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LEBESGUE DECOMPOSITION IN ACTION VIA SEMIDEFINITE

RELAXATIONS

JEAN B. LASSERRE

Abstract. Given all (finite) moments of two measures µ and λ on R
n, we provide

a numerical scheme to obtain the Lebesgue decomposition µ = ν + ψ with ν ≪ λ

and ψ ⊥ λ. When ν has a density in L∞(λ) then we obtain two sequences of finite
moments vectors of increasing size (the number of moments) which converge
to the moments of ν and ψ respectively, as the number of moments increases.
Importantly, no à priori knowledge on the supports of µ, ν and ψ is required.

1. Introduction

This work is in the line of research concerned with the following issue: which
type and how much of information on the support of a measure can be extracted from its
moments (a research issue outlined in a Problem session at the 2013 Oberwolfach
meeting on Structured Function Systems and Applications [2]).

- For instance, the old and classical L-moment problem asks for moment condi-
tions to ensure that the underlying unknown measure µ is absolutely continuous
with respect to some reference measure ν, and with a density in L∞(ν). See for
instance Diaconis and Freedman [7], Putinar [20, 21], more recently Lasserre [18],
and the many references therein.

- In some other works one is interested in recovering information about the
support of a measure from knowledge of its moments and some à priori infor-
mation on its support. For instance, in Lasserre [13], bounds on the support of
a measure are provided from the knowledge of moments of its marginals. In
Collowald et al. [3] and Gravin et al. [10], the support is assumed to be a con-
vex polytope P ⊂ R

n and the vertices of P can be recovered from finitely many
directional moments of the Lebesgue measure on P. Similarly, in Lasserre [14]
and Lasserre and Putinar [16] one may recover the boundary of a semi-algebraic
set S ⊂ R

n from moments of the Lebesgue measure on S (or of a measure with
polynomial or exponential of a polynomial density w.r.t. the Lebesgue measure).

- In super-resolution one is interested in recovering the discrete support (a
finite set of points) of a signal from finitely many moments of its associated signed
measure; see the ground-breaking work of Candès et Fernández-Granda [1], and
the recent multivariate extension in de Castro et al. [6].

- Recently in Lasserre [17] one is interested in detecting whether a given mea-

sure dµ(x, t) on [0, 1]2 with given marginal dt on [0, 1] is supported on a curve

(t, x(t)) ⊂ [0, 1]2 for some measurable function x : [0, 1] → [0, 1]. Sufficient and
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2 JEAN B. LASSERRE

necessary conditions on the moments of µ are provided in [17].

The present paper is concerned with “computing” the Lebesgue decomposition ν + ψ of a
measure µ with respect to (w.r.t.) another measure λ (i.e., with ν ≪ λ and ψ ⊥ λ), from

the sole knowledge of moments of µ and λ.

Contribution. Given two measures λ, µ on R
n, this paper provides an effective

numerical scheme to obtain the Lebesgue decomposition ν+ψ of µ w.r.t. λ, where
ν ≪ λ and ψ ⊥ λ.

• The only information that we use is the sequence of moments (λα) and
(µα), α ∈ N

n, of λ and µ. In particular, no à priori information on the
respective supports of λ and µ is required.

• The methodology is to treat the problem as an infinite-dimensional con-
vex (and even linear) optimization problem on a appropriate space of
measures, and then approximate its solution via a hierarchy of semidefi-

nite relaxations (Pd), d ∈ N. That is, each Pd is a semidefinite program1

whose size increases with d (as more moments of µ and λ are taken into
account). It also includes a scalar parameter γ > 0, fixed in advance.

• The output is under the form of two finite sequences (yα) and (µα − yα),

α ∈ N
n
d , whose length (n+d

n ) is the number of power moments up to order
d. When ν ≪ λ has a density f ∈ L∞(λ) with ‖ f‖∞ ≤ γ, then the two
sequences converge (as d increases) to the respective moments of ν and
ψ in the Lebesgue decomposition ν + ψ = µ. Otherwise if ‖ f‖∞ > γ or
if f 6∈ L∞(λ), the two sequences converge to the respective moments of
dνγ := (γ ∧ f )dλ and ψγ := µ − νγ.

We do not treat the problem in full generality as one obtains the required in-
formation on the Lebesgue decomposition (ν, ψ) only when the density of ν w.r.t.
λ is in L∞(λ) with norm bounded by γ, fixed à priori. Otherwise one obtains a
partial information only. However, so far and to the best of our knowledge, this
is the first systematic numerical scheme at this level of generality.

As some (simple) examples treated in this paper show, some numerical issues
should be taken into account. For instance, for clarity of exposition and for conve-
nience of algorithm implementation, we have chosen power moments associated
with the basis of monomials (xα), α ∈ N. This is typically a bad choice from
a numerical viewpoint, especially as we use semidefinite solvers for which such
issues can be crucial even for relatively small size matrices. For instance, a better
choice would be a basis of polynomials orthogonal w.r.t. to µ and/or w.r.t. λ (we
explain later how both bases can be used). However such issues are beyond the
scope of the present paper devoted to the basic methodology.

2. Lebesgue decomposition and convex optimization

2.1. Notation and definition. Given a Borel set X ⊂ R
n denote by M(X) the

Banach space of finite signed measures on X, equipped with the total variation
norm, and denote by M(X)∗ its topological dual. The notation M(X)+ (⊂ M(X))
stands for the convex cone of finite positive measures on X. Denote by B(X)

1A semidefinite program is a finite-dimensional convex conic optimization problem which can be

solved efficiently (up to arbitrary precision fixed in advance) in time polynomial in its input size.
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the Banach space of bounded measurable functions on X, equipped with the
sup-norm ‖ f‖∞ = supx∈X | f (x)|, and by B(X)+ the convex cone of nonnegative
elements of B(X).

Let L1(X, λ) denote the Lebesgue space of λ-integrable functions, a Banach
space when equipped with the norm ‖ f‖1 =

∫
| f |dλ. Its topological dual is the

Lebesgue space L∞(X, λ) of functions whose essential supremum ‖ f‖∞ (w.r.t. λ)
is finite. The notation L1(X, λ)+ (resp. L∞(X, λ)+) stands for the convex cone of
the nonnegative elements of L1(X, λ) (resp. of L∞(X, λ)).

Given two Borel measures µ, λ ∈ M(X)+ there is a unique Lebesgue decom-
position µ = ν + ψ with ν, ψ ∈ M(X)+ and ν ≪ λ, ψ ⊥ λ. The notation ν ≪ λ
means that ν is absolutely continuous with respect to (w.r.t.) λ whereas the no-
tation ψ ⊥ λ means that ψ is singular w.r.t. λ. Given λ ∈ M(X)+, the set
Cλ ⊂ M(X)+ defined as:

Cλ := { ν ∈ M(X)+ : ν ≪ λ },

is a convex cone. If one considers the dual pair of vector spaces (M(X), B(X)) with
duality bracket

〈ν, f 〉 =
∫

X
f dν, (ν, f ) ∈ M(X)× B(X),

the dual cone of Cλ denoted C∗
λ ⊂ B(X) is defined by:

C∗
λ := { f ∈ B(X) : 〈ν, f 〉 ≥ 0, ∀ν ∈ Cλ }

= { f ∈ B(X) :
∫

X
f h dλ ≥ 0, ∀h ∈ L1(X, λ)+ } ≃ L∞(X, λ)+.

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn). Denote
by R[x]d ⊂ R[x] the vector space of polynomials of degree at most d, which

forms a vector space of dimension s(d) = (n+d
d ), with e.g., the usual canonical

basis (xα), α ∈ N
n, of monomials. Also, let N

n
d := {α ∈ N

n : ∑i αi ≤ d} and
denote by Σ[x] ⊂ R[x] (resp. Σ[x]d ⊂ R[x]2d) the space of sums of squares (SOS)
polynomials (resp. SOS polynomials of degree at most 2d). If f ∈ R[x]d, write

f (x) = ∑
α∈Nn

d

fα xα



= ∑
α∈Nn

d

fα x
α1
1 · · · xαn

n



 ,

in the canonical basis and denote by f = ( fα) ∈ R
s(d) its vector of coefficients.

Finally, let Sn denote the space of n × n real symmetric matrices, with inner
product 〈A, B〉 = trace AB, and where the notation A � 0 (resp. A ≻ 0) stands
for A is positive semidefinite.

Let (Aj), j = 0, . . . , s, be a set of real symmetric matrices. An inequality of the
form

(A(x) := ) A0 +
s

∑
k=1

Ak xk � 0, x ∈ R
s,

is called a Linear Matrix Inequality (LMI) and a set of the form {x : A(x) � 0} is

the canonical form of the feasible set of semidefinite programs2.

2The canonical form of a semidefinite program is “ inf {cTx : A(x) � 0}” where c ∈ R
s and Ak,

k = 0, . . . , s, are real symmetric matrices.
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Given a real sequence z = (zα), α ∈ N
n, define the Riesz linear functional

Lz : R[x] → R by:

f (= ∑
α

fαxα) 7→ Lz( f ) = ∑
α

fα zα, f ∈ R[x].

A sequence z = (zα), α ∈ N
n, has a representing measure µ if

zα =
∫

Rn
xα dµ, ∀ α ∈ N

n.

Moment matrix. The moment matrix associated with a sequence z = (zα), α ∈
N

n, is the real symmetric matrix Md(z) with rows and columns indexed by N
n
d ,

and whose entry (α, β) is just zα+β, for every α, β ∈ N
n
d . Alternatively, let vd(x) ∈

R
s(d) be the vector (xα), α ∈ N

n
d , and define the matrices (Bα) ⊂ S s(d) by

(2.1) vd(x) vd(x)
T = ∑

α∈Nn
2d

Bα xα, ∀x ∈ R
n.

Then Md(z) = ∑α∈Nn
2d

zα Bα. If z has a representing measure µ then Md(z) � 0

because

〈 f , Md(z) f 〉 =
∫

f 2 dµ ≥ 0, ∀ f ∈ R
s(d).

In this case

(2.2) Lz( f ) =
∫

f dµ, ∀ f ∈ R[x].

A measure whose all moments are finite is said to be moment determinate if there
is no other measure with the same moments. The support of a Borel measure µ
on R

n (denoted supp µ) is the smallest closed set K such that µ(Rn \ K) = 0.
A sequence z = (zα), α ∈ N

n, satisfies Carleman’s condition if

(2.3)
∞

∑
k=1

Lz(x2k
i )−1/2k = +∞, ∀i = 1, . . . , n.

If a sequence z = (zα), α ∈ N
n, satisfies Carleman’s condition (2.3) and Md(z) �

0 for all d = 0, 1, . . ., then z has a representing measure on R
n which is moment

determinate; see e.g. [19, Proposition 3.5]. In particular a sufficient condition for
a measure µ to satisfy Carleman’s condition is that

∫
exp(c ∑i |xi|)dµ < ∞ for

some c > 0.
For more details on the above notions as well as their use in potential applica-

tions, the interested reader is referred to Lasserre [19].

2.2. Lebesgue decomposition as a convex optimization problem. Given two fi-
nite Borel measures µ, λ ∈ M(X)+, consider the infinite-dimensional optimization
problem:

P : ρ = sup
ν

{ν(X) : ν ≤ µ; ν ≪ λ; ν ∈ M(X)+ }

= sup
ν,ψ

{ν(X) : ν + ψ = µ; ν ∈ Cλ, ψ ∈ M(X)+ },(2.4)

where the notation ν ≤ µ is understood setwise, i.e., ν(B) ≤ µ(B) for all Borel sets
B ⊂ R

n.

Theorem 2.1. The optimization problem (2.4) has a unique optimal solution ν∗ ∈
M(X)+ and (ν∗, µ − ν∗) provides the Lebesgue decomposition of µ w.r.t. λ.



LEBESGUE DECOMPOSITION IN ACTION VIA SEMIDEFINITE RELAXATIONS 5

Proof. The set ∆ := {ν ∈ M(X)+ : ν ≤ µ } ⊂ M(X)+ is not empty. Moreover it
is bounded since ν(X) ≤ µ(X) for all ν ∈ ∆. Therefore the countable additivity
of ν on X is uniform with respect to ν ∈ ∆. Hence by Dunford & Schwartz
[8, Theorem 1, p. 305], the set ∆ is weakly sequentially compact. Therefore
let (νn) ⊂ ∆, n ∈ N, be a maximizing sequence of (2.4). By weak sequential
compactness of ∆, there exists ν∗ ∈ ∆ and a subsequence (nk), k ∈ N, such that

lim
k→∞

∫

f dνnk
=

∫

f dν∗, ∀ f ∈ M(X)∗,

and in particular, setwise convergence takes place, i.e.,

lim
k→∞

νnk
(B) = ν∗(B), ∀B ∈ B(X).

This also implies ρ = limk→∞ νnk
(X) = ν∗(X). Next, as νnk

≪ λ for all k, a
consequence of the above setwise convergence is that ν∗ ≪ λ. It remains to prove
that ψ∗ := (µ − ν∗) ⊥ λ. Assume that this is not the case. Then the Lebesgue
decomposition of ψ∗ w.r.t. λ yields that ψ∗ = ϕ + χ with 0 6= ϕ ≪ λ and χ ⊥ λ.
In addition, as ν∗ + ψ∗ = µ we also have ν∗ + ϕ ≤ µ. But then ν̃ := (ν∗ + ϕ) ∈ ∆

and ν̃(X) = ρ + ϕ(X) > ρ, a contradiction. Therefore ν∗ ≪ λ and ψ∗ ⊥ λ which
proves that (ν∗, ψ∗) is the Lebesgue decomposition of µ w.r.t. λ. Uniqueness of
the latter implies that ν∗ is the unique optimal solution of P. �

Observe that P is a convex (but infinite dimensional) conic optimization prob-
lem, and in fact even an infinite dimensional linear programming problem (or
linear program (LP)). Its dual P∗ is the linear program

P∗ : ρ∗ = inf
f
{
∫

X
f dµ : f − 1 ∈ C∗

λ; f ∈ B(X)+ }

= inf
f
{
∫

X
f dµ : f − 1 ≥ 0 λ-a.e.; f ∈ B(X)+ },(2.5)

and by standard weak duality ρ∗ ≥ ρ. In fact:

Lemma 2.2. Let (ν∗, ψ∗) be the unique optimal solution of P, and let B∗ ∈ B(X) be a
Borel set such that λ(B∗) = λ(X) and ψ∗(X \ B∗) = ψ∗(X). Then an optimal solution
of P∗ is the function f ∗ ∈ B(X)+ such that f ∗(x) = 0 on X \ B∗ and f ∗(x) = 1 on B∗.

Proof. The function f ∗ in Lemma 2.2 is feasible for P∗ with associated value

ρ∗ ≤
∫

X
f ∗ dµ =

∫

B∗
f dµ = µ(B∗) = ψ∗(B∗) + ν∗(B∗) = ν∗(X) = ρ,

and the result follows since ρ∗ ≥ ρ. �

So the two LP (2.4) and (2.5) provides us with two dual characterizations of
the problem. Namely:

• An optimal solution (ν∗, ψ∗) ∈ M(X)2
+ of (2.4) identifies the Lebesgue

decomposition of µ w.r.t. λ.
• An optimal solution f ∗ ∈ B(X) of (2.5) is the indicator function 1B∗ of the

Borel set B∗ on which the restriction of µ (i.e. ν∗) is absolutely continuous
w.r.t. λ.
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2.3. A Lebesgue space version. In the Lebesgue decomposition (ν, ψ) (with ψ :=
µ − ν) of µ w.r.t. λ as in Theorem 2.1, the measure ν has a Radon-Nikodym
derivative f ∈ L1(X, λ)+.

Next, consider the two dual pairs of vector spaces (L1(X, λ), L∞(X, λ)) and
(M(X), B(X)). Introduce the linear mapping

T : L1(X, λ) → M(X); h 7→ Th(B) :=
∫

B
h dλ, ∀B ∈ B(X),

which is the canonical embedding of L1(X, λ) into M(X). The adjoint T∗ : B(X) →
L∞(X, λ) is such that 〈T f , h〉 = 〈 f , T∗h〉 for all ( f , h) ∈ L1(X, λ)× B(X). That is,

T∗ : B(X) → L∞(X, λ); h 7→ T∗h := h, ∀h ∈ B(X),

is the natural embedding of B(X) in L∞(X, λ).

Now introduce the infinite dimensional linear program (LP):

P̂ : θ = sup
f

{
∫

X
f dλ : T f ≤ µ; f ∈ L1(X, λ)+ }

= sup
f ,ψ

{
∫

X
f dλ : T f + ψ = µ; f ∈ L1(X, λ)+; ψ ∈ M(X)+ }.(2.6)

Indeed (2.6) is a conic linear program as L1(X, λ)+ ⊂ L1(X, λ) and M(X)+ ⊂
M(X) are two convex cones. The dual of (2.6) is the linear program:

(2.7) P̂∗ : θ∗ = inf
h
{
∫

X
h dµ : T∗h − 1 ≥ 0; h ∈ B(X)+ }.

Of course by weak duality one has θ ≤ θ∗ but we also have:

Corollary 2.3. An optimal solution of the linear program P̂ in (2.6) is the Radon-
Nikodym derivative f ∗ ∈ L1(X, λ)+ of ν∗ w.r.t. λ and the optimal solution h∗ ∈ B(X)+
of P∗ is also an optimal solution of P̂∗, so that θ = θ∗ = ρ.

Proof. One recognizes that P̂∗ is another phrasing of P∗ so that θ∗ = ρ∗ = ρ.
Concerning (2.6) we also have θ ≥ ρ because the Radon Nikodym derivative f ∗

of ν∗ w.r.t. λ in Theorem 2.1 is feasible for P̂, with associated value
∫

X f ∗dλ =
ν∗(X) = ρ. And so from θ ≤ θ∗ = ρ we deduce that f ∗ is an optimal solution of

P̂. �

One may also observe that the feasible set

∆′ := { f ∈ L1(X, λ) : T f ≤ µ; f ≥ 0 }

of (2.6) is a convex subset of L1(X, λ) which by Dunford & Schwartz , [8, Theorem
9, p. 292] is weakly sequentially compact. Therefore as in (2.6) one minimizes a
weakly continuous linear functional, there is an optimal solution f ∗ ∈ L1(X, λ)+.

So again the two LP (2.6) and (2.7) provides us with two dual characterizations
of the problem. Namely:

• An optimal solution f ∗ ∈ L1(X, λ)+ of (2.6) identifies the Radon-Nikodym
derivative of ν∗ w.r.t. λ.

• An optimal solution h∗ ∈ B(X) of (2.7) is the indicator function 1B∗ of the
Borel set B∗ on which the restriction of µ (i.e. ν∗) is absolutely continuous
w.r.t. λ.
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2.4. Some considerations about possible computation. Recall that all we know
about the problem data is the respective moment sequences of µ and λ. In this
context we argue that trying to solve the LP (2.6) may not be a good strategy.
Indeed by using that polynomials are dense in L1(X, λ) when all moments of λ
exist, one is tempted to replace (2.6) with

(2.8) P̃ : ρ′ = sup
p∈R[x]

{
∫

X
p dλ : Tp ≤ µ; p ∈ P(X) }

where P(X) the convex cone of polynomials that are nonnegative on X. Let

f ∗ ∈ L1(X, λ) be an optimal solution of P̂ as in Corollary 2.3. If there is a sequence
(pk), k ∈ N, of polynomials such that pk ≤ f ∗ for all k and

∫

X( f ∗ − pk)dλ → 0

as k → ∞, then both problems P̃ and P̂ have same optimal value (but in general
P̃ does not have an optimal solution, except of course if ν has a polynomial
density). However, even in this case the difficulty is how to handle the constraint
Tpk ≤ µ (for all k) only from the knowledge of the moments of µ. Therefore in
a (hypothetic) maximizing sequence (pk) ⊂ L1(X, λ)+, of (2.8) (where Tpk 6≤ µ)
difficulties arise for the limit as k → ∞ because if we do no have Tpk ≤ µ for all k
then we cannot invoke a setwise convergence argument to show that Tpk → ν∗.

An alternative is to work in M(X) rather than in L1(X, λ), i.e., to try to solve
the LP (2.4). The difficulty is now how to handle the constraint ν ≪ λ only from
knowledge of moments of λ. Fortunately, we know how to do that if the density
f ∗ of ν∗ ≪ λ is assumed to be in L∞(X, λ)+. Indeed in this case we may invoke
the following result:

Theorem 2.4. Let X ⊂ R
n and let (να) and (λα), α ∈ N

n, be the respective moment
sequences of a finite Borel measure ν and λ on X. Let Md(ν) and Md(λ), be their
respective moment matrices, d = 0, 1, . . .. Assume that (λα)α∈Nn satisfies Carleman’s
condition (2.3). Then the following two statements are equivalent:

(a) ν ≪ λ with density f ∈ L∞(X, λ)+ and ‖ f‖∞ ≤ γ.
(a) Md(ν) � γ Md(λ) for every integer d and for some γ > 0.

Proof. The implication (a) ⇒ (b) is straighforward. Indeed, let γ be as in (a).
Then:

∫

X
g2 dν =

∫

X
g2 f dλ ≤ ‖ f‖∞

∫

X
g2dλ ≤ γ

∫

X
g2dλ, ∀ g ∈ R[x]d,

which shows that Md(ν) � γ Md(λ). The reverse implication follows from [19,
Theorem 3.13]. �

In the next section we will see that the constraint Md(ν) � γ Md(λ) is easy to
implement as it is a linear matrix inequality on the unknown moments of ν.

3. A numerical approximation scheme

In this section we will show how to obtain the Lebesgue decomposition µ =
ν + ψ of µ w.r.t. λ, when the absolutely continuous part ν ≪ λ has a density
f ∈ L∞(X, λ)+ (instead of f ∈ L1(X, λ)+) with ‖ f‖∞ ≤ γ. We also assume that
both λ and µ satisfy Carleman’s condition (2.3) (automatically satisfied when X
is compact).

With this additional restriction we next see that one may indeed provide a
numerical scheme to approximate the mass of ν, and in fact, any fixed (arbitrary)
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number of moments of ν and ψ. In addition, when ψ is supported on finitely
many atoms, one can sometimes extract the support of ψ.

In fact, when ν ≪ λ with a density f 6∈ L∞(X, λ)+ or with a density f ∈
L∞(X, λ)+ such that ‖ f‖∞ > γ, the procedure that we describe below will pro-
vide in the limit, the moment sequence of the measure νγ ≪ λ with density
fγ = γ ∧ f , so that fγ ∈ L∞(X, λ)+ (but then of course ψ = µ − νγ is not singular
w.r.t. λ).

So, with γ > 0 fixed, introduce the following infinite-dimensional optimization
problem:

(3.1) ργ = sup
ν

{ν(X) : ν ≤ µ; ν ≤ γ λ; ν ∈ M(X)+ }.

Theorem 3.1. Let (ν∗, µ− ν∗) be the Lebesgue decomposition of µ w.r.t. λ, and let f ∗ ∈
L1(X, λ)+ be the density of ν∗. The Borel measure ν∗γ ≪ λ with density f ∗γ := γ ∧ f ∗

in L∞(X, λ)+ is the unique optimal solution of (3.1).

Proof. Let ν ∈ M(X)+ be any feasible solution of (3.1). Let B∗ be a Borel set
such that λ(B∗) = λ(X) and ψ∗(B∗) = 0. From ν ≤ γλ we also have ν ≪ λ
and the density fγ of ν is such that 0 ≤ fγ ≤ γ on B∗. From ν ≤ µ we also
deduce that ν ≤ ν∗ on B∗, that is (as both ν ≪ λ and ν∗ ≪ λ), fγ ≤ f ∗ a.e.
on X, and so fγ ≤ γ ∧ f ∗ a.e. on X. But then ν(X) ≤

∫

X(γ ∧ f ∗)dλ = ν∗γ(X).

Finally, assume that there exists another optimal solution ν′ ≪ λ, hence with
some density f ′γ ∈ L∞(X, λ)+ such that ‖ f ′γ‖∞ ≤ γ. From the above argument,

f ′γ ≤ γ ∧ f ∗ a.e. on X so that

0 = ν′(X)− ν∗γ(X) =
∫

X
( f ′γ − (γ ∧ f ∗))
︸ ︷︷ ︸

≤0

dλ,

which implies that f ′γ = (γ ∧ f ∗), a.e. on X. This in turn implies ν′ = ν∗γ, the
desired result. �

3.1. A hierarchy of semidefinite programs. With X ⊂ R
n, let µ, λ be two Borel

measures on X of which we know all moments

µα =
∫

xα dµ; λα =
∫

xα dλ, α ∈ N
n.

Assumption 3.2. Both moment sequences (µα) and (λα), α ∈ N, satisfy Carleman’s
condition (2.3).

Let γ > 0 be fixed and for every d ≥ 1, consider the following optimization
problem:

(3.2)

ρd = sup
y,u,v

Ly(1)

s.t. yα + vα = µα, α ∈ N
n
2d

yα + uα = γ λα, α ∈ N
n
2d

Md(y), Md(u), Md(v) � 0.
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Equivalently, in matrix form:

(3.3)

ρd = sup
y,u,v

Ly(1)

s.t. Md(y) + Md(v) = Md(µ)
Md(y) + Md(u) = γ Md(λ)
Md(y), Md(u), Md(v) � 0.

Problem (3.2) is a semidefinite program. It is straightforward to check that (3.2) is
a relaxation of (3.1) and so ρd ≥ ργ for every d ∈ N. Its dual is also a semidefinite
program which reads:

(3.4)
ρ∗d = inf

p,q,σ

∫

p dµ + γ

∫

q dλ

s.t. p + q − 1 = σ; p, q, σ ∈ Σ[x]d.

Theorem 3.3. The semidefinite program (3.2) has an optimal solution (y∗, u∗, v∗) and
there is no duality gap between (3.2) and its dual (3.4), i.e., ρd = ρ∗d .

Proof. First observe that (3.2) has the trivial solution y = 0 and (vα) = (µα),
(uα) = γ (λα). From the moment constraints we immediately have:

Ly(x2d
i ) ≤

∫

x2d
i dλ; Lv(x2d

i ) ≤
∫

x2d
i dµ; Lu(x2d

i ) ≤ γ

∫

x2d
i dλ,

for all i = 1, . . . , n. In addition Ly(1) ≤ µ0, Lv(1) ≤ µ0 and Lu(1) ≤ γλ0. Let

(3.5) τ1 := max[µ0, max
i

[
∫

x2d
i dµ]]; τ2 := γ max[λ0, max

i
[
∫

x2d
i dλ]].

By Lasserre and Netzer [15] it follows that

(3.6) sup
α∈Nn

2d

|yα| ≤ τ1; sup
α∈Nn

2d

|vα| ≤ τ1; sup
α∈Nn

2d

|uα| ≤ τ2.

Therefore the feasible set of (3.2) is compact and so there exists an optimal solu-
tion (y∗, u∗, v∗). In addition, it also follows that the set of optimal solutions of
(3.2) is also compact. Therefore there is no duality gap between (3.2) and its dual
(3.4), that is, ρd = ρ∗d; see for instance Trnovská [22]. �

Theorem 3.4. Let Assumption 3.2 hold. For every d ≥ 1, let (yd, vd, ud) be an arbitrary

optimal solution of (3.2) and by completing with zeros, consider yd, ud and vd as elements
of R[x]∗.

Then the sequence of triplets (yd, vd, ud)d∈N ⊂ (R[x]∗)3 converges to (y∗, v∗, u∗) ∈
(R[x]∗)3 as d → ∞, that is, for every fixed α ∈ N

n:

(3.7) lim
d→∞

yd
α = y∗α; lim

d→∞
vd

α = µα − y∗α; lim
d→∞

ud
α = γ λα − y∗α.

Moreover, y∗ is the vector of moments of the measure ν∗γ ≤ µ, unique optimal solution

of (3.1), with density f ∗γ = (γ ∧ f ∗) ∈ L∞(X, λ) and ‖ f ∗γ‖∞ ≤ γ. Similarly v∗ is the
vector of moments of the measure ψ∗ := µ − ν∗γ.

Proof. Let (yd, vd, ud) ∈ (R[x]∗)3, d ∈ N, be as in Theorem 3.4 and define the

triplet (ŷd, v̂d, ûd) ∈ (R[x]∗)3, d ∈ N, by:

ŷd
α = yd

α/τ1d, ∀ α : 2d − 1 ≤ |α| ≤ 2d

v̂d
α = vd

α/τ1d, ∀ α : 2d − 1 ≤ |α| ≤ 2d

ûd
α = ud

α/τ2d, ∀ α : 2d − 1 ≤ |α| ≤ 2d,
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for all d = 1, 2, . . ., where τ1d, τ2d are defined in (3.6) in the proof of Theorem 3.3.
Therefore

sup
α∈Nn

|ŷd
α| ≤ 1; sup

α∈Nn

|v̂d
α| ≤ 1; sup

α∈Nn

|ûd
α| ≤ 1,

and the sequence ŷd, d ∈ N, (as well as sequences v̂d and ûd, d ∈ N) is contained
in the unit ball of ℓ∞ (compact and sequentially compact for the weak-∗ topol-
ogy σ(ℓ∞, ℓ1)). By Banach-Alaoglu Theorem there exist a subsequence (dk) and
sequences ŷ∗, v̂∗ and û∗ (each in the unit ball of ℓ∞) such that for each α ∈ N

n:

lim
k→∞

ŷ
dk
α = ŷ∗α; lim

k→∞
v̂

dk
α = v̂∗α; lim

k→∞
û

dk
α = û∗

α.

Therefore,

(3.8) lim
k→∞

y
dk
α = y∗α; lim

k→∞
v

dk
α = v∗α; lim

k→∞
u

dk
α = u∗

α,

with:

y∗α = ŷ∗α · τ1d, ∀ α : 2d − 1 ≤ |α| ≤ 2d

v∗α = v̂∗α · τ1d, ∀ α : 2d − 1 ≤ |α| ≤ 2d

u∗
α = û∗

α · τ2d, ∀ α : 2d − 1 ≤ |α| ≤ 2d,

for all d = 1, 2, . . .. Next, fix d ∈ N, arbitrary. From (3.8)

0 � Md(y
∗) � Md(µ); 0 � Md(v

∗) � Md(µ); 0 � Md(u
∗) � γMd(λ).

In particular:

(3.9) Ly∗(x2k
i ) ≤

∫

X
x2k

i dµ; Lv∗(x2k
i ) ≤

∫

X
x2k

i dµ; Lu∗(x2k
i ) ≤ γ

∫

X
x2k

i dλ.

Recall that by Assumption 3.2 Carleman’s condition (2.3) holds for µ and λ.
Therefore (3.9) implies that Carleman’s condition also holds for y∗, v∗, and u∗.
Next, as Md(y

∗) � 0, Md(v
∗) � 0 and Md(u

∗) � 0, then by [19, Proposition 3.5],
y∗, v∗, and u∗ are the respective moment sequences of finite Borel measures ν,
ψ, and φ on X. In addition, ν, ψ, and φ are moment determinate and since (3.7)
holds it follows that

ν + ψ = µ; ν + φ = γ λ,

which shows that ν is a feasible solution of (3.1). We also have

ργ ≤ lim
k→∞

ρdk
= lim

k→∞
L

ydk
(1) = Ly∗(1) = ν(X),

which proves that ν is an optimal solution of (3.1). But by Theorem 3.1, the opti-

mal solution of (3.1) is unique. Therefore all accumulation points of (yd, vd, ud),
d ∈ N, are identical since they are the moment sequences of ν∗γ, µ − ν∗γ and
γλ − ν∗γ, respectively, that is, (3.7) holds. �

The meaning of Theorem 3.4 is as follows: Recall that ν∗ + ψ∗ (with ν∗ ≪ λ
and ψ∗ ⊥ λ) is the (unique) Lebesgue decomposition of µ. Then:

- Either ν∗ has a density f ∈ L∞(X, λ)+ with ‖ f‖∞ ≤ γ in which case in the
limit one obtains all moments of ν∗ and ψ∗, or

- ν∗ does not have a density f ∗ ∈ L∞(X, λ)+ with ‖ f ∗‖∞ ≤ γ. In this case, µ
can be decomposed into a sum ν1 + ν2 where ν1 has a density γ ∧ f ∗ ∈ L∞(X, λ)+
and ν2 = µ − ν1 ∈ M(X)+. In the limit one obtains all moments of ν1 and ν2 (but
ν2 6⊥ λ, i.e. ν2 is not singular w.r.t. λ).
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3.2. Recovering the singular part. A case of particular interest is when the sin-
gular part ψ∗ (⊥ λ) of the Lebesgue decomposition ν∗ + ψ∗ of µ w.r.t. λ, is
supported on finitely many points. Assume that ν∗ has a density in L∞(X, λ)+
with ‖ f ∗‖∞ ≤ γ. Then by Theorem 3.4,

(3.10) lim
d→∞

vd
α = µα − y∗α =

∫

X
xα dψ∗, ∀ α ∈ N

n,

where (yd, vd, ud) is an optimal solution of the semidefinite program (3.2).
Next, if ψ∗ has a finite support, say m points x1, . . . , xm ∈ X, its moment

matrix Md(v
∗) has (finite) rank m for all d ≥ d0, for some d0. In particular,

rank Md0+1(v
∗) = rank Md0

(v∗) = m. By Curto & Fialkow [4, 5] this property
is indeed a certificate that (v∗α), α ∈ N

n
d0+1 is the truncated moment sequence of

a measure supported on m = rank Md0
(v∗) points of R

n. There is even a linear
algebra procedure to extract the m points x1, . . . , xm from the sole knowledge of
the finitely many moments (v∗α), |α| ≤ d0 + 1; see e.g. Henrion and Lasserre [12].

Proposition 3.5. Let {x1, . . . , xm} ⊂ X be the support of the singular part ψ∗ in the
Lebesgue decomposition ν∗ + ψ∗ of µ w.r.t. λ. Let d0 be such that rank Md(v

∗) = m for

all d ≥ d0, and let η > 0 be the smallest strictly positive eigenvalue of Md0
(v∗). Let vd

be part of an optimal solution of (3.2).
Then for every fixed ǫ > 0, there exists dǫ > d0 such that the first respective

s(d0) − m and s(d0 + 1) − m eigenvalues (arranged in increasing order) of Md0
(vd)

and Md0+1(v
d) are less than ǫ and their last respective m eigenvalues are larger than

η/2.

Proof. Recall that sd = (n+d
n ) is the size of the moment matrix Md(v

∗). Let η be the
smallest strictly positive eigenvalue of Md0

(v∗). The eigenvalues of Md0
(·) and

Md0+1(·) (arranged in increasing order) are continuous functions of the entries
and (3.10) holds. So by (3.10), given ǫ > 0 there exists dǫ > 0 such that for every

d ≥ dǫ, the moment matrices Md0
(yd) and Md0+1(y

d) have m strictly positive
eigenvalues with value larger than η/2 while their other respective sd0

− m and
sd0+1 − m eigenvalues have value smaller than ǫ. �

A practical procedure. So one may propose the following numerical procedure
with an à priori fixed integer p > 0.

• A threshold 10−p is proposed to “declare” zero an eigenvalue of Md(v
d)

as follows. Compute the eigenvalues of Md(v
d) and check whether they

can be grouped into two disjoint sets A and B such that

σ ∈ B ⇒
σ

θA
< 10−p, with θA = arg min{σ : σ ∈ A}.

In view of (3.10) this eventually happens when d is sufficiently large and
with #A = m. (However it may happen earlier and with #A 6= m.) So
once one has found such sets A and B then one considers that the rank of
Md(y

d) is #A.

• Once an optimal solution (yd, vd, ud) has been computed, check whether

there is some k ≤ d − 1 such that rank Mk(v
d) = rank Mk+1(v

d) where
“rank” has the above numerical meaning.
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• If the above rank-condition holds one considers that Mk(v
d) is the trun-

cated moment sequence of a measure supported on t := rank Mk(v
d)

points of R
n. The extraction procedure in Henrion and Lasserre [12] can

be applied and yields t points x1, . . . , xt.

Of course the rank condition rank Mk(v
d) = rank Mk+1(v

d) (with k ≤ d − 1) can
happen earlier than when d ≥ d0 (recall that d0 is not known in advance). In this
case there is no guarantee that the extracted points are indeed the support of ψ∗.

3.3. Examples. Given two measures µ, λ on X ⊂ R
n and their respective moment

sequences (µα) and (λα), α ∈ N
n, with no loss of generality we may and will

assume that µ is a probability measure (otherwise replace µα with µα/µ0 for all
α ∈ N

n).

Example 1. The first example is one-dimensional with one atom for the singular
part. Let X = [0, 1], a, b, c ∈ X, a < b, and let λ be the Lebesgue measure on X.
Let νab be the probability measure distributed uniformly on [a, b] ⊂ X and

µ = p νab
︸︷︷︸

ν∗

+ (1 − p) δc
︸ ︷︷ ︸

ψ∗

,

where δc is the Dirac measure at the point c and p ∈ (0, 1) is some fixed scalar.
With a = 0.1, b = 0.7, c = 0.4, and γ = 2p, one solves (3.2) with d = 9 (hence over-

all we look at moments up to order 18), to obtain an optimal solution (yd, vd, ud).
The first 5 (normalized) moments of ψ∗ read

[
1.00000 0.40000 0.16000 0.06400 0.02560

]
.

while the first 5 (normalized) moments of ν∗ read
[

1.00000 0.40000 0.19000 0.10000 0.05602
]

.

In Table 1 are displayed the first 5 “moments” vd
k/vd

0, k = 0, . . . 4, computed
in (3.2) and the resulting relative errors with those of ψ∗, for different values

of p ∈ (0, 1). Similarly in Table 2 are displayed the first 5 “moments” yd
k/yd

0 ,
k = 0, . . . 4, computed in (3.2) and the resulting relative errors with those of ν∗

(normalized). As one may expect, the quality of the approximation is very good
for small p and the slightly deteriorates when p increases.

Recall that by Theorem 3.3 the optimal value ρd of (3.2) is such that ρd → ργ

as d → ∞. However, it is worth noting that ρd is not very close to ργ = p when
d ≤ 10. So it seems that the semidefinite hierarchy (3.2), d ∈ N, succeeds well in
identifying relatively fast the support of ψ∗ and ν∗, but not so well to obtain their
respective masses p and 1 − p.

Example 2. The second example is also one-dimensional but with two atoms for
the singular part. Let 0 < p < 1, X = [0, 1], a, b, c1, c2 ∈ X, a < b, and let λ be the
Lebesgue measure on X. Let νab be the probability measure distributed uniformly
on [a, b] ⊂ X and

µ = p νab
︸︷︷︸

ν∗

+
(1 − p)

2
(δc1 + δc2)

︸ ︷︷ ︸

ψ∗

.

With a = 0.1, b = 0.7, c1 = 0.4, c2 = 0.5, and γ = 2p, one solves (3.2) with d = 9
(hence overall we look at moments up to order 18). The first 5 moments of the
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p=0.1
1.00000 0.3998 0.1601 0.0642 0.0258

0% 0.05% 0.06% 0.31% 0.76%
p=0.2

1.00000 0.39936 0.16009 0.06435 0.02597
0% 0.15% 0.05% 0.55% 1.45%

p=0.3
1.00000 0.39861 0.15982 0.06434 0.02606

0% 0.34% 0.11% 0.54% 1.79%
p=0.4

1.00000 0.39785 0.15979 0.06462 0.02639
0% 0.53% 0.12% 0.96% 2.9%

p=0.5
1.00000 0.39662 0.15956 0.06484 0.02672

0% 0.85% 0.27% 1.29% 4.2%
p=0.6

1.00000 0.39481 0.15937 0.06534 0.02736
0% 1.31% 0.39% 2.05% 6.4%

Table 1. Example 1: First 5 approximate moments of ψ∗ (nor-
malized)

p=0.1
1.00000 0.4018 0.1872 0.0959 0.05241

0% 0.45% 1.5% 4.2% 6.8%
p=0.2

1.00000 0.40232 0.18775 0.09640 0.05269
0% 0.58% 1.2% 3.7% 6.3%

p=0.3
1.00000 0.40294 0.18849 0.09699 0.05311

0% 0.73% 0.79% 3.09% 5.46%
p=0.4

1.00000 0.40288 0.18837 0.09688 0.05303
0% 0.71% 0.86% 3.21% 5.62%

p=0.5
1.00000 0.40294 0.18848 0.09698 0.05311

0% 0.73% 0.8% 3.10% 5.47%
p=0.6

1.00000 0.40291 0.18846 0.09698 0.05311
0% 0.72% 0.81% 3.11% 5.46%

Table 2. Example 1: First 5 approximate moments of ν∗ (normal-
ized)

measure (δc1 + δc2)/2 read
[

1.00000 0.45000 0.20500 0.09450 0.04405
]

.
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In Table 3 one displays the first 5 approximate “moments” (vd
k/vd

0), k = 0, . . . , 4,
and the resulting relative errors with those of ψ∗, for various values of p ∈ (0, 1).
Similarly, in Table 4 one displays the first 5 approximate “moments” (yd

k/yd
0),

k = 0, . . . , 4, and the resulting relative errors with those of ν∗. Again one observes
that the support of ψ∗ is relatively well recovered with few moments (d ≤ 10).
However, and as in Example 1, the optimal value ρd is not very close to ργ when
d ≤ 10.

p=0.1
1.00000 0.44952 0.20435 0.09390 0.04359

0% 0.11% 0.31% 0.62% 1.04%
p=0.2

1.00000 0.44934 0.20404 0.09358 0.04332
0% 0.14% 0.46% 0.96% 1.63%

p=0.3
1.00000 0.44910 0.20354 0.09305 0.04288

0% 0.19% 0.71% 1.53% 2.64%
p=0.4

1.00000 0.44896 0.20305 0.09247 0.04239
0% 0.23% 0.94% 2.14% 3.76%

p=0.5
1.00000 0.44894 0.20250 0.091741 0.04173

0% 0.23% 1.2% 2.91% 5.24%
p=0.6

1.00000 0.44916 0.20175 0.09063 0.04071
0% 0.18% 1.58% 4.09% 7.5%

Table 3. Example 2: First 5 approximate “moments” of ψ∗ (nor-
malized)

Example 3. The third example is two-dimensional with the singular part ψ∗ being
uniformly supported on the point x = (1, 2). Then with p ∈ (0, 1),

µ = p ν∗ + (1 − p) δ(1,2)
︸ ︷︷ ︸

ψ∗

; ν∗ ≪ λ,

where ν∗ is the the (normalized) Gaussian measure with density exp(−x2
1 − x2

2),
λ = 2ν∗ and γ = 2p. With d = 9, results are displayed in Table 5 for different
values of the weight p ∈ (0, 1). The first line displays the maximum relative error

between the computed moment vector vd/vd
0 and the moments of ψ∗ = δ(1,2) up

to order 4. The second line displays the maximum relative error between the (nor-

malized) second order moments
∫

x2
1dν∗ and

∫
x2

2dν∗ and their approximation in

the vector yd/yd
0 (the first order moments and

∫
x1x2dν∗ vanish while their ap-

proximation in yd/yd
0 are less than 0.008). The third line displays ρd that ideally

should be close to p.

Example 4. The fourth example is two-dimensional with the singular part ψ∗

being uniformly supported on the two points (1, 2) and (−2, 1). Then with p ∈
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p=0.1
1.00000 0.41114 0.19720 0.10378 0.05781

0% 2.78% 3.79% 3.78% 3.20%
p=0.2

1.00000 0.40892 0.19520 0.10230 0.05680
0% 2.23% 2.74% 2.30% 1.39%

p=0.3
1.00000 0.40844 0.19477 0.10198 0.05659

0% 2.11% 2.51% 1.98% 1.02%
p=0.4

1.00000 0.40789 0.19427 0.10162 0.05635
0% 1.97% 2.24% 1.62% 0.59%

p=0.5
1.00000 0.40742 0.19384 0.10131 0.05614

0% 1.85% 2.02% 1.31% 0.2%
p=0.6

1.00000 0.40693 0.19342 0.10101 0.05594
0% 1.73% 1.8% 1.01% 0.13%

Table 4. Example 2: First 5 approximate “moments” of ν∗ (nor-
malized)

p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8

ψ∗ 0.02% 0.05% 0.08% 0.11% 0.22% 0.30% 0.41% 0.63%
ν∗ 0.02% 0.05% 0.03% 0.04% 0.09% 0.04% 0.01% 0.06%
ρ9 0.1005 0.2010 0.3014 0.4019 0.5026 0.6028 0.7033 0.8035

Table 5. Example 3: Relative error on the “moments” up to order
4 of ψ∗ and ν∗ (normalized)

(0, 1),

µ = p ν∗ + (1 − p) (δ(1,2)+ δ(−2,1))/2
︸ ︷︷ ︸

ψ∗

; ν∗ ≪ λ,

where ν∗ is the the (normalized) Gaussian measure with density exp(−x2
1 − x2

2),
λ = ν∗ and γ = 2p. With d = 9, results are displayed in Table 6 for different
values of the weight p ∈ (0, 1). The first line displays the maximum relative er-

ror between the computed moment vector vd/vd
0 and the moments of ψ∗ = δ(1,2)

up to order 4. The second line displays the maximum relative error between the

(normalized) second order moments
∫

x2
1dν∗ and

∫
x2

2dν∗ and their approxima-

tion in the vector yd/yd
0 (the first order moments and

∫
x1x2dν∗ vanish while their

approximation in yd/yd
0 are less than 0.011). Again the third line displays ρd that

ideally should be close to p.

Example 5. The fifth example is two-dimensional with the singular part ψ∗ being

uniformly supported on the unit circle {x ∈ R
2 : x2

1 + x2
2 = 1}. Then with
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p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8

ψ∗ 0.03% 0.06% 0.08% 0.14% 0.20% 0.26% 0.44% 0.71%
ν∗ 1.45% 1.92% 2.15% 2.11% 2.14% 2.24% 2.21% 2.23%
ρ9 0.1012 0.2019 0.3028 0.4035 0.5040 0.6047 0.7056 0.8062

Table 6. Example 4: maximum relative error on the “moments”
up to order 4 of ψ∗ and ν∗ (normalized)

p ∈ (0, 1),

µ = p ν∗ + (1 − p) ψ∗; ν∗ ≪ λ,

where ν∗ is the normalized Gaussian measure with density exp(−x2
1 − x2

2), λ = ν∗

and γ = 2p. With d = 7 Table 7 displays the relative error between the mo-

ments
∫

x2
1dψ∗,

∫
x4

1dψ∗ and
∫

x2
1x2

2dψ∗ (the odd moments being zero) and their

respective approximation in vd/vd
0, for the value of p = 0.1, 0.2, 0.3 and 0.4.

For larger values of d the semidefinite solver encounters numerical difficulties
and the numerical output cannot be trusted. The last column also displays

Lvd/vd
0
((x2

1 + x2
2 − 1)2) which ideally should be

∫
(x2

1 + x2
2 − 1)2)dψ∗/ψ∗(R2) = 0

since for every α ∈ N
n, vd

α →
∫

xαdψ∗ as d → ∞; recall (3.10) when vd is a
moment sequence.

Concerning the approximation of the moments of ν∗: The relative error be-

tween the second order moment
∫

x2
1dν∗ (normalized) and its approximation (in

the computed vector of moments yd/yd
0) is less than 1% for all p = 0, 1, 0.2,

0.3 and 0.4. On the other hand, for the order-4 moments
∫

x4
1dν∗ and

∫
x2

1x2
2dν∗

(normalized) the relative error is about 20%.
In Table 8 the same results are displayed but this time when ν∗ is uniformly

distributed on the unit box [−1, 1]2, λ = ν∗ and γ = 2p. In this case the relative

error between the second order moment
∫

x2
1dν∗ (normalized) and its approxi-

mation (in the computed vector of moments yd/yd
0) is about 11% for all p = 0, 1,

0.2, 0.3 and 0.4. For the order-4 moment
∫

x4
1dν∗ (normalized) it is about 13% in

all cases, and for the order-4 moment
∫

x2
1x2

2dν∗ (normalized) it is about 8% in all
cases.

So in both Example 4 and Example 5 the singular part ψ∗ (normalized) is well
recovered even though the absolutely continuous part ν∗ is not so well recovered
(in particular the moments of order 4 are not very accurate).

x2
1 x4

1 x2
1x2

2 Lvd/vd
0
((x2

1 + x2
2 − 1)2)

p=0.1 0.19% 0.52% 0.53% 0.001
p=0.2 0.47% 1.28% 1.28% 0.003
p=0.3 0.94% 2.76% 2.76% 0.009
p=0.4 1.87% 5.93% 5.93% 0.02

Table 7. Example 5: d = 7; ν∗ Gaussian; relative error on the

“moments”
∫

x2
1dψ∗,

∫
x4

1dψ∗ and
∫

x2
1x2

2dψ∗ of ψ∗ (normalized)
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x2
1 x4

1 x2
1x2

2 Lvd ((x2
1 + x2

2 − 1)2)

p=0.1 0.26% 0.93% 0.61% 0.002
p=0.2 0.62% 2.22% 1.47% 0.0004
p=0.3 1.15% 4.09% 2.76% 0.0008
p=0.4 1.87% 6.97% 5.27% 0.0016

Table 8. Example 5: d = 7; ν∗ uniform on the unit box; relative

error on the “moments”
∫

x2
1dψ∗,

∫
x4

1dψ∗ and
∫

x2
1x2

2dψ∗ of ψ∗

(normalized)

As illustrated in Example 5, numerical problems can be encountered relatively
fast (e.g. when d > 7 in Example 5). In the next section we briefly discuss how to
(partly) address some numerical issues.

3.4. Some numerical issues. As already mentioned in introduction, some nu-
merical issues should be taken into account. Indeed, in the above simple exam-
ples one has encountered some numerical difficulties when d > 10 (i.e. when
moments of order > 20 appear) and even when d > 7 for Example 5. Such
numerical problems were not due to the size but rather to the ill-conditioning
of the semidefinite program (3.2) (in turn due to the use of the monomial basis
(xα)α∈Nn). Clearly the basis of monomials (xα), α ∈ N, mainly used for modeling
and algorithm implantation convenience, is a very bad choice from a numerical
viewpoint. This is especially true as we use semidefinite solvers for which such
issues can be crucial even for relatively small size matrices, as observed in the
examples when d > 10.

However other (and better choices) of basis are possible. For instance let (Lα),
α ∈ N

n, be the basis of polynomials orthonormal w.r.t. λ. They can be obtained
from the moments (λα)α∈Nn by simple computation of certain determinants, as
described in e.g. Dunkl and Xu [9] and Helton et al. [11]. In this case one writes

x 7→ f (x) := f̂α Lα(x), f ∈ R[x],

Ly( f ) = ∑
α∈Nn

f̂α yα, ∀ f ∈ R[x],

for some vector ( f̂α) of coefficients. In this new basis (Lγ)γ∈Nn ,

Lα(x) ·Lβ(x) = ∑
γ

c
αβ
γ Lγ(x), α, β ∈ N

n,

for some real scalars (c
αβ
γ ), and the moment matrix reads

Md(y)(α, β) := Ly(Lα Lβ) = ∑
γ

c
αβ
γ yγ, α, β ∈ N

n
d .

The advantage in doing so is that the resulting moment matrix Md(λ) in that ba-
sis is the identity matrix Id. Hence in the semidefinite program (3.3) the constraint

Md(y) + Md(u) = Md(λ) becomes Md(y) + Md(u) = Id when the moment ma-
trices are expressed in the new basis (Lα)α∈N

n
d
.
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Similarly, let (Dα), α ∈ N
n, be the basis of polynomials orthonormal w.r.t. µ.

Again as for the (Lα), the (Dα) can be obtained from the moments (µα), and

Dα(x) · Dβ(x) = ∑
γ

q
αβ
γ Dγ(x), α, β ∈ N

n.

for some real scalars (q
αβ
γ ). The resulting matrix of moments M̃d(µ) in that basis

is also the identity Id. Of course, the vector of polynomials Dd = (Dα) and Ld =
(Lα), α ∈ N

n
d , satisfy Dd = ΘdLd for some non singular matrix Θd. Therefore,

when expressed in the (Dα) basis, the previous constraint Md(y) + Md(v) =
Md(λ) now becomes M̃d(y

TΘ) + M̃d(v) = Id while Md(y) + Md(u) = Id.
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