands for meta-data) in the LINK field of the HTTP
header, as described in Fig. 2. A GET operation on the URI of
the link returns the descriptor, which is also a resource. The de-
scriptor contains links and all the necessary information about the
sub-resources of the resource it describes, and about external related
resources. As we talk about a unified method for semi-automatic
discovery, the descriptions of the internal sub-resources and ex-
ternal ones are homogeneous and processed the same way on the
client side. The description allows the generic client to explore both

internal and external interaction possibilities according to the infor-
mation given on each resource. The client knows what is the best
HTTP operation to apply to the resource according to its needs and
the information available in the obtained description. A discussion
on resource description is provided in section 5.

In the following, we present the resources modeled in our scenario
and give their corresponding URIs. The particular resources are
stored in their respective repositories (books, shipping methods,
shipments, payments) and have the following URI patterns:

• Particular book: /bookselling/books/book123

• Particular orders: /bookselling/orders/order123

• Particular shipping methods: /shipping/methods/method123

• Particular shipments: /shipping/shipments/shipment123

• Particular payments: /payment/payments/payment123

In our scenario, the user first wants to browse book descriptions6

(GET on books repository resource) to select one or several
book resources, whose detailed descriptions are then stored client-
side. The problem is that the client at first does not know the URI
of the books repository. It discovers this URI using the descriptor of
the book selling resource.

The link to this descriptor is found in the HTTP response to a
HEAD (or GET) operation on the entry point, we suppose known
by the client, represented by the URI of the book selling service
/bookselling/. More precisely, in the very beginning of the execu-
tion flow, the client executes a HEAD operation on the entry point
URI. It gets the URI that corresponds to the describedby property
attached to the Link Header field of the HTTP response, which is
/bookselling/bookselling.md in our scenario. Then, it performs a
GET operation on this link to get the descriptor of the book selling
service. In this descriptor, the client finds multiple links to other
related resources. It chooses the one pointing at the book repository
using the semantics provided with the link and according to the
user’s needs.

Another question that our contribution answers to is: how does
the client know what HTTP operation to execute in order to obtain
book descriptions. The answer is: the client consults the meta-data
on allowed HTTP operations and decides which one responds to the
objective of getting a book description, in this case it is the GET
operation.

Second, there is a need to create an order (POST) on the orders
repository resource. The latter is referenced via the meta-data
contained in “bookseller.md” retrieved from the book selling also
exactly the same as the books repository resource. The HTTP
operation to execute is retrieved exactly as explained above.

Once the order resource created, it remains in the status “Un-
paid”. It can be updated (PUT) to “Paid” once the payment is
confirmed7. Then, the link to the shipment resource is extracted
with the help of the “bookseller.md” resource that includes external
resources.

Third, a shipment method is selected (GET) and a new shipment

is created (POST) and set to the status “Unpaid”, waiting for an up-
date on the payment confirmation (PUT). The link to the “payment”
resource is also retrieved by reading the “bookseller.md” resource.

6We refer here about the actual book description with its URI, author,
title, price, and so on.
7For the sake of brevity, we omit security concerns, but such an
exchange may involve key sharing and secured protocols such as
Oauth (http://oauth.net/).

http://example.com/resource/resource.md
http://example.com/resource/resource.md
http://oauth.net/

Finally, the payment resource is created (POST) and confirmed
as effective (after getting a response from the order and shipment
after the PUT operation).

5. RELATED WORK

5.1 Invocation of RESTful Services
The Hydra project [9] proposes a generic client to discover and

invoke the different HTTP operations Web resources offer. The
client relies on the Hydra core vocabulary and on the JSON-LD
serialization format for data exchange.

One of the main advantages of Hydra is the possibility to build
a generic client. Hence, there is no need to develop and compile a
specific client to run through the Web API of each service. Also,
Hydra proposes a mechanism that allows Web APIs developers to
document their Web APIs into a format that can be either interpreted
by machine or read by humans. The machine also can generate
a human-readable format based on the documentation. The main
drawback of Hydra is that it requires an effort in order to adapt
existing solutions, and that the model developed is specific to Hydra.

The Siren project [14] is another effort aiming for representing
entities as Web APIs using the JSON format. An entity models a
URI-addressable resource. The description of an entity includes a
class field that describes the concept of the entity (for example
book), a properties field that contains a set of key-value pairs de-
scribing the entity , an entities field that contains a list of related
sub-entities, a links field that lists items containing navigational
links including link to itself, an action field that lists a set of avail-
able actions on the current entity, described with the corresponding
HTTP method, and a title field that textually describes the entity
in question. Siren descriptions answers our needs for the description
of Web resources and have been reused in our work.

The principle of distributed affordance [16] allows user interac-
tion with resources in a distributed way. An affordance is defined
as the possibility to perform an action over a resource. The authors
define an architecture that enables enriching resource representa-
tions with distributed affordances. The affordance creation process
happens based on information about a given resource, for example
a book title, and knowledge acquired about user preferences and
action providers, for example a local library service. The architec-
ture is provided as a service, based on an API description catalog to
gather action possibilities as well as user preferences. This solution
is different from our approach where such information is directly
attached to resources via their descriptors.

RESTdesc [17] is another effort for semantic description of Web
APIs. The purpose of the description is to allow for an efficient way
to discover the different features Web APIs offer. The RESTdesc
approach takes into account the principles of REST. Since REST is
based on the correct use of the HTTP protocol, RESTdesc format
relies on the HTTP vocabulary in RDF [8] to describe the semantics
of HTTP exchanges. The main advantage of RESTdesc is the loose
coupling and reuse of existing models it offers.

The main benefit of our approach is to require only a few efforts
in order to apply to existing Web services. The work to carry out is
to add to the header fields of the HEAD or GET HTTP response of
every resource a Link element that contains the URI of the resource
descriptor. Building the descriptor contents also does not require a
lot of work. In fact, the properties of a resource itself are already
well known. For the HTTP operations allowed, as we run through
the service source code we can easily show up the available HTTP
operations as well as the properties that go with it. Concerning the
list of links to other resources, there are a multitude of approaches
to build such a list, as mentioned in Section 3.

5.2 Description of RESTful Services
ReLL [1] is a solution for the description of RESTful Web ser-

vices that focuses on their Hypermedia property (HATEOAS). For
ReLL, a RESTful service is a set of resources related to each other.
Every resource in the set has its unique identifier in addition to its
name, description in human readable language and other optional
properties. A resource may have different representations depending
on the media-type or syntax in use and every representation may
contain links to other resource representations. The application do-
main semantics are explicitly supported in a resource representation.
These semantics are made explicit using resource annotations.

LRDD [6] is an effort to describe and obtain information on Web
resources that are identified by URIs. The resource descriptor link
is indicated by the resource itself using different methods such as
with the Link field of the HTTP header. The link to the descriptor is
dependent on the resource URI. The content of the descriptor is a
machine readable information allowing better interoperability and
enhancing the interactions with the resources.

HTTP vocabulary in RDF [8] is a W3C working draft aiming
to represent the HTTP protocol in RDF format. It aims to link the
REST paradigm with the concepts of the semantic Web. It gives
a set of RDF classes and properties aiming to represent the HTTP
specification as concepts.

The descriptions we use in our work are mainly inspired from
the work cited above. We aim to reuse existing formats as much as
possible in order to enhance the interoperability of our solution.

5.3 Discovery of RESTful Services
The RESTdesc [17] discovery process is based on the HTTP OP-

TIONS verb. The invocation of this operation on a given resource
returns back information in Notation3 Syntax. This information
informs the machine-client of the current resource interaction possi-
bilities. Since OPTIONS presents some drawbacks 8, an alternative
is to link to descriptions using the LINK field of the HTTP header.

The discovery mechanisms in RESTdoc [7] format distinguishes
two different aspects of the RESTful service discovery. Discovery as
a client, or discovery as you browse, concerns client-side browsers.
This kind of discovery relies on HTML Link elements on a Web
site in order to point to other resource descriptions. Discovery as a
service, also called automated discovery, is the ability for a service
to access and link to other related resources in the same application
domain. The main idea is to construct a graph by running through
links and identifying resources. This graph can be subject to later
extension to explore related resources. The RESTdoc solution relies
on a microformat-like syntax to annotate resource representation
directly in the HTML source and on an adapter to convert into RDF.

In our solution, the discovery mechanism helps find the path that
clients may follow, through the progressive exploration of resource
descriptors accessible from the HTTP Link Header embedded in
HTTP responses. The resource meta-description is clearly sepa-
rated from the resource representation and located in the descriptor.
Resource discovery is performed locally from a given resource by
consulting the list of related resources. The generic client guides the
discovery process as it gets the list of related resources and decides
whether or not to follow a given link according to the user’s needs.

5.4 Composition of RESTful Services
Several works have been carried out in order to resolve the com-

position problem for RESTful Web services. Some of these works
propose to reuse the BPEL language as mentioned in [11].

8As mentioned in http://www.mnot.net/blog/2012/10/29/
NO_OPTIONS

http://www.mnot.net/blog/2012/10/29/NO_OPTIONS
http://www.mnot.net/blog/2012/10/29/NO_OPTIONS

There are two different ways to use the BPEL principles to com-
pose RESTful Web services. The first one suggests to use the WSDL
2.0 description language without changing the current BPEL. The
solution relies on the new HTTP binding element introduced in
WSDL 2.0. In fact, the RESTful Web resource API is wrapped
behind a WSDL document that acts as an interface between the
REST Web resource and the BPEL code, using the HTTP binding
with the REST resource and operation invocation on the BPEL side.
The second way to use BPEL with REST resources is more direct
than the first one but it requires an extension to BPEL in order to be
able to support the HTTP operations on the resource API. However
the main drawback of BPEL comes with its centralized approach.
In fact, it relies on a static composition engine, which does not
fit with the REST principles that rely on the resource notion and
HATEOAS. Additionally, a centralized execution process makes
it less interesting in the large scale context of the Web, for which
RESTful Web services have been designed.

Another approach is proposed in [18] for composing RESTful
Web services that takes full advantage of their characteristics. The
authors propose a situation calculus-based state transition system
that ensures the automatic composition for RESTful Web services.
The basic idea is to take the composition problem and transform it
into as state transition problem. The latter can be resolved using the
situation calculus principles and components. However this proposal
does not mention any implementation, hence it is difficult to evaluate
the solution in terms of complexity, accuracy and response time,
as well this kind of approach is centralized and presents the same
drawbacks as the BPEL-based approach.

6. CONCLUSION
In this paper, we have proposed a novel approach to compose

RESTful linked Web services. Our proposal relies on the description
of Web resources in order to allow a unified discovery process for
both internal sub-resources and external services. Our generic client
is responsible for carrying the composition steps by getting resource
descriptions, discovering new resources and sending data from one
resource to another. The composition process is guided by the
generic client according to the user’s needs. Our scenario motivates
our contribution and demonstrates the feasibility of our approach.
Our proposal consists in attaching a descriptor resource to each
Web resource. A link to the descriptor is obtained from the LINK
header of a HTTP HEAD (or GET) response from the resource
URI. A descriptor contains useful information about the resource
and how it interacts with clients and other resources. It contains
links and information about internal and external resources. By
following these links and making use of the available information,
the client handles the composition process in order to fulfill the
user’s objectives. As future work, we aim to focus on how to use
reasoning mechanisms to process a high level client request into
a set of composition steps. The user request should be processed
by a reasoner, and the output of this analysis should be a set of
partially ordered HTTP requests to perform on resources, in order
to answer to the initial user request. Also, as future work, we plan
to extend the resource description with additional information on
related resources such as their availability, quality, average response
time in order to facilitate resource selection.

7. REFERENCES
[1] Alarcón, R., Wilde, E., Bellido, J.: Hypermedia-Driven

RESTful Service Composition. In: Maximilien, E.M., Rossi,
G., Yuan, S.T., Ludwig, H., Fantinato, M. (eds.) ICSOC

Workshops. Lecture Notes in Computer Science, vol. 6568, pp.
111–120 (2010)

[2] Archer, P., Smith, K., Perego, A.: Protocol for Web
Description Resources (POWDER): Description Resources.
W3C Recommendation,
http://www.w3.org/TR/powder-dr/

[3] Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story
so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)

[4] Fielding, R.T.: Architectural styles and the design of
network-based software architectures. Ph.D. thesis, University
of California, Irvine (2000), aAI9980887

[5] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F.,
Rudolph, S.: Owl 2 web ontology language primer. W3C
Recommendation, http://www.w3.org/TR/owl-primer/

[6] Internet Engineering Task Force (IETF): LRDD Internet Draft.
https://tools.ietf.org/html/draft-hammer-

discovery-06

[7] John, D., Rajasree, M.S.: RESTDoc: Describe, Discover and
Compose RESTful Semantic Web Services using Annotated
Documentations. International Journal of Web & Semantic
Technology (IJWesT) 4(1) (2013)

[8] Koch, J., Velasco, C.A., Ackermann, P.: HTTP Vocabulary in
RDF 1.0. W3C Working Draft„
http://www.w3.org/TR/HTTP-in-RDF10/

[9] Lanthaler, M., Guetl, C.: Hydra: A Vocabulary for
Hypermedia-Driven Web APIs. In: Bizer, C., Heath, T.,
Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) LDOW.
CEUR Workshop Proceedings, vol. 996. CEUR-WS.org
(2013)

[10] Manola, F., Miller, E.: RDF Primer. W3C Recommendation,
http://www.w3.org/TR/rdf-primer/

[11] Pautasso, C.: RESTful Web service composition with BPEL
for REST. Data Knowl. Eng. 68(9), 851–866 (2009)

[12] Pedrinaci, C., Domingue, J.: Toward the Next Wave of
Services: Linked Services for the Web of Data. J. UCS 16(13),
1694–1719 (2010)

[13] Sporny, M., Longley, D., Kellogg, G., Lanthaler, M.,
Lindström, N.: JSON-LD 1.0 - A JSON-based Serialization
for Linked Data. W3C Recommendation,
http://www.w3.org/TR/json-ld/

[14] Swiber, K.: Siren: a hypermedia specification for representing
entities. https://github.com/kevinswiber/siren

[15] The W3C SPARQL Working Group: SPARQL 1.1 Overview.
W3C Recommendation,
http://www.w3.org/TR/sparql11-overview/

[16] Verborgh, R., Hausenblas, M., Steiner, T., Mannens, E.,
de Walle, R.V.: Distributed affordance: an open-world
assumption for hypermedia. In: Carr, L., Laender, A.H.F.,
Lóscio, B.F., King, I., Fontoura, M., Vrandecic, D., Aroyo, L.,
de Oliveira, J.P.M., Lima, F., Wilde, E. (eds.) WWW
(Companion Volume). pp. 1399–1406. International World
Wide Web Conferences Steering Committee / ACM (2013)

[17] Verborgh, R., Steiner, T., Deursen, D.V., Roo, J.D., de Walle,
R.V., Vallés, J.G.: Description and Interaction of RESTful
Services for Automatic Discovery and Execution. In:
Proceedings of the FTRA 2011 International Workshop on
Advanced Future Multimedia Services (Dec 2011)

[18] Zhao, H., Doshi, P.: Towards automated restful web service
composition. In: ICWS. pp. 189–196. IEEE (2009)

http://www.w3.org/TR/powder-dr/
http://www.w3.org/TR/owl-primer/
https://tools.ietf.org/html/draft-hammer-discovery-06
https://tools.ietf.org/html/draft-hammer-discovery-06
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/json-ld/
https://github.com/kevinswiber/siren
http://www.w3.org/TR/sparql11-overview/

	Introduction
	Scenario and Motivation
	Contribution
	Resource Interaction Model
	Unified Resource Discovery

	Implementation
	Setup
	Revised Scenario

	Related Work
	Invocation of RESTful Services
	Description of RESTful Services
	Discovery of RESTful Services
	Composition of RESTful Services

	Conclusion
	References

