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ABSTRACT
In the simple resource allocation setting consisting in assign-
ing exactly one resource per agent, the top trading cycle pro-
cedure stands out as being the undisputed method of choice.
It remains however a centralized procedure which may not
well suited in the context of multiagent systems, where dis-
tributed coordination may be problematic. In this paper, we
investigate the power of dynamics based on rational bilat-
eral deals (swaps) in such settings. While they may induce
a high efficiency loss, we provide several new elements that
temper this fact: (i) we identify a natural domain where con-
vergence to a Pareto-optimal allocation can be guaranteed,
(ii) we show that the worst-case loss of welfare is as good as
it can be under the assumption of individual rationality, (iii)
we provide a number of experimental results, showing that
such dynamics often provide good outcomes, especially in
light of their simplicity, and (iv) we prove the NP-hardness
of deciding whether an allocation maximizing utilitarian or
egalitarian welfare is reachable.
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1. INTRODUCTION
One of the most basic resource allocation setting involves

n agents and n resources, ordered by each agent as a full
ranking of preferences. It is known in economics as a house
allocation problem, or a house market when agents initially
hold resources as is the case in this paper. In this setting,
the celebrated top trading cycle procedure [20] is known to
satisfy a number of key desirable properties.

However, this procedure is centralized and involves po-
tentially long cycles of resources reallocation among agents.
When a system is distributed, such long cycles may not ma-
terialize easily: coordination among several agents is chal-
lenging [15], and thus agreeing on such exchanges may be
unaffordable most of the times, already in terms of commu-
nication. Also implementing long cycles of exchanges may
be problematic in practice, since it significantly increases the
likelihood of failure.

In such circumstances, and if there is little or no cost in
performing an exchange, a natural approach is to consider
myopic dynamics based on sequences of local deals. The
simplest version are bilateral deals, or swaps: agents ran-
domly meet in a pairwise fashion, and contract a deal with
their partner if exchanging their resources proves to be mu-
tually beneficial. The process iterates until a stable state
(an equilibrium) is reached. The same resource can thus be
held successively by several agents over the sequence. The
simplicity of the model discussed in this paper (a single re-
source per agent, preferences as strict linear orders) allows to
directly answer some questions which are sometimes prob-
lematic: convergence is obviously guaranteed, and sequences
of swaps have a length at most quadratic in n.

While the topic has been heavily studied, we provide some
new insights which may suggest to reassess the power of
swaps deals in such settings. Theoretical results hold for
any specific dynamics based on swap deals. Experimental
results are obtained with the least committing random dy-
namics (encounters between agents are drawn uniformly at
random), under several cultures of preferences.

The remainder of this paper is as follows. In Section 2, we



provide the necessary background. Section 3 tackles the no-
tion of Pareto-optimality of the allocations that are reached
by such dynamics. In Section 4, we focus on the classical
utilitarian social welfare (by using ranks as a measure of the
utility of the resources obtained by agents). Section 5 in-
vestigates how well the approach does in terms of fairness,
by studying the basic notion of (maxmin) egalitarian social
welfare. Finally, Section 6 proves complexity results on the
reachability problem in our context.

2. BACKGROUND
We start by giving the basic components of our model,

and the specificities of the domains studied. Then, we give
the details of the dynamics based on local deals, as well as
the procedures used for comparison.

2.1 The Model
We start with a set N = {a1, . . . , an} of agents, and a set
R = {r1, . . . , rn} of resources. An allocation A is a mapping
from agents to resources, where A(ai) stands for the object
held by agent ai, i.e. each agent holds exactly one resource
at all time. In our model, agents are initially endowed with
some resource, and A0 is used by convention to denote the
initial allocation.

Agents have preferences regarding the resources they may
hold, expressed as linear orders (a complete ranking of all
the resources, as in the classical house market setting). We
note r1 �1 r2 (sometimes 1 : r1 � r2) the fact that agent
a1 prefers r1 over r2, and �N will stand for the collection
of preferences of the group of agents N . We also denote
by top(ai) the top-ranked resource for agent ai. Finally, we
sometimes use the notation A = [A(a1)A(a2) . . . A(an)] as a
shortcut for an allocation, just abbreviated by the index of
the resource held by each agent, e.g. A = [25431].

An instance I of this resource allocation problem is thus
a tuple 〈N ,R,�N , A0〉. By an abuse of notation, we write
A ∈ I to simply denote an arbitrary allocation from the
instance. We also denote by I the set of all the instances.

2.2 Quality of Allocations
How good an allocation is can be given different inter-

pretations. The first basic requirement is to seek for allo-
cations that are Pareto-optimal, i.e. an allocation A∗ such
that there does not exist an allocation A′

∀ai ∈ N , A′(ai) �i A
∗(ai) and ∃aj ∈ N : A′(aj) �j A

∗(aj)

Beyond Pareto-optimality, one may want to strengthen
the efficiency and/or fairness requirement. Often, this will
involve to interpret cardinally the ordinal preferential infor-
mation provided by agents. We shall simply use the rank as
a measure of satisfaction, and thus assign —using a Borda
count— some utility to ranks, i.e. ui(A(i)) = n when ai gets
her preferred object, n− 1 when she gets her next preferred
object, and so on. In this paper, we shall study:

• utilitarian social welfare:

swu(A) =
∑
i∈N

ui(A(ai))

• egalitarian social welfare:

swe(A) = min
i∈N

(ui(A(ai)))

We note that it will be a strict constraint for the procedures
studied in this work to respect individual rationality (IR),
that is, no agent should be assigned an object less preferred
than the one currently held.

Example 1. An example involving 5 agents, resources in
boxes are initially held, i.e. A0 = [52143]

1 : r1 � r3 � r2 � r4 � r5
2 : r2 � r1 � r3 � r4 � r5
3 : r1 � r5 � r2 � r3 � r4
4 : r3 � r5 � r2 � r1 � r4
5 : r4 � r5 � r2 � r3 � r1

It can be seen that this allocation is not Pareto-optimal,
since A = [42153] (for instance), dominates it. We have
swu(A) = 18, and swe(A) = 2. Observe that we could ob-
tain an allocation A′ = [12534] which would yield swu(A′) =
24, but violates individual rationality for agent a3.

2.3 Preferences: Domains and Cultures
In this paper we deal with ordinal preferences, represented

as linear orders (so, without ties). We will be interested in
a domain restriction, single-peaked domains, well-known in
voting. We argue that it is also a perfectly sensible domain in
some resource allocation applications: think for instance of
different items (like tee-shirts, devices for memory storage,
etc.), which can be ranked according to a notion of size.
Each agent may have a different, ideal, size which fits its
purposes. Now, depending on their situation or personal
taste, they also may have different attitudes as to whether
they would rather get items of larger or smaller size if their
ideal resource is not available (some agents may prefer to
wear slightly oversized tee-shirts than slightly undersized,
or agents may be more or less reluctant to buy additional
storage resources, etc). As another example, the allocation
of slots on a line is studied in [11].

In our experiments, preferences are randomly drawn from
different cultures:

• impartial culture (IC): each linear ordering is drawn
with uniform probability (1/n!). This is the classical
culture, assuming no correlation between preferences.

• uniform peak single peaked (UP-SP): we assume there
is a common axis r1 � r2 � · · · � rn. Each preference
ordering is drawn by first selecting a peak uniformly
at random. The rest of the order is then completed
by picking with 1/2 probability either a resource on
the left or on the right, until an extreme resource is
reached.

• real-world instances (PL): we make use of the PrefLib
[13] repository of real-world instances. Specifically, in
our case, we exploit the sushi and tee-shirt datasets,
with respectively n = 7 and n = 9 resources.

2.4 Dynamics based on Local Deals
The approach we take in this paper is dynamic: agents

make local improving exchanges (or deals), until they reach
a stable allocation, i.e. an allocation where no improving
contract is possible [18]. Deals take the form of exchange
cycles between agents. We classically denote a deal involving
k agents as (e(1)e(2) . . . e(k)), where by convention agent e(1)



—the first agent involved in the cycle— gives her resource to
agent e(2), agent e(2) gives her resource to agent e(3), and so
on, concluding with agent e(k) giving her resource to agent
e(1). Such a deal is rational if all agents are better off after
the deal has been implemented:

Definition 1. A deal (e(1)e(2) . . . e(l)) is rational when
for all i ∈ {1, . . . , l − 1} :
A(e(i)) �e(i+1)

A(e(i+1)) and A(el) �e1 A(e1)

We denote by Ck the class of deals involving at most k
agents. In this paper, we focus on bilateral deals: C2 (or
swaps), but also use C3 and Cn for comparison purpose.

Definition 2. An allocation is k-stable when there is no
Ck rational deals possible.

We study dynamics consisting of allowing sequences of
rational Ck deals until a k-stable allocation is reached. By
extension, and when clear from the context, we call Ck such
dynamics. Note that in a sequence, the same item can be
successively held by different agents. From the same ini-
tial allocation, it is clear that many different sequences can
occur, leading to different final allocations.

Example 2. In Example 1, the exchange (a4a5) for in-
stance leads to a 2-stable allocation [52134] (in that case,
also Pareto optimal). However, from the same initial alloca-
tion, the exchange (a1a4) is also possible, followed by (a1a5),
leading to the 2-stable allocation [32154].

Thus, to fully define a dynamics, we need to specify how
a given deal is chosen when several are eligible. In this
paper, the exact dynamics we study is often irrelevant, in the
sense that the results are stated for any sequence of deals.
However in experiments we need to make a specific choice.
We use a random dynamics: pairs (resp. pairs or triple) of
agents are selected uniformly at random, and agents check
whether they can make a C2 (resp. C3) rational deal. This
is arguably the least committing dynamics.

2.5 Top Trading Cycle
When each agent initially holds a resource, the top-trading

cycle procedure [20] is Pareto-efficient, Individually Ratio-
nal, and Strategy Proof (no agent has an incentive to mis-
represent her preferences). In fact, it is the only mechanism
presenting such guarantees [12].

The procedure constructs a bipartite graph G = 〈E, V 〉
where V = N ∪ R. Now, for each agent ai, put an edge
pointing to top(ai). Reciprocally, set an edge from rj to the
agent possessing it. There must be a cycle in the resulting
graph. Pick one such cycle, and implement the exchange of
resources. Then remove the agents and resources involved
in the cycle, and reiterate the procedure on the restricted
graph, until exhaustion of the graph.

Example 3. Take the profile of Example 1. The graph
initially constructed is as follows:

1 2 3 4 5

r1 r2 r3 r4 r5

There are 3 cycles. In this case, TTC returns (at the end of
the process) allocation [52134].

The returned allocation Ac is unique, it is in fact the
only allocation in the core, in the sense that there is no
coalition of agents X ⊆ N and allocation A′ such that
∪ai∈XA0(ai) = ∪ai∈XA

′(ai), and A′(ai) �i Ac(ai) for all
ai ∈ X, with A′(ai) �i Ac(ai) for at least one of them.
On our running example, observe why A = [32154] (also
Pareto-optimal and better than Ac = [52134] in terms of
utilitarian and egalitarian social welfare) is not the core al-
location: {a4, a5} constitutes a group of agents who could
have been better off in Ac.

2.6 Computing Optimal Allocations
It is worth noticing that computing centrally an optimal

utilitarian (or indeed egalitarian) allocation is not difficult
algorithmically.

To obtain an allocation with maximal utilitarian social
welfare but respecting individual rationality, one can simply
translate the problem to a (weighted) matching problem in
a bipartite graph. Agents are only matched to objects they
prefer to their current assignment (disregard this to relax
IR), with weights corresponding to their utility for each re-
source. This can be solved by standard techniques in O(n3).

To return an optimal egalitarian allocation, the same tech-
nique can be iterated [9]. First construct the matching prob-
lem involving only the first rank: if no perfect matching ex-
ists, augment the instance by adding edges corresponding
to the second rank (with weights corresponding to utility).
To make sure that IR is respected, only add edges until you
have reached the current assignment for this agent. The
first returned matching maximizes the minimal rank among
agents and if we require it to maximize weight, it is also
Pareto-optimal among the allocations maximizing the min-
imal rank. It runs in O(n4). This is similar in spirit to the
descending demand procedure of Herreiner and Puppe [10].

3. PARETO OPTIMALITY
We first investigate the efficiency of the obtained alloca-

tions, in terms of Pareto-optimality. Of course, it is obvious
that a 2-stable allocation may not be Pareto-optimal. But
a natural question is to ask how often C2 reaches a Pareto-
optimal allocation. We first make the following remark: in
any Pareto-optimal allocation, at least one agent has to hold
her preferred resource. This provides a O(n) test to disprove
Pareto-optimality (just check the top rank). Fortunately,
proving that an allocation is Pareto-optimal is not very dif-
ficult either: remember that TTC returns a Pareto-optimal
allocation and respects IR. It then suffices to run TTC over
the allocation reached by C2 (more sophisticated approaches
exist, we refer to [3] for developments on this issue).

We ran experiments to test how often the final allocation
obtained with C2 was Pareto-optimal. We vary the size of
the instances and compute percentages of Pareto-optimal
outcomes for each size. We report below (Fig.1) results un-
der IC and PL. It can be seen that under IC, with n = 10,
there is about 75% chance to reach a Pareto-optimal alloca-
tion, while with n = 14 there is still 50% chance to reach a
Pareto-optimal allocation. From n = 30, it becomes almost
impossible. For comparison, we note that the real world
instances of PrefLib provide better results. This seems to
suggest that correlation between preferences is favorable to



Figure 1: Percentage of Pareto-optimal outcomes

convergence to Pareto-optimal allocations (think of the ex-
treme case where all agents have the same preference order-
ing: all allocations are stable and Pareto-optimal).

The question is whether there are natural domains guar-
anteeing convergence to Pareto-optimal allocations for C2.
We will see that this is the case for single-peaked domains.

3.1 Single-peaked Domains
In our analysis of single-peaked domains, it will be conve-

nient to make use of the notion worst-restrictedness [19].

Definition 3. (Worst-restrictedness, WR) A profile is worst-
restricted if, for any triple of resources rx, ry, rz, there always
exists a resource which is not ranked last when we restrict
our attention to these three resources.

It is known that worst-restrictedness is a necessary con-
dition (but not sufficient) for a profile to be single-peaked
[6]. Our proof shows that being stuck in an allocation not
Pareto-optimal while no swap deal is possible must lead to
a violation of this condition.

Proposition 1. In a single-peaked domain, any sequence
of rational swap deals reaches a Pareto-optimal allocation.

Proof. Suppose for the sake of contradiction that no
swap deal is possible, but that the obtained allocation A
is not Pareto-optimal. This means that there must exist
a cycle deal (µ) involving k > 2 resources r1, . . . , rk such
that r1 �2 r2, r2 �3 r3, . . . , rk−1 �k rk, rk �1 r1 (assuming
ri = A(i) without loss of generality). If agents implemented
this contract, they would get to an allocation dominating A.
Note that resources not involved in µ are irrelevant in this
proof, thus they will be ignored in examples and figures. We
now proceed by induction on the length k of the cycle.

Base case (k = 3): Consider agents a1 and a2: because
no bilateral deal is possible, it must be the case that r1 �1

r2. The same holds for all the agents involved in the cycle,
yielding the preferences:

1 : r3 � r1 � r2
2 : r1 � r2 � r3
3 : r2 � r3 � r1

We note that this directly violates the WR condition, since
the three resources appear in last position.

Induction step: We now assume that no cycle of length
k − 1 is possible, and show that no cycle of length k can

occur. For illustration, for a cycle involving 4 agents we
would have (with resources in brackets in no specific order):

1 : r4 � r1 � {r2, r3}
2 : r1 � r2 � {r3, r4}
3 : r2 � r3 � {r4, r1}
4 : r3 � r4 � {r1, r2}

We know, for instance, that a1 must have r1 �1 r3 otherwise
the cycle (a1a2a3) of length k−1 = 3 would be rational, and
similarly for the other agents.

Generalizing this, it can be seen that no other resource
from µ can appear between the resources held and the re-
sources from the cycle. Now, to respect the condition WR,
it must be the case that among all the resources in the cycle,
at most two can be ranked last (among those of the cycle).
Let us then denote rw an arbitrary such “worst” resource,
and note al an agent putting this resource in last position.

But now, regardless of the chosen resource rw, we can
pick agent aw such that A(aw) = rw, and aw+1, noting that
top(aw+1) = rw. Note that aw 6= al and aw+1 6= al.

The three agents al, aw, aw+1 constitute a witness of im-
possibility for the single-peaked ordering if we focus on re-
sources rw−1, rw, rw+1. Indeed al puts rw in last position,
but aw must put rw+1 in last position (since top(aw) =
rw−1), and finally aw+1 must put rw−1 in last position (since
top(aw+1) = rw). The condition WR is violated, leading to
a contradiction.

4. UTILITARIAN
In the previous section, we have seen that, in the general

case, the hope to reach a Pareto-optimal allocation fades as
we approach 30 agents. This is however a very crude view
of the situation: how bad are really the allocations reached?

4.1 Worst-case Analysis
A standard measure is to compute the Price of Anarchy

(PoA), that is, the deficit of social welfare induced by a
decentralized procedure, compared to centralized optimiza-
tion. More formally, for an instance I with an initial al-
location A0, denoting respectively Ck(I) the set of k-stable
allocations reachable from A0, we are ultimately interested
in the ratio:

PoA = maxI∈I
maxA∈Iswu(A)

minA∈Ck(I)swu(A)

But we will first see that the IR constraint alone induces a
significant PoA.

Lemma 1. Any procedure respecting IR have PoA ≥ 2.

Proof. Consider the following instance and allocations:

1 : r1 � rn � . . . � . . . � . . .

2 : r1 � r2 � . . . � . . . � . . .

3 : r2 � r1 � r3 � . . . � . . .

4 : r3 � r1 � r2 � r4 � . . .
...

...
n : rn−1 � . . . � . . . � . . . � rn

Observe that any procedure respecting IR must leave the
‘white box’ allocation A unchanged if it is the initial allo-
cation: agent 1 holds her preferred resource, agent 2 would



only swap to r1 which is held by agent 1, and so on. The
swu(A) = n(n + 1)/2. Now, A′ allocation (‘yellow box’
allocation) would provide swu(A′) = n2 − 1. This yields
(asymptotically) a PoA ≥ 2.

Proposition 2. All Ck procedures have PoA = 2.

Proof. Take C2. For an allocation A to be 2-stable,
it must be that, for each pair of agents (x, y), at least one
agent ranks the resource held by the other below her current
resource, otherwise a bilateral exchange would be possible.
This means that, there must be overall (by all the agents) at
least n(n − 1)/2 resources ranked below the resources they
currently hold, yielding a social welfare of n(n+ 1)/2, hence
(asymptotically) a PoA ≤ 2. As C2 is a procedure respecting
IR, the claim follows from Lemma 1, and holds a fortiori for
any Ck procedure.

These results show that no procedure guaranteeing IR can
provide better guarantees, and, incidentally, that the size of
cycles allowed in cycle-based procedures does not make any
difference (in the worst case).

At this point the reader may be confused, as there are
clearly situations where a certain gap will exist between the
best allocations which may be reached with “short” cycles,
and the worst allocations which may be reached with cycles
of arbitrary length. A different measure, which we may call
“the price of short cycles”, captures this notion:

PoSC = maxI∈I
minA∈Cn(I)swu(A)

maxA∈Ck(I)swu(A)

Proposition 3. The C2 procedure has PoSC = 2.

Proof. Consider the following instance and allocations,
with the middle ranking m = (n+ 1)/2, n being odd:

1 : r1 � r2 � · · · � rm � · · · � rn−1 � rn
2 : r2 � r3 � · · · � rm+1 � · · · � rn � r1
...

...
n : rn � r1 � · · · � rm−1 � · · · � rn−2 � rn−1

The only Pareto-optimal allocation is the one in which
each agent holds her preferred resource (‘yellow box’ alloca-
tion). Note that the ‘white box’ allocation is 2-stable, and
yields asymptotically a social welfare equals to half of the
social welfare of the Pareto-optimal allocation. By taking
precisely ‘white box’ as the initial allocation, it is the best
C2 allocation on this instance. Thus, the C2 procedure has
a PoSC of at least 2. By the same argument used in Prop.
2, it holds that C2 must have a PoSC of at most 2.

4.2 Average-case Analysis
PoA and PoSC give theoretical results in the worst-case.

We ran experiments to study utilitarian social welfare in the
average case. Unless stated otherwise, our experimental re-
sults regarding average social welfare are given as a ratio
of the maximal swu, computed as explained in Section 2.6.
Figures 2 and 3 present average social welfare obtained for
different sizes of instances under Impartial Culture and Sin-
gle Peaked preferences respectively. For each instance size, a
run is an instance (including an initial allocation) on which
we apply the different methods mentioned, i.e. for C2 deals

are performed until a stable allocation is reached. Average
values are obtained on 2000 runs.

We first report on the performance of C2 as far as the
average utilitarian social welfare is concerned. As a means
of comparison, we also provide maxRat, that is, the optimal
value which can be obtained (centrally) but still respecting
IR, TTC (bearing in mind of course that this procedure is
not designed to optimize utilitarian social welfare), and C3,
to appreciate the gain induced by slightly larger cycles.

Figure 2: Mean value of swu under IC

Figure 3: Mean value of swu under UP-SP

A first global observation is that the outcomes provide
fairly high values of social welfare (above 90% of the the-
oretically max value even disregarding IR) under IC and
UP-SP. Of course this is relative to an increasing max value
—so the absolute loss augments, but very moderately.

Under IC, it can also be noticed that C3 provides no im-
provement over C2 for small size instances, and then from
n = 10 this improvement is rather small: an almost constant
1%. Under UP-SP, there is no significant difference.

The results under UP-SP also show that the obtained val-
ues of swu are on average higher (above 95%) than under IC.
It is also important thing to notice that these experiments
also support the very good behaviour of C2 under UP-SP
relatively to other procedures: for instance, we see that it
slightly outperforms TTC (remember both are guaranteed
to return Pareto-optimal allocations under this culture).

For completeness, we also note with the datasets sushi and
tee-shirts from PrefLib, we observe respectively ' 82% and
' 92% (and slightly higher with C3), hence a lower social
welfare than under IC and a fortiori UP-SP. This may look



contradictory with the fact that the likelihood to reach a
Pareto-optimal allocation is higher. However, in that case
this is the role of IR which is crucial. Indeed the maxRat
value culminates at 87% (sushi) and 97% (tee-shirts) of the
optimal allocation disregarding IR.

5. EGALITARIAN
One might wonder whether C2 favors egalitarian stable

allocations. Egalitarian social welfare (swe) is interested in
the worst served agents. As defined in Section 2.2, maximiz-
ing the egalitarian social welfare consists in maximizing the
minimum of the individual utilities.

5.1 Worst-case Analysis
The PoA definition can be readily adapted to the case of

egalitarian social welfare. In this case, it is easy to see that
no guarantee on the gap can be given. In fact, the construc-
tion of Lemma 1 shows that any procedure respecting IR can
exhibit a swe(A) = 1 and get stuck, while swe(A′) = n− 1
would be possible. Since this ratio cannot be larger than n,
we get that:

Proposition 4. For egalitarian social welfare, all Ck pro-
cedures have a PoA of Θ(n).

Similarly, the PoSC can be shown to have the same ratio,
by exhibiting a slightly different instance.

Proposition 5. For egalitarian social welfare, the C2 pro-
cedure has a PoSC of Θ(n).

Proof. Consider the following instance and allocation:

1 : r1 � rn � . . .

2 : r2 � r1 � . . .

3 : r3 � r2 � . . .

4 : r4 � r3 � . . .
...
n− 1 : rn−1 � rn−2 � . . .

n : rn � . . . � . . . � rn−1 � rn−2

Take the initial allocation as the ‘white box’ allocation A: it
is 2-stable with swe(A) = 2, while the ‘yellow box’ allocation
A′ is the only Pareto-optimal, with swe(A′) = n.

5.2 Average-case Analysis
Experiments are performed using the same experimental

setting as the one described in Section 4. Single-peaked do-
mains and impartial culture domains are considered. The
main observation is that C2 gives very good results (for in-
stance, significantly better than TTC), especially in IC. On
average, the poorest agent will receive a resource ranked in
the top-third of her preferences.

The performance of TTC with respect to this notion of
welfare is no surprise: as explained, the procedure imple-
ments the ‘best’ cycles and then discards the resources: this
reduces a lot the range of possible cycles for other agents.
Some agents may thus keep low-ranked (or even their initial)
resources, leading to low individual utility. On the other
hand, C2 does not favor any agents and allows each agent to
perform rational bilateral deals. Moreover, each agent can
trade several times. Agents with low-ranked initial resources

Figure 4: Mean value of swe under IC

have then more opportunities to exchange their resource and
improve their individual utilitarian welfare. Consequently,
we obtain better egalitarian social welfare with C2 or C3.

A second important observation is that C3 also improves
little over C2 for this notion of welfare, but more than for
utilitarian welfare (note that the scale of y-axis differs).
Moreover, the gap between both procedures augments very
moderately as larger sizes of instances are considered, reach-
ing about 4% when n = 30.

The results under UP-SP (not pictured here for lack of
space) essentially show the same trends, but with signifi-
cantly lower values. C2 and C3 go slightly below 50% for
n = 30, while TTC reaches a small 30% for the same size
of instances. Clearly, the structure of preferences makes it
difficult to satisfy equally all agents.

For completeness, with the datasets from PrefLib, the
worst served agent will respectively get on average her me-
dian resource (for sushi) and the resource ranked between
rank 3 and 4 (for tee-shirts). These results are comparable
to those obtained under UP-SP for n = 30. We see that, as
in the utilitarian case, in these instances the IR constraint is
much more demanding due to the correlation of preferences.

6. REACHABILITY
The ultimate question we address is the following: even if

the procedure is to be limited to cycles of restricted length,
in the presence of a central authority, an alternative ap-
proach would be to let the center plan ahead the sequences
of rational swap deals. In this section we show that this may
not be a viable solution, because of the complexity of this
reachability problem.

More specifically, we address the problem of Minimization
of the Utilitarian Social Welfare with Swap Deals (MIN-
USW-C2) and Minimization of the Egalitarian Social Wel-
fare with Swap Deals (MIN-ESW-C2).

MIN-USW-C2
Instance: An instance I, with initial allocation A0, an

integer k
Question: YES if and only if there exists a sequence of ra-

tional swap deals starting from A0 and leading
to an allocation A′ such that swu(A′) ≥ k.



MIN-ESW-C2
Instance: An instance I, with initial allocation A0, an

integer k
Question: YES if and only if there exists a sequence of

rational swap deals starting from A0 and lead-
ing to an allocation A′ such that swe(A′) ≥ k.

Proposition 6. The MIN-ESW-C2 and MIN-USW-C2
problems are NP-complete.

Proof. First, both problems are in NP. In fact, note that
the length of any sequence of rational swap deals is O(n2).
Thus, if a sequence of rational swap deals is given as a guess,
the social welfare of the resulting allocation can be computed
in a polynomial time, which proves NP-membership. To
prove NP-hardness, we will show that both problems reduce
to the hamiltonian circuit problem in directed graphs with
an in-degree and an out-degree of at most 2 [14].

Let G = (V,E) be a directed graph with an in-degree and
an out-degree of at most 2 with V = {1 . . . n}. Assume with-
out loss of generality that each vertex has an out-degree of
at least one (if a vertex has a null out-degree, then no hamil-
tonian circuit exists). From G, let us build a graph G′ with
an additional vertex n + 1 such that all arcs in G pointing
towards vertex 1 now point towards vertex n+ 1. Formally,
G′=(V ∪{n+1}, {(i, j) ∈ E : j 6=1} ∪ {(i, n+1):(i, 1) ∈ E}).

There exists a hamiltonian circuit in G iff there exists a
path in G′ starting from 1, ending on n+ 1 and visiting all
vertices. Let us now build the reduction.

The set of resources will be R ∪ {u} ∪ B ∪ C where R =
{r1 . . . rn+1} , B = {b1 . . . bn+1} and C = {c1 . . . cn+2}. This
sums up to M = 3n+ 5 resources (and agents). Intuitively,
resource u will be used as a token moving from agent to
agent: the sequence of agents visited by u corresponds to
a path in G′. Resources B will be used to unlock some
resources rj which will be then exchanged against u. Finally,
resources C do not play any role other than amplifying the
social welfare when some rj resource reaches the top rank.

In an abuse of notation, the symbol allC in a linear order
will refer to the lexicographic ordering among resources of
C. For example, r1 � allC � r2 is the linear ordering
r1 � c1 � c2 . . . � cn+2 � r2. Also, in each linear order, all
resources ranked below the originally held resource do not
play any role, so they will be omitted here.

Now we build our preference profile. For each vertex i of
G′, let P = {p1 . . . pk} be the set of predecessors of i in G′

(the size of P is at most 2). Simply add to the profile the
linear order:

ri � allC � u � rp1 � . . . � rpk � bi

Then, add u � rn+1 and b1 � u .

Now for each i ∈ {1 . . . n}, add bs1 � . . . bsl � ri where

S = {s1 . . . sl} is the set of successors of i in G′. Finally, for
each i ∈ {1 . . . n+ 2}, add ci .

To make this construction easier to grasp, consider the
graph G = ({1, 2, 3} , {(1, 2), (2, 3), (3, 1), (2, 1)}). From G,
we build the graph G′ shown below:

1 2

3

4

The profile (and initial ‘box’ allocation) build from G′ is
the following:

1 : r1 � allC � u � b1

2 : r2 � allC � u � r1 � b2

3 : r3 � allC � u � r2 � b3

4 : r4 � allC � u � r2 � r3 � b4
5 : u � r4
6 : b1 � u
7 : b2 � r1
8 : b3 � b4 � r2
9 : b4 � r3
10 : c1

...
14 : c5

Each sequence of swap deals induces a path in G′. Let
us see how to extract such a path. Consider any sequence
of swap deals. Assume the tth deal involves exchanging re-
source ri with resource u, for some i > 1. Consider the sub-
sequence of deals ranging from the first deal to the (t−1)th.
Take the last deal in this subsequence involving u and some
other resource rj . Then, (j, i) ∈ E. Note in addition that
a deal (ri, u) cannot appear twice in a sequence of rational
deals. Let rj1 . . . rjk be the list of resources exchanged with
u in the sequence of deals, in this order. Then, j1 . . . jk is a
path in G′.

On our example, there are two possible sequences of swap
deals (modulo possible permutations in these sequence). The
longest one is depicted below (each vertex is an agent, and
arcs show which resources are exchanged between agents).
We clearly see that resource u is exchanged against resources
r1, r2, r3, r4 (in that order). So this sequence induces the
path 1, 2, 3, 4 in G′.

a6

a7

a8

a9

a1

a2

a3

a4

a5

u

r1

r2

r3

b1

b2

b3

b4

u

u

u

u

r1

r2

r3

r4

Assume now that there exists a path i1, i2 . . . in+1 passing
through each vertex once in G′ and such that i1 = 1 and
in+1 = n+ 1. Then the following sequence of swap deals is
rational:

(u, b1),(ri1 , bi2),(ri1 , u),(ri2 , bi3),(ri2 , u),(ri3 , bi4), . . . ,(rn+1, u)



Moreover, this sequence leads to a final allocation where the
first and the last n+2 agents have their preferred resources,
and the remaining n + 1 have their best or second best re-
source. The final social welfares will thus be bounded as
follows:

swu ≥ 2M.(n+ 2) + (M − 1)(n+ 1)

= 9n2 + 29n+ 24

swe ≥ M − 1 = 3n+ 4

Conversely, assume that no such path exists. Then, no
sequence of IR deals can contain all deals involving ri, u for
all i ∈ {1 . . . n + 1}. Thus, at least one of the n + 1 first
agents will have a resource positioned below the rank n+ 2.
Thus, the social welfares will be:

swu ≤ M2 − (n+ 2)

= 9n2 + 29n+ 23

swe ≤ M − (n+ 2) = 2n+ 3

To summarize, there exists a sequence of rational swap
deals leading to a utilitarian social welfare of at least 9n2 +
29n+24 and an egalitarian social welfare of at least 3n+4 if
and only if G admits an hamiltonian circuit. This concludes
the NP-hardness proof.

7. RELATED WORK AND CONCLUSION
While TTC is a celebrated method to allocate indivisible

items among agents without money balance, it is difficult to
apply in distributed settings. In this paper, we investigated
swap deals for distributed resource allocation in house mar-
ket settings, under a very simple dynamics that allows the
agents to improve their satisfaction without requiring com-
plex coordination. We provide several new insights to assess
the power of this approach in such settings. Pareto opti-
mality is thus guaranteed under single-peaked preferences.
In a larger context, we showed that no other IR mechanism
(even those involving longer cycles) can ever provide better
guarantee about utilitarian social welfare loss in the worst
case. While the ‘price of short cycles’ may be high in prin-
ciple, our experimental findings show that in average, per-
formances are fairly good in terms of social welfare. Finally,
we proved the NP-completeness of deciding whether an al-
location maximizing utilitarian or egalitarian social welfare
can be reached. This complexity results reinforce the case
for such approaches based on local myopic improvements.

Being based on cycle reallocation of resources, it is useful
to recall that a given permutation can be decomposed in
products of transpositions (cycles of length 2). This means
that we could always decompose a permutation (hence reach
any allocation), if it was not for the rationality constraint.
Our dynamics based on local improving requires indeed each
swap to be rational. Such results could however prove use-
ful to identify easily verifiable sufficient conditions for the
reachability problem (which, we saw, is difficult in general).

Recently, [11] studied a domain where the single-peaked
restriction is natural: assigning agents to slots on a line,
where each agent prefers to be allocated as close as possi-
ble from her preferred slot (actually, this induces by default
a more restrictive domain since the notion of distance is
symmetric). Interestingly, they prove a convergence result

implying Pareto-optimality, but under a different rationality
criteria (“aggregate gap-reduction”).

Similar issues occur in related but different problems.
The kidney exchange problem has recently stimulated a

large body of work. This is a case where the prospects of
failures induced by long exchange cycles cannot be accepted,
since they may have dramatic consequences. As a result,
most programs restrict their implementation to pairwise ex-
changes, sometimes cycles of length 3 [16]. The approach is
of course centralized. In this context, the clearing problem
(consisting in finding a collection of disjoint cycles maximiz-
ing social welfare) is known to be NP-complete [2] when the
bound on cycle length is ≥ 3. Here we saw that for cy-
cles of length 2, the reachability problem in our setting is
hard already. On the other hand, the reader should keep
in mind that such ‘planning-like’ problems have typically
high complexity (in our case we remain in NP because the
sequences of cycles are polynomially bounded). An open
question is whether hardness also holds for reachability of
Pareto-optimal allocations. We strongly suspect this to be
the case, but could not prove it so far.

We may also point the reader to studies of online exchange
markets (allowing users to exchange books, dvd, etc.), where
the stakes are certainly less life threatening. In such settings
the dynamics is also challenging: preferences, i.e. “wish
lists” are not necessarily complete and may get updated. As
a result, agents may have to stall their activity for a while,
perhaps discarding other rational proposals. Abassi et al.
[1] observed this in datasets from existing barter exchange
models (“in a dynamic network where item and wish lists
may get updated, it may take a long time before such ex-
change opportunities materialize”).

The kind of uncoordinated approaches studied in this pa-
per have been investigated in the context of two-sided match-
ing. Roth and Vade Vate [17] show that better response
dynamics will always convergence in expectation, but Ack-
ermann et al. [4] exhibit an exponential lower bound on
the sequence length. Even closer in spirit to our approach
is the work of [5], which investigates the price of anarchy
and price of stability of stable matchings, providing both
theoretical bounds and experimental findings. Even though
their notion of stability is different, they notice like us a
big discrepancy between the worst-case predictions and the
experimental findings about the quality of matchings.

Bilateral deals have been investigated in a context of dis-
tributed resource allocation involving payments among agents
[7], and in a context where agents may hold several resources
simultaneously, and have arbitrary preferences about such
bundles of resources. Convergence in the domain of addi-
tive preferences can be proven, and bounds on the length of
sequences can be derived [8]. One result is that no larger do-
main than additive preferences can guarantee convergence.
A similar question could be asked for our result in single-
peaked domains: is there a larger (ideally, natural) domain
still guaranteeing convergence?
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