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OPTIMAL AND MAXIMAL SINGULAR CURVES

YVES AUBRY AND ANNAMARIA IEZZI

Abstract. Using an Euclidean approach, we prove a new upper bound
for the number of closed points of degree 2 on a smooth absolutely irre-
ducible projective algebraic curve defined over the finite field Fq. This
bound enables us to provide explicit conditions on q, g and π for the non-
existence of absolutely irreducible projective algebraic curves defined
over Fq of geometric genus g, arithmetic genus π and with Nq(g)+π−g
rational points. Moreover, for q a square, we study the set of pairs (g, π)
for which there exists a maximal absolutely irreducible projective alge-
braic curve defined over Fq of geometric genus g and arithmetic genus
π, i.e. with q + 1 + 2g

√
q + π − g rational points.

Keywords: Singular curve, maximal curve, finite field, rational point.
MSC[2010] 14H20, 11G20, 14G15.

1. Introduction

Throughout the paper, the word curve will stand for an absolutely irre-
ducible projective algebraic curve and Fq will denote the finite field with q
elements.

Let X be a curve defined over Fq of geometric genus g and arithmetic
genus π. The first author and Perret showed in [4] that the number ]X(Fq)
of rational points over Fq on X verifies:

]X(Fq) ≤ q + 1 + g[2
√
q] + π − g. (1)

Furthermore if we denote by Nq(g, π) the maximum number of rational
points on a curve defined over Fq of geometric genus g and arithmetic genus
π, it is proved in [2] that:

Nq(g) ≤ Nq(g, π) ≤ Nq(g) + π − g,

where Nq(g) classically denotes the maximum number of rational points over
Fq on a smooth curve defined over Fq of genus g.

The curve X is said to be maximal if it attains the bound (1). This
definition for non-necessarily smooth curves has been introduced in [2] and
recovers the classical definition of maximal curve when X is smooth.

More generally (see [2]), X is said to be δ-optimal if

]X(Fq) = Nq(g) + π − g.

Obviously the set of maximal curves is contained in that of δ-optimal
ones.
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In [2] we were interested in the existence of δ-optimal and maximal curves
of prescribed geometric and arithmetic genera. Precisely, we proved (see
Theorem 5.3 in [2]):

Nq(g, π) = Nq(g) + π − g ⇐⇒ g ≤ π ≤ g +B2(Xq(g)), (2)

where Xq(g) denotes the set of optimal smooth curves defined over Fq of
genus g (i.e. with Nq(g) rational points) and B2(Xq(g)) the maximum num-
ber of closed points of degree 2 on a curve of Xq(g).

The quantity B2(Xq(g)) is easy to calculate for g equal to 0 and 1 and also
for those g for which Nq(g) = q + 1 + g[2

√
q] (see Corollary 5.4, Corollary

5.5 and Proposition 5.8 in [2]), but is not explicit in the general case.

The first aim of this paper is to provide upper and lower bounds for
B2(Xq(g)). For this purpose we will follow the Euclidean approach devel-
oped by Hallouin and Perret in [10] and recalled in Section 2. These new
bounds will allow us to provide explicit conditions on q, g and π for the non-
existence of δ-optimal curves and to determine some exact values of Nq(g, π)
for specific triplets (q, g, π).

Secondly, in Section 4, we will assume q to be square and, as it is done
in the smooth case, we will study the genera spectrum of maximal curves
defined over Fq, i.e. the set of couples (g, π), with g, π ∈ N and g ≤ π, for
which there exists a maximal curve defined over Fq of geometric genus g and
arithmetic genus π.

2. The Hallouin-Perret’s approach

Let X be a smooth curve defined over Fq of genus g > 0.
For every positive n ∈ N, we associate to X a n-tuple (x1, . . . , xn) defined

as follows:

xi :=
(qi + 1)− ]X(Fqi)

2g
√
qi

, i = 1, . . . , n. (3)

The Riemann Hypothesis proved by Weil gives that

]X(Fqi) = qi + 1−
2g∑
j=1

ωij , (4)

where ω1, . . . , ω2g are complex numbers of absolute value
√
q. Hence one eas-

ily gets |xi| ≤ 1 for all i = 1, . . . , n, which means that the n-tuple (x1, . . . , xn)
belongs to the hypercube

Cn = {(x1, . . . , xn) ∈ Rn| − 1 ≤ xi ≤ 1, ∀ i = 1, . . . , n}. (5)

The Hodge Index Theorem implies that the intersection pairing on the
Neron-Severi space over R of the smooth algebraic surface X × X is anti-
Euclidean on the orthogonal complement of the trivial plane generated by
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the horizontal and vertical classes. Hallouin and Perret used this fact in [10]
to obtain that the following matrix

Gn =



1 x1 · · · xn−1 xn

x1 1 x1
. . . xn−1

...
. . .

. . .
. . .

...

xn−1
. . .

. . . 1 x1
xn xn−1 · · · x1 1


is a Gram matrix and then positive semidefinite (the xi’s are interpreted as
inner products of normalized Neron-Severi classes of the iterated Frobenius
morphisms).

Now, a matrix is positive semidefinite if and only if all the principal
minors are non-negative. This fact implies that the n-tuple (x1, . . . , xn) has
to belong to the set

Wn = {(x1, . . . , xn) ∈ Rn|Gn,I ≥ 0, ∀ I ⊂ {1, . . . , n+ 1}}, (6)

where Gn,I represents the principal minor of Gn obtained by deleting the
lines and columns whose indexes are not in I.

To these relations that come from the geometrical point of view, one
can add the arithmetical contraints resulting from the obvious inequalities
]X(Fqi) ≥ ]X(Fq), for all i ≥ 2. It follows that, for all i ≥ 2,

xi ≤
x1

q
i−1
2

+
qi−1 − 1

2gq
i−2
2

.

Setting

hq,gi (x1, xi) = xi −
x1
√
qi−1

−
√
q

2g

(
√
qi−1 − 1

√
qi−1

)
one gets that the n-tuple (x1, . . . , xn) has to belong to the set

Hq,gn = {(x1, . . . , xn) ∈ Rn|hq,gi (x1, xi) ≤ 0, for all 2 ≤ i ≤ n}. (7)

We assume that Hq,g1 = R.

Remark 2.1. We have hq,gi (x1, xi) = 0 if and only if ]X(Fq) = ]X(Fqi).

Finally we obtain (Proposition 16 in [10]) that if X is a smooth curve
defined over Fq of genus g > 0, then its associated n-tuple (x1, . . . , xn)
belongs to Cn ∩ Wn ∩ Hq,gn , where Cn,Wn,Hq,gn are respectively defined by
(5), (6) and (7).

Fixing n = 1, 2, 3, . . . we find bounded subsets of Rn to which the n-
tuple (x1, . . . , xn) belongs. Hence we can obtain lower or upper bounds for
]X(Fqi) by remarking that any lower bound for xi corresponds to an upper
bound for ]X(Fqi) and, conversely, any upper bound for xi corresponds to
a lower bound for ]X(Fqi).
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Hallouin and Perret showed in [10] that, increasing the dimension n, the
set Cn ∩ Wn ∩ Hq,gn provides a better and better lower bound for x1 (and
hence a better and better upper bound for ]X(Fq)) if g is quite big compared
to q.

Indeed they first recovered, for n = 1, the classical Weil bound, that can
be seen as a first-order Weil bound :

]X(Fq) ≤ q + 1 + 2g
√
q.

For n = 2, they found again the Ihara bound (to which they refered as

the second-order Weil bound): if g ≥ g2 :=
√
q(
√
q−1)
2 then

]X(Fq) ≤ q + 1 +

√
(8q + 1)g2 + 4q(q − 1)g − g

2
.

Finally, for n = 3, they found a third-order Weil bound : if g ≥ g3 :=√
q(q−1)√

2
then (Theorem 18 in [10]):

]X(Fq) ≤ q + 1 +

(√
a(q) +

b(q)

g
+
c(q)

g2
− q − 1

q
+

2
√
q(q − 1)2

gq

)
g
√
q,

where 
a(q) = 5 + 8√

q −
1
q2

b(q) = q−1
q
√
q

(
q2 − 4q

√
q + 2q + 4

√
q − 1

)
c(q) = q−1

4q

(
q3 − 5q2 − 8q

√
q − 5q − 8

√
q + 1

)
.

In a similar way, we would like to find better and better lower bounds for
x2 (possibly in function of x1), in order to provide new upper bounds for
]X(Fq2). From each of these bounds we will deduce a new upper bound for
the number of closed points of degree 2 on X and hence we will be able to
precise our equivalence (2).

3. Number of closed points of degree 2

Let X be a smooth curve defined over Fq of genus g. We recall that, if
B2(X) denotes the number of closed points of degree 2 on X, one has

B2(X) =
]X(Fq2)− ]X(Fq)

2
.

3.1. Upper bounds. We are going to establish upper bounds for the num-
ber B2(X) and then obtain upper bounds for the quantity B2(Xq(g)) defined
as the maximum number of closed points of degree 2 on an optimal smooth
curve of genus g defined over Fq.
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3.1.1. The first order. From the Weil bounds related to (4), we get ]X(Fq2) ≤
q2 + 1 + 2gq and ]X(Fq) ≥ q + 1 − 2g

√
q. Hence an obvious upper bound

for B2(X) is:

B2(X) ≤ q2 − q
2

+ g(q +
√
q) =: M ′(q, g). (8)

We can consider M ′(q, g) as an upper bound for B2(Xq(g)) at the first order
since this bound is a direct consequence of the Weil bounds.

Using the quantity M ′(q, g), we have recorded in the following table some
first-order upper bounds for B2(Xq(g)) for specific couples (q, g):

HH
HHHHq

g
2 3 4 5 6

2 7 11 14 18 21
3 12 17 21 26 31
22 18 24 30 36 42

Table 1. First-order upper bounds for B2(Xq(g)) given by M ′(q, g).

Unfortunately, the bound (8) is rather bad, so let us improve it.
We assume g to be positive and we consider B2(X) as a function of x1

and x2, defined in (3), in the domain Cn ∩ Wn ∩ Hq,gn to which x1 and x2
belong:

B2(X) = g
√
q(x1 −

√
qx2) +

q2 − q
2

(9)

since ]X(Fq) = q + 1− 2g
√
qx1 and ]X(Fq2) = q2 + 1− 2gqx2.

We remark that any lower bound for x2 implies an upper bound forB2(X),
possibly in function of x1.

We are going to investigate the set Cn ∩ Wn ∩ Hq,gn introduced in the
previous section for n = 2 (second order) and n = 3 (third order).

3.1.2. The second order. For n = 2 the set C2 ∩ W2 ∩ Hq,g2 is given by the
couples (x1, x2) ∈ R2 which satisfy the following system of inequalities:{

2x21 − 1 ≤ x2 ≤ 1

x2 ≤ x1√
q + q−1

2g .
(10)

Geometrically it corresponds to the region of the plane < x1, x2 > delim-
ited by the parabola P : x2 = 2x21 − 1 and the lines Lq,g2 : x2 = x1√

q + q−1
2g

and x2 = 1. More precisely, depending on whether g < g2, g = g2 or

g > g2, where g2 =
√
q(
√
q−1)
2 , the region can assume one of the following

three configurations:
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Table 2. The region C2 ∩W2 ∩ Hq,g
2 , respectively for g < g2, g = g2

and g > g2.

The first inequality in the system (10)

x2 ≥ 2x21 − 1, (11)

returns the upper bound:

B2(X) ≤ g√q(x1 −
√
q(2x21 − 1)) +

q2 − q
2

. (12)

Expliciting x1, we get the following bound for B2(X) in function of q,g and
]X(Fq), which is a reformulation of Proposition 14 of [10]:

Proposition 3.1. Let X be a smooth curve of genus g > 0 over Fq. We
have:

B2(X) ≤
q2 + 1 + 2gq − 1

g (]X(Fq)− (q + 1))2 − ]X(Fq)
2

.

Now let us suppose that X is an optimal smooth curve of genus g > 0,
that is X has Nq(g) rational points. By Proposition 3.1, if we set

M ′′(q, g) :=
q2 + 1 + 2gq − 1

g (Nq(g)− (q + 1))2 −Nq(g)

2
,

then we have:
B2(Xq(g)) ≤M ′′(q, g).

The quantity M ′′(q, g) can hence be seen as a second-order upper bound for
B2(Xq(g)).

We obtain the following proposition, as an easy consequence of (2):

Proposition 3.2. Let g > 0. If π > g + M ′′(q, g), then there do not exist
δ-optimal curves defined over Fq of geometric genus g and arithmetic genus
π.

In the following table we have used the quantity M ′′(q, g) to get upper
bounds for B2(Xq(g)) for specific couples (q, g) (we have used the datas
about Nq(g) which are available at http://www.manypoints.org/ ).
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HHH
HHHq

g
2 3 4 5 6

2 1 2 3 4 5
3 3 3 3 5 7
22 5 0 4 5 3

Table 3. Second-order upper bounds for B2(Xq(g)) given by M ′′(q, g).

3.1.3. The third order. If now we increase the dimension to n = 3, new
constraints in x1, x2, x3 are added to those of the system (10). Indeed, the
set C3 ∩W3 ∩Hq,g3 is given by the triplets (x1, x2, x3) ∈ R3 which satisfy the
following system of inequalities:

2x21 − 1 ≤ x2 ≤ 1

−1 + (x1+x2)2

1+x1
≤ x3 ≤ 1− (x1−x2)2

1−x1
1 + 2x1x2x3 − x23 − x21 − x22 ≥ 0

x2 ≤ x1√
q + q−1

2g

x3 ≤ x1
q + q2−1

2g
√
q .

Let us consider the projection of C3 ∩W3 ∩Hq,g3 on the plane < x1, x2 >,
that is the set {(x1, x2) ∈ R2 : (x1, x2, x3) ∈ C3 ∩W3 ∩ Hq,g3 }. It is easy to
show that this set is given by the couples (x1, x2) ∈ R2 which satisfy:

2x21 − 1 ≤ x2 ≤ 1

−1 + (x1+x2)2

1+x1
≤ x1

q + q2−1
2g
√
q

x2 ≤ x1√
q + q−1

2g .

(13)

The equation which corresponds to the second inequality in the system
(13) is given by:

x22 + 2x1x2 −
(

1

q
− 1

)
x21 −

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 − 1− q2 − 1

2g
√
q

= 0. (14)

In the plane < x1, x2 >, the equation (14) represents an hyperbola Hq,g that

passes through the point (−1, 1). For g ≥ g3 =
√
q(q−1)√

2
, the hyperbola Hq,g

intersects the parabola in more than two points. Hence we can have the
following two configurations for the region of the plane which corresponds
to the system (13):
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Table 4. The projection of C3 ∩W3 ∩ Hq,g
3 on the plane < x1, x2 >

respectively for g < g3 and g > g3.

We remark that for g ≥ g3 we have a better lower bound for x2 in function
of x1 (compared to the bound (11)), which is given by the smallest solution
of the quadratic equation (14) in x2:

x2 ≥ −x1 −

√
1

q
x21 +

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 + 1 +

q2 − 1

2g
√
q

Thus, by (9), we get a new upper bound for B2(X), in function of q,g and
x1:

B2(X) ≤ g√q
(
(1 +

√
q)x1 +

√
q

√
1

q
x2
1 +

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 + 1 +

q2 − 1

2g
√
q

)
+
q2 − q

2
. (15)

Expliciting x1 in (15), we get a new upper bound for B2(X) in function
of q,g and ]X(Fq):

Proposition 3.3. Let X be a smooth curve of genus g ≥
√
q(q−1)√

2
over Fq.

We have:

B2(X) ≤
√

1/4 (]X(Fq))
2 + α(q, g)]X(Fq) + β(q, g)−

(1 +
√
q)

2
]X(Fq) +

q2 + 1 +
√
q(q + 1)

2
,

where{
α(q, g) = −1

4((2q
√
q + 2

√
q)g + q3 + q + 2)

β(q, g) = 1
4(4q2g2 + 2

√
q(q3 + q2 + q + 1)g + q4 + q3 + q + 1).

As before, if we set

M
′′′

(q, g) :=
√

1/4 (Nq(g))
2 + α(q, g)Nq(g)) + β(q, g)−

(1 +
√
q)

2
Nq(g)) +

q2 + 1 +
√
q(q + 1)

2
,

where α(q, g) and β(q, g) are defined as in Proposition 3.3, we have

B2(Xq(g)) ≤M ′′′(q, g).

By (2), we get the following proposition:
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Proposition 3.4. Let us assume that g ≥
√
q(q−1)√

2
. If π > g+M ′′′q (g), then

there do not exist δ-optimal curves defined over Fq of geometric genus g and
arithmetic genus π.

In the following table, using the quantity M ′′′(q, g), we give upper bounds

for B2(Xq(g)). As M ′′′(q, g) makes sense if and only if g ≥
√
q(q−1)√

2
, some

boxes of the table have been left empty.

H
HHH

HHq
g

2 3 4 5 6

2 0 0 1 1 1
3 2 1 2 3
22 4 1

Table 5. Third-order upper bounds for B2(Xq(g)) given by M ′′′(q, g).

Using Proposition 3.1 and Proposition 3.3, we can sum up Table 3 and 5
in the following one:

HHH
HHHq

g
2 3 4 5 6

2 0 0 1 1 1
3 3 2 1 2 3
22 5 0 4 4 1

Table 6. Upper bounds for B2(Xq(g)).

3.2. Lower bound for B2(X). In a similar way we can look for lower
bounds for B2(X). From the Weil bounds related to (4), we have ]X(Fq2) ≥
q2 + 1− 2gq and ]X(Fq) ≤ q + 1 + 2g

√
q so that

B2(X) ≥ q2 − q
2
− g(q +

√
q). (16)

It is easy to show that the quantity on the right-hand side of (16) is positive

if and only if g < g2 =
√
q(
√
q−1)
2 .

We can consider inequality (16) as a lower bound for B2(X) at the first
order, as it is a direct consequence of the Weil bounds. Geometrically it is
also clear that we will not obtain better lower bounds at the second or at
the third order. Indeed, looking at the graphics in Table 2 and Table 4, we
remark that, in some cases and for some values of x1, a better upper bound
for x2 is given by the line Lq,g2 . But we have seen in Remark 2.1 that if
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the pair (x1, x2) is on the line Lq,g2 , then ]X(Fq) = ]X(Fq2), which means
B2(X) = 0.

For g < g2, the inequality (16) implies the following lower bounds for
B2(Xq(g)):

HH
HHHHq

g
2 3 4 5

7 2
23 7
32 12
11 27 13
13 45 29 12
24 80 60 40 20

Table 7. Lower bounds for B2(Xq(g)).

Hence we get from the equivalence (2) and the inequality (16) the following
proposition:

Proposition 3.5. Let g <
√
q(
√
q−1)
2 . If g ≤ π ≤ g + q2−q

2 − g(q +
√
q),

then there exists a δ-optimal curve defined over Fq of geometric genus g and
arithmetic genus π.

3.3. Some exact values for Nq(g, π). We can use the previous results to
provide some exact values of Nq(g, π) for specific triplets (q, g, π).

Proposition 3.6. Let q be a power of a prime number p. We have:

(1) Nq(0, π) = q + 1 + π if and only if 0 ≤ π ≤ q2−q
2 .

(2) If p does not divide [2
√
q], or q is a square, or q = p, then Nq(1, π) =

q + [2
√
q] + π if and only if 1 ≤ π ≤ 1 +

q2+q−[2√q]([2√q]+1)
2 .

Otherwise, Nq(1, π) = q + [2
√
q] + π − 1 if and only if 1 ≤ π ≤

1 +
q2+q+[2

√
q](1−[2√q])
2 .

(3) If g <
√
q(
√
q−1)
2 and g ≤ π ≤ q2−q

2 − g(q +
√
q − 1) then Nq(g, π) =

Nq(g) + π − g.
(4) N2(2, 3) = 6.
(5) N2(3, 4) = 7.
(6) N22(4, 5) = 14.

Proof. Items (1) and (2) are Corollary 5.4 and Corollary 5.5 in [2]. Item (3)
is given by Proposition 3.5.

We have that N2(2, 3) ≥ N2(2) = 6 and B2(X2(2)) = 0, by Table 6. Hence
(4) follows from Proposition 3.4 which says that N2(2, 3) < N2(2)+1. Items
(5) and (6) can be proven in the same way.

�
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Remark 3.7. Using the construction given in Section 3 of [2], we can easily
show that Nq(g, π + 1) ≥ Nq(g, π). This fact implies, for instance, that we

have also Nq

(
0, q

2−q
2 + 1

)
= q + 1 + q2−q

2 .

4. Genera spectrum of maximal curves

Let X be a curve defined over Fq of geometric genus g and arithmetic
genus π. We recall that X is a maximal curve if it attains bound (1), i.e

]X(Fq) = q + 1 + g[2
√
q] + π − g.

This definition recovers the classical definition of a smooth maximal curve.
An easy consequence of Proposition 5.2 in [2] is that if X is a maximal

curve, then its normalization X̃ is a smooth maximal curve. Moreover, the
zeta function of a maximal curve X is given by (see Prop. 5.8 in [2]):

ZX(T ) = ZX̃(T )(1 + T )π−g =
(qT 2 + [2

√
q]T + 1)g(1 + T )π−g

(1− T )(1− qT )
.

We have seen in the previous section that, for π quite big compared to g,
maximal curves of geometric genus g and arithmetic genus π don’t exist.

Hence, a related question concerns the genera spectrum of maximal curves
defined over Fq, i.e. the set of couples (g, π), with g, π ∈ N and g ≤ π,
for which there exists a maximal curve over Fq of geometric genus g and
arithmetic genus π:

Γq :={(g, π) ∈ N× N : there exists a maximal curve defined over Fq
of geometric genus g and arithmetic genus π}.

The analogous question in the smooth case has been extensively studied
in the case where q is a square. For q square, Ihara proved that if X is a

maximal smooth curve defined over Fq of genus g, then g ≤
√
q(
√
q−1)
2 (see

[11]) and Rück and Stichtenoth showed that g attains this upper bound if
and only if X is Fq-isomorphic to the Hermitian curve (see [14]). Moreover,
Fuhrmann and Garcia proved that the genus g of maximal smooth curves
defined over Fq satisfies (see [8])

either g ≤
⌊

(
√
q − 1)2

4

⌋
, or g =

√
q(
√
q − 1)

2
. (17)

This fact corresponds to the so-called first gap in the spectrum genera
of Fq-maximal smooth curves. For q odd, Fuhrmann, Garcia and Torres

showed that g =
(
√
q−1)2
4 occurs if and only if X is Fq-isomorphic to the

non-singular model of the plane curve of equation y
√
q + y = x

√
q+1

2 (see
[7]). For q even, Abdón and Torres established a similar result in [1] under
an extra-condition that X has a particular Weierstrass point. In this case,

g =
√
q(
√
q−2)
4 if and only if X is Fq-isomorphic to the non-singular model of

the plane curve of equation y
√
q/2 + · · ·+ y2 + y = x(

√
q+1).
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Korchmáros and Torres improved (17) in [12]:

either g ≤
⌊
q −√q + 4

6

⌋
, or g ≤

⌊
(
√
q − 1)2

4

⌋
, or g =

√
q(
√
q − 1)

2
. (18)

Hence the second gap in the spectrum genera of Fq-maximal smooth curves

is also known. In the same paper, non-singular Fq-models of genus
⌊
q−√q+4

6

⌋
are provided.

Let us now consider maximal curves with possibly singularities. We as-
sume q square and we want to study the discrete set Γq.

Let X be a maximal curve defined over Fq of geometric genus g and

arithmetic genus π. As remarked above, the normalization X̃ of X is a
maximal smooth curve, hence we have that g satisfies (18). Moreover, g and
π verify the following inequality:

Proposition 4.1. Let q be a square. There exists a maximal curve defined
over Fq of geometric genus g and arithmetic genus π if and only if Nq(g) =
q + 1 + 2g

√
q and

g ≤ π ≤ g +
q2 + (2g − 1)q − 2g

√
q(2
√
q + 1)

2
. (19)

Proof. The proposition follows directly from the equivalence (2), from the
fact that a maximal curve has a maximal normalization and that the number
of closed points of degree 2 on a smooth maximal curve of genus g over Fq
is given by (see Prop. 5.8 of [2]):

q2+(2g−1)q−2g√q(2√q+1)
2 . �

Remark 4.2. The quantity on the right-hand side of (19), that can be
written as

(−q −√q + 1)g +
q2 − q

2
,

is a linear decreasing function in the variable g. Hence it attains its max-
imum value for g = 0 (this also means that the number of closed points of
degree 2 on a maximal smooth curve decreases with the increasing of the
genus). So we get also a bound for the arithmetic genus π in terms of the
cardinality of the finite field:

π ≤ q(q − 1)

2
. (20)

Geometrically, we have shown that the set Γq is contained in the triangle
(OAB) (see Figure 1) of the plane < g, π > delimited by the lines g = 0,

π = (−q −√q + 1)g + q2−q
2 and g = π.

We observe that maximal curves over Fq with geometric genus g =
√
q(
√
q−1)
2

are necessarily smooth and thus isomorphic to the Hermitian curve.
Also the bound (20) is sharp. Indeed the singular plane rational curve

provided in [9] is an example of a maximal curve defined over Fq with arith-

metic genus π = q(q−1)
2 .
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Hence, using Proposition 3.6, the inequalities (18), Proposition 4.1 and
Remark 4.2, we can state the following theorem:

Theorem 4.3. Let q be a square and X be a maximal curve defined over
Fq with geometric genus g and arithmetic genus π.

If we set g′ :=
√
q(
√
q−1)
2 , g′′ :=

⌊
(
√
q−1)2
4

⌋
and g′′′ :=

⌊
q−√q+4

6

⌋
, then we

have:

(1) 0 ≤ g ≤ g′ and g ≤ π ≤ q(q−1)
2 and also π ≤ g+

q2+(2g−1)q−2g√q(2√q+1)
2 .

In other words Γq is contained in the set of integer points inside the
triangle (OAB).

(2) The point B = (g′, g′) belongs to Γq and the set of points

{
(0, π) , with 0 ≤ π ≤ q2 − q

2

}

is contained in Γq.
(3) If g 6= g′ then g ≤ g′′ and the set of points

{(
g′′, π

)
, with g′′ ≤ π ≤ (−q −√q + 1)g′′ +

q2 − q
2

}

is contained in Γq.

(4) If g 6= g′ and g 6= g′′, then g ≤ g′′′ and the set of points

{(
g′′′, π

)
, with g′′′ ≤ π ≤ (−q −√q + 1)g′′′ +

q2 − q
2

}

is contained in Γq.

We can illustrate Theorem 4.3 with the following figure (in which the
aspect ratio has been chosen equal to 0.025):
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Figure 1. The set Γq is contained in the set of integers points inside

the triangle (OAB). The dots correspond to the couples (g, π) that we

have proved to be in Γq. The rest of the set Γq has to be contained in

the colored trapezoid.

We conclude the paper by considerations on coverings of singular curves.
If f : Y → X is a surjective morphism of smooth curves defined over Fq

and if Y is maximal then X is also maximal. This result is due to Serre
(see [13]). We prove here that the result still holds without the smoothness
hypothesis of the curves but with the flatness hypothesis of the morphism.
Remark that the divisibility of the numerators of the zeta functions in a
flat covering proved in [5] for possibly singular curves and in [6] for possibly
singular varieties does not lead the result.

Theorem 4.4. Let f : Y → X be a finite flat morphism between two curves
defined over Fq. If Y is maximal then X is maximal.

Proof. Let us denote by gX and πX (respectively gY and πY ) the geometric
genus and the arithmetic genus of X (respectively of Y ). As Y is maximal,
we have

]Y (Fq) = q + 1 + gY [2
√
q] + πY − gY .

From Remark 4.1 of [3] we know that

|]Y (Fq)− ]X(Fq)| ≤ (πY − gY )− (πX − gX) + (gY − gX)[2
√
q].
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So we obtain:

]X(Fq) ≥ ]Y (Fq)− (πY − gY ) + (πX − gX)− (gY − gX)[2
√
q]

= q + 1 + gX [2
√
q] + πX − gX .

Hence X is also maximal. �
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