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Abstract— This work is based on the idea that, like in bio-
logical organisms, basic motivated behavior can be represented
in terms of approach and avoidance. We propose a model for
emotional modulation of the robot peripersonal space. That is
to say, an area both reachable and secure; the space where
the robot can act. The contribution of this paper is a generic
model that integrates various stimuli to build a representation
of reachable and comfort areas used to control robot behavior.
Such an architecture is tested is three experiments using
real robot and simulations. It is compared with two altered
architecture versions. We show how our model allow the robot
to solve various tasks, display emotionally colored behaviors
and account for results from psychological studies.

I. INTRODUCTION

Reactive architectures offer an alternative to the delib-
erative paradigm [1][2]. Rather than top-down centralized
decisions following a sense-plan-act sequence, they rely on
sensorimotor behaviors. No need for an internal model of
the world nor planning. The sense-act coupling allows for a
fast control by only figuring out what to do in the next step.
Yet, as soon as several behaviors are available, giving up the
idea of building a plan to solve the task raises the problem
of action selection.

Research in reactive systems largely took inspiration from
ethology. For instance, the subsumption architecture orga-
nizes the sub-behavior into a hierarchy of layers, all running
in parallel [2]. Although the higher levels may inhibit lower
sub-behavior when needed, the idea is that they utilize
lower competences in a bottom-up way. Moreover, loose
hierarchy structure was proposed as an alternative to rigid
winner-takes-all approaches in top-down hierarchical models
[3]. Nevertheless, such architectures suppose a hard-coded
priority between the sub-behaviors and offer little flexibility
in terms of action selection adaptability.

It has been shown that it is possible to use parallel
architectures without any preprogrammed top-down control
over sub-behaviors [4]. Indeed, the system can learn what
behavior is appropriate given a certain sensory input. Another
example is to use reinforcement learning to implement a
gating mechanism that arbitrates between different strategies
based on previous rewards [5].

Dynamic Neural Fields (DNFs) present a set of properties
(bifurcation, fusion, hysteresis, etc.) that make them a good
candidate for robotic control [6]. Behaviors suggested by
different strategies can be considered as weighted inputs of a

DNEF, which output is used to determine the action to perform
[6][7]. The inputs weights can be hardcoded (in order to
define certain priorities) and/or modulated according to the
situation. In [7], an emotional metacontroller weights sub-
behaviors importance in the action selection process based
on prediction errors. Indeed, emotions being inherently part
of control and self-regulation is becoming more and more
admitted [8]. They express motivational states and foster
conflict resolution [9][8]. Besides, the idea of modeling
emotions and motivations in robotic architectures has been
considerably studied [10][11]. We believe such an approach
allows for gaining flexibility and solving various tasks.

In this paper, we propose a model in which emotions
modulate the robot perception in order to change its behavior.
We consider the case of perceiving the surrounding space.
That is to say the comfort area where intrusions should
be avoided and the reachable area where objects can be
approached. Several evidence of the effect of emotions
on such perceptions can be found in psychological and
neuroscientific studies [12][13][14][15]. In our case, the
robot emotional states depend on the dynamics of basic
components: pleasure, pain and motivation [16]. Thus, it
encompasses the affective and the motivational states, respec-
tively determined by received rewards or punishments and
by appetitive and defensive drives. The model proposes that
these states modulate the perception of sensory input before
and after they are integrated over time (like in a working
memory). Thereby, we obtain a subjective and motivated
representation of the surrounding space which is used to
drive robots behavior.

In the next sections, we give some evidence of PPS
plasticity from the literature and present our model for its
emotional modulation. Next, we give some implementations
details and expose the experimental paradigm we use to
evaluate our model. Finally, we describe three experiments
using real robots and simulations.

II. PERIPERSONAL SPACE PLASTICITY IN APPROACH AND
AVOIDANCE

In the literature, the notions of comfort zone or personal
space refer to the space needed to feel comfortable and
safe [12][13]. On the other hand, the term reachable space
is used in action-related contexts, e.g. moving or manip-
ulating objects [14][15]. Although they can sometimes be
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Fig. 1.

Different forms of modulation of robot PPS. FAR-LEFT: No modulation. LEFT and CENTER-LEFT: The comfort zone contracts or dilates

according to the pleasantness of the affective state. CENTER-RIGHT, RIGHT, and FAR-RIGHT: Also, appetitive and aversive stimuli respectively induce
an extension or a retraction of the reachable space in the corresponding direction.

distinguished, we see these two notions as two aspects of
the same process of integrating information to represent the
space around oneself. It is the peripersonal space (PPS), as a
multimodal sensorimotor interface between the body and the
environment. It represents an area both reachable and secure.
Thus, it can be used to avoid threatening intrusions or the
approach desirable objects.

It has been demonstrated that PPS is plastic. Indeed,
positively valenced objects tend to be perceived as more
reachable than negative ones [14]. However, the presence of
threatening objects in our peripersonal area can be perceived
differently. For instance, a knife seems farther when oriented
toward us, i.e. when potentially dangerous [15]. On the other
hand, a positive affective state, induced by pleasant music
for instance, can impact the PPS as well, reducing the area
needed to feel comfortable in over-crowded spaces [13].

As a sensorimotor interface with the world which is used
in both approach and avoidance behaviors, we suggest it
is interesting to model PPS in a robotic system. Here, we
are more precisely interested in its modulation by emotional
states. If we consider a mobile robot in a navigation task,
we can represent various states of its PPS perception like
in Fig. 1. Indeed, its comfort zone can contract or dilate
according to the pleasantness of the current affective state.
Also, appetitive and aversive stimuli respectively induce
an extension or a retraction of the reachable space in the
corresponding direction.

III. PROPOSED MODEL FOR EMOTIONAL MODULATION
OF PERIPERSONAL SPACE

We propose that PPS perception is based on a working
memory (WM) that integrates sensorimotor information. For
instance, the robot can remember the position of an obstacle
it avoided. Also, it can update a path integration vector
associated with a goal according to the speed and direction of
instantaneous movement. We propose this sensorimotor input
has to be integrated according to the current affective state.
If the robot perceives a collision as a punishment signal,
obstacles become more salient and leave a bigger trace in the
(WM). Indeed, punishment-induced negative state expands
the robot comfort zone [13].

Previous work presented an architecture allowing for han-
dling a limited WM in tasks including multiple goals [17]
(See Fig. 2 for an overview). No further understanding of the
WM model is required for this paper given the small number
of goals and sensory inputs in our experiments. We rather
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Fig. 3. Model for building a representation of the robot peripersonal space.
It is based on working memory taking input from various sensory modalities.
PPS is modulated by the robot emotional states in order to integrate a
subjective and motivated perception of its environment.

focus on the emotional modulation at different levels of the
information processing loop (See Fig. 3).

In this work, the robot emotional states depend on the
dynamics of basic components: pleasure, pain and motiva-
tion [16]. It encompasses the affective and the motivational
states. The former is determined by received rewards or
punishments and the latter by appetitive and defensive drives.
The model proposes that the affective state modulates the
perception of sensory inputs before they are integrated in
the WM. Then, relevant information from the WM is mod-



ulated by the motivational state and merged to represent the
robot peripersonal space. Such a subjective and motivated
perception is used to determine robot actions, consequently
influencing future sensations.

IV. STUDYING THE IMPACT OF EMOTIONAL
MODULATION OF PERIPERSONAL SPACE

A. Method

In this paper, we are interested in the emotional modula-
tion of the peripersonal space. More specifically, we address
the cases where approach and avoidance behavior are in
contradiction. Thereby, we can observe the impact of the
emotional state on the action selection process.

We use a dynamic neural field (DNF) [6] to merge
information from WM in PPS representation. Appetitive
and aversive stimuli given as input generate attractors and
repulsors in the DNF. The potential v of each neuron z is
updated as following:

(e t)

e u(z,t) +i(z,t) + h

+ /ZEVZ w(z).f(u(z — 2,t)).dz (D

where f(x) = tanh(x) and is used to calculate the neuron
actiity, 7 is the time constant, ¢ the input, A a constant
inhibition potential and w an interaction kernel. Using a DoG
(Difference of Gaussian) function as the interaction kernel
allows proximal stimuli to reinforce each other and to inhibit
distant ones. The highest neuron activity is used to calculate
the linear speed. Also, we calculate the rotational speed via a
readout of the output derived signal (wrt current orientation).

In experiments 1 and 2 (Sect. V and VI), we study the
single-resource case. The robot has one appetitive and one
aversive drive — respectively feeding and protecting its own
physical integrity. The feeding drive is determined by the
level of a simulated physiological variable, based on the
model of hypothalamus proposed in [18]. The level r of the
physiological variable associated to the resource at time ¢ is:

r(t) = ar(rmaz —r(t=dt))I(t) = prr(t—dt)(1-1(t)) (2)

where 7,,,., 1S the maximal variable level (set to 1), «, and
B, respectively indicate the ingestion and the consumption
speed factors and [ is the ingestion signal (1 when on
the resource and r(t) < 7,4, and O otherwise). On the
other hand, the safety drive mimics the role of the superior
colliculus in the integration of multiple sensory input in order
to trigger defensive behavior like avoidance or withdrawal
[19]. In our case, we calculate the mean activity on the
proximity sensors obtain the level th of threat at time ¢.
The perception of the threath is modulated according to
the robot affective state. The latter depends on the received
punishment and reward signals used to simulate pain and
pleasure. In these experiments, they are respectively given
by collision and resource detection. In order to obtain a
midium-term state that integrates the two kinds of signals,

we define the affective state a according to punishments a,,,
and rewards a,,, at time ¢ as following:

a(t) = apy(t) — apn (%) with 3)
Apn () = €q.apn (t — dt) — Ya.0ry (t — dt) )
() = €4 (t — db) — Yg.apn (t — dt) 5)

where £, and v, respectively represent the integration and
inhibition factors of the competition.

Starting from the resource location, the return vector is
calculated by integrating the speed and direction of intanta-
neous movements. The activity p of each neuron x in the path
integration field at time ¢ is given by the following equation:

d(t) + 2wz /n

t
pa(t) =) (s(t)-cos( )-(1=R(t)) (6

tr
where ¢, is the last reset time, s the linear speed, d the
direction, R the reset signal and n the size of the neural
field. Reset signals occur when the resource is detected.

The feeding drive becomes active whenever the level of the

physiological variables drops below a satisfaction threshold.
The robot then uses the path integration vector to return to the
resource. Similarly, obstacle detection triggers the defensive
drive and generates an avoidance behavior. In some case,
these two low-level motivations can be contradictory, e.g.
if there is an obstacle (object or other robot) on the way.
A competition between the appetitive and aversive drives
allows them to inhibit each other, which favours the approach
or the avoidance behavior depending on the drives levels.
Similarly to the affective state, we define the approach m,
and avoidance mg, motivation levels at time ¢ as following:

Map(t) = €m-Map(t — dt) — Ym-May (t — dt) @)
Mav(t) = Em-Map(t — dt) — Ym-Map(t — dt) (8)

where ¢,,, and ~,, respectively represent the integration and
inhibition factors of the competition.

In the third experiment (Sect. VII), we evaluate our model
in a different framework. Like in some psychological exper-
iments, we consider a task in which an agent has to reach
an object [14][15]. We use visual inputs to represent PPS.
Therefore, a set of objects are learned by the system in a pre-
experiment phase. We use an algorithm for points of interest
(Pol) extraction by convolving the gradient images with a
DoG filter. These Pol are categorized as visual signatures
and associated with the objects to learn (See [20] for more
details). Our system also learns a set of landmarks that should
not be associated with none of the objects in order to be
robust to background “noise”. During the experiment, an
approach behavior is simulated by a motivation to reach
recognized objects. In addition, desirable and threatening ob-
jects respectively trigger an additional appetitive motivation
and a defensive avoidance behavior.

In all experiments, the architecture is run on the Promethe
neural network simulator [21]. Each operation of the infor-
mation processing flow (Fig. 3) can be computed as soon as
the information from previous modules is updated. Indepen-
dent modules are executed in parallel (separate threads).



B. Experimental paradigm

In order to study the impact of the emotional modulation
of the peripersonal space, we compare the Model version
behavior with two altered versions of the architecture:

o NoCompet version: We still modulate robot PPS accord-
ing to its emotional state. However, there is no lateral
inhibition between punishment and reward signals nor
between appetitive and aversive drives.

e NoModul  version: No  modulation of ap-
proach/avoidance is performed at all. Robot drives only
serve for triggering homing behavior for example. This
version is the closest to a classical reactive architecture.
Except here approach and avoidance have the same
weight in the DNF.

V. EXPERIMENT 1: REAL ROBOT VS. STATIC OBSTACLE
A. Experimental setup

Let us consider the 40 cm-wide, 50 cm-long, 140 cm-
high, 4-wheel mobile robot. It is embedded with a light
sensor. The latter is placed under the robot to detect a 45
cm x 45 cm red-colored zone considered as a resource. The
platform also has 9 ultra-sound proximity sensors, of which
we only use a subset to cover a 180 degrees-wide front field.
The experiments are run in one of the rooms of our lab,
approximately 8 m long by 6.5 m wide.

In this experiment: ¢,, = 0.8, v, = 0.2, ¢, = 0.2,
Ym = 0.8, a,, = 0.1 and £3,.0.01.

B. Results

When the level of its physiological variable drops below
the satisfaction threshold (0.5 in this experiment), the robot
uses the return vector represented in the path integration field
to go back to the resource. Fig. 4 shows multiple trajectories
observed in a regular homing case as well as when the three
architecture versions — Model, NoCompet and NoModul —
face a static obstacle (a cardboard box) put on the resource.
In the Model case, the robot is able to reach the resource,
even after a deviation due to its avoidance behavior. This
is allowed by the inhibition of the defensive sub-behavior
by the appetitive one when the level of the physiological
variable becomes critical. On the other hand, with the two
other architecture, the robot fails to feed. Either the defensive
drive dominates the robot behavior (NoCompet version, and
green and blue trajectories with NoModul version) or the
latter oscillates between approach and avoidance (purple
trajectories with NoModul version).

C. Discussion

With the NoCompet version, there is an implicite prioriti-
zation of the sub-behaviors due to their respective dynamics.
Thus, the defensive drive has a bigger impact on robot
behavior. The appetitive drive increases more slowly. When,
it’s high enough it can only cancel the avoidance behavior,
making the robot stop in front of the obstacle.

In the NoModul case, the robot either stops in front of
the obstacle or diverges. Depending on the situation, if the
approach and the avoidance fields are perfectly opposed,
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Fig. 4. Experiment 1 results. TOP-LEFT: Robot trajectories in a regular
case of homing toward the resource. Colored gradients from light to dark
represent the decay of the phyiological variable. White dots at the end of the
trajectories indicate a new ingestion. TOP-RIGHT: Trajectories where the
robot is able to reach the resource by pushing the obstacle (Model version).
BOTTOM-LEFT: Trajectories where the robot stops before reaching the
resource (obstacle-induced deadlock with NoCompet version). BOTTOM-
RIGHT: Trajectories where the robot stops or diverges before reaching the
resource (obstacle-induced deadlock with NoModul version).

they cancel each other quite quickly. Otherwise, the system
oscillates between the attractor and the distractor respectively
created by the appetitive and the aversive sub-behavior. Thus,
the robot accumulates errors in the path integration fields and
is unable to reach the resource.

On the other hand, with the Model version, the approach
sub-behavior can inhibit the defensive one when the level of
the physiological variable becomes too low. Even if the robot
deviates from the resource due to the avoidance mechanism,
it is able to access the resource afterwards.

Moreover, one should note that in the NoCompet case,
deadlocks occur farther from the resource in comparison with
the NoModul architecture. This is due to the robot extending
its comfort zone because of negative affective states induced
by collision with the box.

VI. EXPERIMENT 2: MULTIROBOT COMPETITION
SIMULATION

A. Experimental setup

This experiment is performed on the Webots simulator
in order to avoid damaging real robots. We simulate two
robots identical to the one described previously moving in a
17.5 m x 15 m environment. In this experiment, o, = 0.05,
meaning the resource ingestion is slower than in the previous
experiment in order to observe the competition between the
two robots. Others parameters are kept as in experiment 1.
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in terms of food depletion is found but the alternation in the access to the resource varies among the architecture versions. A strong tendency is found
with model variable on nb_own_access as well as a significant effect of version on nb_other_access

We define a cycle as an interval in which a robot, initially
satisfied (non-hungry), consumes the energy obtained from
the previous ingestion and returns to the resource in order
to feed once again. Each of these cycles is considered as
an independant sample of the multirobot competition for the
resource. Once its feeding drive satisfied, a robot get away
from the resource. It randomly navigates in the environment
updating its path integration field to be able to return to the
resource when needed. Similarly to the previous experiment,
with NoModul and NoCompet versions, robots are expected
to be unable to access the resource until the other is done
feeding. However, in the Model version, robots should be
able to fight for the resource by pushing each other.

To test our hypothesis, we use three measures:

o min_phyvar: Lowest level of the physiological variable

associated with the feeding drive,

e nb_own_access: Number of own accesses to the resource

within a full cycle,

e nb_other_access: Number of other robot accesses to the

resource within own cycle.
The first one is a measure of food deplation, i.e. how close
to starvation the robots get. The two latter quantify cycle
interruptions. Besides, we consider two variables:

o model: Whether our model is used (the NoCompet and

NoModul versions are gathered in one group),

e version: Which version is used (each of the 3 versions

is association with a different group).

B. Results

We compare the 3 architecture versions in 15-minute simu-
lations (N=51, Npso4e1=16, NNoCompetzlg» NNoModu=17;
min_phyvar: p=0.68, 0=0.07 ; nb_own_access: p=1.92,
0=1.78 nb_other_access: =1.47, 0=1.14). None of the vari-
able follows a normal distribution.

Kruskal-Wallis non-parametric test shows that there is no
effect of version nor model on min_phyvar (resp. Chi? =
0.45,p = 0.80 ; and Chi? = 0.00,p = 0.95). No significant
effect of version on nb_own_access was found either (Chi% =
5.36,p = 0.07). However, there is a strong tendency with
model (Chi? = 3.81,p = 0.05). Also, there is a main effect
of both model and version on nb_other_access (resp. Chi% =
6.03,p = 0.01; and Chi? = 8.19,p = 0.02).

C. Discussion

The results regarding the min_phyvar measure show there
is no significant difference between the architecture version

in terms of food deplation. This is due to the random
exploration following feeding phases and to resource con-
sumption being slower that its ingestion. This leaves the
possibility for the robot to alternate in resource access. Yet, it
is interesting to observe how this alternation occurs, i.e. how
the robot interact in this survival task. Indeed, there is a social
dimension that emerges from the emotional modulation of
the robot peripersonal space.

nb_own_access and nb_other_access allow to caracter-
ize the alternation in resource access. In addition, let
us consider two additional measures bin(nb_own_access)
and bin(nb_other_access) respectively equal to 1 if
nb_own_access and nb_other_access are greater than 1, and 0
otherwise. Indeed, in the case of a perfect alternation of the
robots over the resource, each should access it exclusively
and only once in every cycle. Any different configuration
could correspond to a feeding cycle being interrupted by
another robot. In this case, we find a strong tendency
on bin(nb_own_access) with both model and version (resp.
Chi? = 3.68,p = 0.05; and Chi®2 = 6.01,p = 0.05) as
well as a significant effect on bin(nb_other_access) (resp.
Chi? = 5.19,p = 0.02; and Chi? = 6.73,p = 0.03).

Similarly to Experiment 1 (Sect. V), the robots tend to
be unable to access the resource before it is free when
the NoCompet or NoModul architecture is used. In the
NoModul case, collisions between the robots occur due the
appetitive and aversive behaviors having exactly the same
weight. Therefore, some cycle interruptions can happen.
Yet, the robot generally deviates from the resource in order
to avoid the other robot currently feeding. We argue that
interactions between the robots can be seen as emotionally
and socially communicative in the NoCompet and Model
versions. With the former, robots seem either patient or
fearful. Their modulation of their PPS make them extend
their comfort zone. They are more sensitive to aversive
stimuli and defensive sub-behavior tend to take over the
appetitive one. On the contrary, using the Model version,
the robots seems more proactive and determined. When the
resource is not available they try to push whatever is on their
way. In both architectures, the robots build a representation
of their reachable and comfort areas. They also interact in a
way that expresses aspects of their internal states. However,
when the appetitive and aversive motivations cannot inhibit
each one another, it can lead to deadlock situations like in
Experiment 1 (Sect. V).



VII. EXPERIMENT 3: TOWARD VISION-BASED OBJECT
REACHING

A. Experimental setup

In this experiment, we use a 60 degrees firewire camera.
The latter is directed toward a platform where the experi-
menter puts objects that our system is asked to reach (see
Fig. 6). Among the latter, one is desirable (toy), one is neutral
(cable roll) and one is threatening (snap-off utility knife).
The head direction field is used to integrate visual stimuli —
i.e. recognized landmarks — in the perception of the robot
peripersonal space. We simulate an approach motivation
(reaching) and compare how their reachability is perceived
by the robot depending on their desirability. That is to say,
the level of distortion induced on the robot reachable space
induced by the detection of these objects.

B. Results

Fig. 7 shows how reachability perception varies from one
object to another using the three architectures. In our system,
the reachability depends on the object recognition level.
Therefore, in the following, we will consider reachability per-
ception proportionally to a baseline. The latter corresponds
to an estimation of reachability only determined by the object
recognition level.

Using the Model version, the desirable object seem more
reachable than the neutral one. Also, the threatening object
is perceived as less reachable due to the harm aversion
inhibiting the approach behavior. On the contrary, in the
NoCompet case, the negative one reachability in not altered
by its aversive caracteristics since no competition between
motivations occurs. However, similarly to Model, the posi-
tively valenced object is indeed perceived as more reachable
than the others. Finally, the NoModul version perceives
reachability in a rather binary way because no modulation
of PPS is operated.

C. Discussion

In a framework that is similar to some psychological stud-
ies [14][15], our model succeeds in accounting for the objects
desirability in their reachability perception. Thanks to the
emotional modulation and the competition between aversion
and approach, positive and negative objects respectively seem
more and less reachable than neutral ones. In addition, this
experiment shows how visual sensory input can be used in
our architecture. In future work, objects to reach or to avoid
can be recognized visually. For example, in navigation tasks
like in experiments 1 and 2, such additional sensory stimuli
can be merged with path integration and proximity detection
in order to build robot PPS.

However, we note that if several learned objects were
presented simultaneously, the system response would depend
on their spatial position. If far from each other, their reach-
ability could be perceived separately and according to their
desirability. But if too close, the DNF could fuse all stimuli
and could lead to an erroneous perception. This is one of the
DNF limitations.

)
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Fig. 6. Experiment 3 setup and visual object recognition. TOP: 3 objects are
put in front of the camera: a toy (positive/desirable), a cable roll (neutral) and
a snap-off utility knife (negative/threatening). BOTTOM: Gradient image
convoluted with DoG used to detect landmark. Localviews of the desirable,
neutral and threatening objects are recognized. They are represented by
blue, yellow and red circles respectively. Several other points of interest
are detected on background objects but are not relevant to the task (white
circles).

Fig. 7. Experiment 3 results: Perception of the recognized objects
reachability with the three architectures. Our architectures perceives reach-
ability depending on the object recognition level. Therefore, results should
be seen in comparison with the baseline. The latter corresponds to an
estimation of reachability only determined by the object recognition level.
TOP: Model version. Positive and negative objects respectively seem more
and less reachable than neutral ones. CENTER: NoCompet version. The
desirable object seems more reachable than the other. However, neutral
and threatening one reachability are perceived equally. BOTTOM: NoModul
version. Reachability is quite binary, only depending on whether an object is
recognized. In all cases, an unknown object is not considered in the reaching
task and therefore do not alters the robot peripersonal space.

VIII. GENERAL DISCUSSION

In this paper, we propose a model in which emotions
modulate the robot perception of the surrounding space. In
the literature, the notion of comfort zone refer to the space
needed to feel comfortable while the term reachable space is
used in action-related contexts. We see these two notions as
two aspects of the same process of integrating information to
represent the space around oneself: the peripersonal space.
Evidence of the effect of emotions on such perception can
be found in psychological and neuroscientific studies. In our
case, the robot emotional states depend on the dynamics
of basic components: pleasure, pain and motivation. They
modulate the perception of sensory input before and after
they are integrated in a working memory. Thereby, we obtain
a subjective and motivated representation of the surrounding
space which is used to drive robots behavior.

We test this approach in two different tasks, comparing the



results of our model with two altered versions. Experiments
1 and 2 address the single-resource problem. We highlight
the role of the emotional modulation and the competition
between the approach and avoidance behaviors in allowing
to use PPS representation to control the robot. In experiment
3, we show how our model accounts for desirability impact
on reachability perception as it has been studied in some
psychological experiments [14][15]. All together, these ex-
periments demonstrate the generic aspect of our model, in
terms of stimuli types and tasks nature.

Nevertheless, in some cases, the competition mechanism
we use between appetitive and aversive sub-behaviors could
be insufficient. For example, avoidance inhibition by the
appetitive drive would be irrelevant in case there is a wall
between the robot and the resource. Thus, our architecture
needs to implement learning mechanisms that could take
punishments and rewards into account in generating robot
motivational states. Another option is the use of neuromod-
ulatory signals to bias approach and avoidance like in [22].

In our approach, we took inpiration from information
coding in biological systems. Indeed, several evidence of
neural population coding can be found in the literature
[23][24]. We also chose to uniformly use this form of coding
for sensory information and motor control, as well as all
intermediate representations like the working memory and
the peripersonal space. Our code could directly be exploited
in the action selection process. In addition, relying on a DNF
to merge representations of the reachable and comfort areas
allowed us to take advantages from its properties. Indeed,
DNF are good candidates for robotic control because of the
stability given by the fusion and bifurcation properties.

Our model relies on previous work that proposed a
solution to build and update a limited working memory.
In [17], the latter only handled multiple path integration
vectors. The model we present in this paper suggests that
the same mechanism can be used for various sensory input
in addition to displacement vectors. In this work, for the
sake of simplicity, different sensory modalities are integrated
in separate sub-parts of the working memory. However, we
could use the working memory homogeneously and make
the gating mechanisms handle fields recruitment. However,
we have to make sure fields are allocated to each modality.

This work highlights the role of emotions in behavior
control and argue for the design of robotic architecture that
rely on such mechanisms. But emotions do have a commu-
nication role as well. We believe that displaying emotionally
colored behaviors foster robots acceptability. In this paper,
we described how social and emotional caracteristics emerge
from the way two of our robots interact. They can be per-
ceived as being aggressive or fearful and patient depending
on the way they behave in the single-resource task. Adding
learning mechanisms — e.g. reward-based conditionning —
would allow to emphasize these caracteristics in addition to
allowing the system to inhibit irrelevant behaviors. In [7],
an emotional metacontroller modulates strategies weights for
action selection based on novelty detection. Such module
could also trigger or neuromodulate the robot learning.
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