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Résumé : 

Cet article démontre l’intérêt du critère d’information d’Akaike pour les méthodes d’identification 
contenant une étape de projection de signaux de mesure sur des bases spécifiques. On s’intéresse 
particulièrement au problème d’identification de paramètres mécaniques variant dans le temps.La 
méthode est testée expérimentalement avec succès sur un système à un degré de liberté, constitué 
d’une inertie et d’une poutre à longueur variable travaillant en torsion. Les variations de cette 
longueur rendent les paramètres du système dynamique changeant. Une approche par moindre carré 
combinée à une projection des signaux mesuré sur une base polynomiale permet de reconstruire 
aisément les fluctuations des paramètres mécaniques. Cependant le choix de l’ordre de troncature de 
la base de projection est toujours un problème clef dans ce genre de méthode inverse et reste bien 
souvent une question ouverte. On propose ici d’utiliser le critère d’information Akaikepermettant ainsi 
une sélection robuste et automatique de cet ordre de troncature. L’étude présentée ici ainsi que 
l’expérimentation montrent la pertinence et l’intérêt de ce type de critère associé aux méthodes 
d’identification. 

Abstract: 
This article deals with the use of Akaike Information Criterion in the case of an identification problem 
of a time varying mechanical system.. This system studied to illustrate the approach is physically 
realized by a prismatic beam with a disk excited in torsion. The boundary conditions of the beam can 
change in a controlled way during the experiment. Therefore,  our system can be considered as a 1 
d.o.f. system with time-varying parameters. A method based on least-square estimates is used for the 
identification of the parameters. However, the major contribution of this article is the use of the 
Akaike information criterion in order to choose automatically the order of polynomial basis used 
during the estimationstep of the derivatives of the measured angle signal. It is shown through an 
experimental validation that the AIC criterion is robust and automatic tool for numerical estimation of 
signal derivatives.   

Key words:Information criteria, inverse problems, identification 

1



22èmeCongrès Français de Mécanique Lyon, 24 au 28 Août 2015 

1 Introduction 
In many engineering problems we are interested in identifying some real physical system. In other 
words, we want to identify a mathematical model which would describe the physical phenomenon, 
which we observe. In this article, we deal with the identification of a simple mechanical system with 
one degree of liberty and one time-varying parameter. 
The systems with time-varying parameters can be found in many physical problems. For example, the 
mechanics of biological and human tissues and joints can be described by time-varying models [1]. In 
the same works, the robotics and joystick command systems are also considered as time-varying 
mechanical systems. The identification of the time-varying systems has been studied by different 
approaches: by the ensemble average method [2], by a parallel-cascade algorithm [3], or by a wavelet 
method [4].  Numerous techniques use the projection of the time-varying parameters on an orthogonal 
basis of functions [5, 6]. The choice of this basis can be a bit arbitrary, there were methods using 
Legendre polynomials [7, 8], block-pulse functions [9], Fourier series [10], Laguerre polynomials 
[11],Chebyshev polynomials [12-17] or classical polynomial basis [18, 19]. In principle, all of these 
methods work quite well. However, their weakness is the choice of the size of the functional basis. 
Indeed, we have no clue how large the basis of polynomial functions should be. Most often, one must 
use some iterative scheme and see how the results look like. Then, some human judgement is 
necessary to choose a good size of the basis of polynomial functions. This human factor makes these 
methods a bit cumbersome and time-costly. 
In this article, we propose to apply a simple statistical tool called Akaike information criterion (AIC) 
to choose a suitable polynomial basis automatically. We deal with the same experimental data as 
described in [17]. The AIC criterion was developed by H.Akaike [20] in 1974. Its goal is to choose the 
optimal model from a set of candidate models and some observation. It was widely used in statistics 
and applied in many real-life problems, mostly in biology [21-24]. So far, its use for the mechanical 
problems was very limited. Its use for a choice of vibration models was proposed in [25]. 
This article is organized as follows. Section 2 describes the experimental set-up and measured data. 
Section 3 describes the technique of identification of the model and presents the results. Section 4 
concludes the article and Appendix describes the AIC criterion. 

2 Experimental set-up 
To build an accurate and easy to used mechanical system with time varying parameters is not so easy. 
The experimental set-up can be seen in Fig.1. It consists of a triangular prism mounted vertically. At 
the lower end of the bar, there is a disk which serves as an inertia. At the upper end of the prism, there 
is a slider. This slider serves as a clamped boundary condition, but it can move freely up and down 
during the experiment. This motion changes the boundary condition and, consequently, changes also 
the torsional stiffness of the prismatic beam. If we know the position of the slider in time, we are able 
to calculate the theoretical torsional stiffness of the beam in time. This is very useful, because we can 
compare this time-varying stiffness to the stiffness identified by our method. 
Finally, the excitation is achieved via an electric motor which is connected to the disk through the 
torque cell and rotation accelerometer. During the experiment, we are able to measure simultaneously 
the driving torque, the rotation angle and the position of the slider. A typical measure is shown in 
Fig.2. We note that the torque signal is by far the noisiest one. This is probably due to some micro-
gaps in the screwing mechanism and maybe due to the influence of the flexural vibration of the beam. 
On the other hand, the rotation angle signal is very neat, which is necessary because we will be dealing 
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with estimation derivatives of this signal. The sampling frequency of the measure was 1000Hz. More 
information about this set up can be found in [17]. 
 

 
Fig.1: Experimental mounting of the prism beam in torsion and its representative scheme on left. 

 
 

 
Fig.2: A typical measure obtained from our experimental setup: above – the slider position, in the 

middle – the torque applied, below – rotation angle. 
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3 Identification of the system 
The system described in Section 2 can be approximately described as a system with one (rotational) 
degree of freedom. Its equation of motion can be written as 𝐼𝜃 + 𝐶𝜃 + 𝐾𝜃 = 𝑇 (1) 

Where I is the global inertia of the beam and the disk, C is the damping coefficient, K is the rotational 
stiffness, θ(t) is the rotation angle and T(t) is the driving torque.In our case, we want to identify the 
parameters I, C and K while we measure θ(t) and T(t). In previous studies [17-19], the torsional inertia 
and damping were considered constant in time, but the torsional stiffness is necessarily a function of 
time K=K(t). In this paper, the three mechanical parameters are considered as time-varying.  

The process of identification can be separated into several parts as it can be seen in Fig.3. First, the 
first and second derivatives of the angle θ should be obtained. This is done with the help of the 
polynomial fitting and the AIC criterion. Second, once all the derivatives are estimated, we identify 
the optimal parameters I,C and K to satisfy the equation of motion given by (1). Both of these 
procedures are detailed in the following. 

Fig.3: The steps of the identification method 

3.1 Estimation of derivatives 
The heart of the problem of identifying the parameters of the equation (1) lies in the fact that we only 
measure the angle θ. The time derivatives of this angle are unknown and we need to estimate them 
from θ. There are many methods for the estimation of derivatives. Here, we opt for the polynomial 
regression optimized by the AIC criterion.  
Let us look the derivative of θ at some time ti. We suppose that we dispose the measurement of θ for 
the neighboring times to ti. In a small interval of interest we dispose 2N+1 measures of θ. We can put 
them in the vector θ= [θ(ti-N),…,θ(ti),…,θ(ti+N)]T.
In this small interval around the time ti the function θ(t) can be developed in the Taylor series as 

θ
Polynom
Fitting
AIC

θ𝜃  𝜃  

T

Ident.
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Estimation of derivatives 
Identification of the parameters 
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𝜃 𝑡 = 𝛼𝑗  𝑡 − 𝑡𝑖 𝑗𝑛
𝑗=0

(2) 

The coefficients α of the expansion given by (2) can be easily obtained by the least-square linear fit of 
the measured vector θ by the Taylor series decomposition. However, how should we choose the 
number of polynomialsn in the Taylor series decomposition? This is the main problem of many 
identification methods using an expansion process.  
The AIC criterion can answer this question (definition of the AIC criterion can be found in the 
appendix). Let us consider a small interval of time and the corresponding measure of angle θ. This 
measure can be seen in Fig.4 in the upper-left corner. Now, we can fit this function by Taylor series 
with different maximal polynomial order n. The optimal fit should be the one which minimizes the 
value of the AIC function. To illustrate the approach, let’s consider the measured angle on a short time 
window (Fig.4(a)). According to the Fig.4(b), the Taylor series with n=13 is the optimal fit for the 
measured function. However, to highlight the main interest of this kind of criterion, if we add 
artificially some uncorrelated noise as it is shown in Fig.5(a), than the AIC criterion would choose the 
optimal model among the Taylor series the one having n=7(Fig.5(b)).Practically, that means that 
polynomial function of higher order would be used to fit the noise. 
The strength of this approach is its robustness and automatism. A simple program can be constructed 
to automatically choose the model (Taylor series) having the lowest value of AIC among all the other 
models. Whatever is the shape of the function, we are dealing with, and whatever is the noise, AIC 
criterion always chooses the optimal fit for the measurement in question. 
Once the optimal model (Taylor series) is identified via AIC criterion, it can be easily derived to 
obtain the first and second derivatives. In a certain point of view, the AIC avoids an unwanted 
expansion of the noise on the polynomial basis. These expansions usually disturb drastically the 
derivation step.  
It should be noted that the maximal number of polynomials (so-called candidate models) to be used is 
a bit arbitrary. Here, we use the maximal polynomial degree 15 for all the measured intervals. It is 
recommended that the optimal model should not be the first neither the last model among the 
candidate models. 

Fig.4 Example of the use of AIC to fit measured data. (a) By fitting an experimental curve with low 
noise, (b) AIC favors high polynomial fit.  
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Fig.5 Example of the use of AIC to fit a noisy curve..(a) By fitting the same curve with artificially 
added noise, (b) AIC favors lower degree polynomials 
 
 
 

3.2 Identification of parameters 
Once the derivatives of θ are identified for all measured points, we can identify the optimal parameters 
of the equation of motion (1). For the i-th measured time ti, we can write the equation (1) as 
 
 𝐼𝜃 (𝑡𝑖) + 𝐶𝜃 (𝑡𝑖) + 𝐾𝜃(𝑡𝑖) = 𝑇(𝑡𝑖) (3) 
 

 

This equation cannot be solved for I, C and K, because we have more unknowns than equations. On 
the other hand, we can assume that the variation of these parameters is much slower than the sampling 
frequency of the time. Under these assumptions, we can consider the values of I, C and K constant 
over some short interval of time. According to the method used in Section 3.1, we consider that we 
dispose 2N+1 values of 𝜃,  𝜃, 𝜃  in the vicinity of time ti. Then, we can write a system of linear 
equations for the parameters I, C and K at the time ti 
 
 
 

   
  𝜃 (𝑡𝑖−𝑁) 𝜃 (𝑡𝑖−𝑁) 𝜃(𝑡𝑖−𝑁)⋮𝜃 (𝑡𝑖)⋮ ⋮𝜃 (𝑡𝑖)⋮ ⋮𝜃(𝑡𝑖)⋮𝜃 (𝑡𝑖+𝑁) 𝜃 (𝑡𝑖+𝑁) 𝜃(𝑡𝑖+𝑁)   

  ∗  𝐼𝐶𝐾 =     
  𝑇(𝑡𝑖−𝑁)⋮𝑇(𝑡𝑖)⋮𝑇(𝑡𝑖+𝑁)   

    
 

(4) 

 
Where the parameters I, C and K correspond to the time point ti. Parameters I, C and K can be easily 
obtained from Eq. (4) by pseudo-inversing the matrix of the system. The number of equations to take 
into account into the system (4) is a bit arbitrary. More equations we take into account, smoother is the 
solution, but this filtering property can badly reconstruct fast variations of the identified parameters.. It 
is possible to use some iterative technique to find a suitable number of equations to use. However, the 
influence of the number of equations in (4) is not so important in the studied case. 
In Fig.6, there are identified parameters I, C and K obtained by the method described above. The 
number of equations in the system (4) was 200, which means physically that these parameters were 
considered constant over 0.2s (the sampling frequency was 1000Hz). We note that the identified 
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inertia parameter is noisy,which is probably due to its link with the second derivative, which ismuch 
more sensitive to noise than the others. On the other hand, the stiffness corresponds well to the 
theoretical stiffness parameter obtained from the measured position of slider (see Fig.2 above). Inertia 
and stiffness was the two main parameter of this study. They are well reconstructed, specially the 
variation of the stiffness. The damping of the real system is very low. In previous studies [17-19] it 
has been set to zero without disturbing drastically the identification of the time varying stiffness. The 
identified damping coefficient here is very small, but it cannot be compared to other independent 
measure. Never the less the mean value of this coefficient over the time domain is positive, which is in 
concordance with the physics of the system. The identification is generally bad at the beginning and 
the end of the measure. This is due to erroneous derivative estimation at the borders. 
 

  

 
Fig.6: Parameters of the time-varying system identified by the inverse method. Above on the left: the 
identified torsional inertia (blue) compared to the theoretical inertia (black). Above on the right: the 
identified torsional damping coefficient. Below: the identified torsional stiffness (blue) compared to 
the stiffness obtained from the slider position (black). 
 
 
 

4 Conclusion 
In this article, an inverse method using on the Akaike information criterion is presented. This method 
enables us to estimate the temporal derivatives of a measured signal and consequently to identify the 
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parameters of a mechanical system. It has been illustrated with a single degree of freedom system. The 
AIC criterion is used to choose automatically the optimal polynomial for fitting locally a measured 
signal which is of great interest for this kind of identification problem. The advantage of this approach 
is the robustness of this method. It can deal with different level of noise and automatically choose the 
optimal polynomial model, contrary to previous developed methods [17-19] 
Three parameters of the single degree of freedom system were determined: inertia, damping and 
stiffness coefficients. While the identified damping parameter cannot be verified independently, the 
identified inertia and stiffness coefficients correspond wellto other independent measures (see [17]).  
The proposed approach could be applied to other identification problems. One perspective is the 
identification of the systems with a few degrees of freedom. Another perspective would be to increase 
the accuracy of the identificationby making constant (but still unknown) some of the non-varying 
parameters (I and C in this case).  
 

Appendix: Akaike information criterion 
 
The Akaike information criterion was introduced by Akaike in [20]. A more recent critical review is 
proposed by Burnham and Anderson in [21]. In a simplified version the problem solved by the AIC 
criterion is as follows. Let us have a system of N (generally nonlinear) equations 
 
 𝑓𝑖  𝑀𝑗  𝑝𝑗   = 𝑑𝑖 , i=1..N (5) 

wherethe coefficient i represents different independent measures di. The i-th value of the model Mj is 
described by the function fi(Mj(pj)). This function depends on some vector of parameters pj, which is to 
be determined. This parameter vector can be determined by the nonlinear least squares, in other words 
by minimizing the sum of residuals𝑅𝑗 =  𝜀𝑖𝑗2𝑖 , where 
 
 𝜀𝑖𝑗  𝑝𝑗  = 𝑓𝑖  𝑀𝑗  𝑝𝑗   − 𝑑𝑖  (6) 

 
The optimal least-square estimate of the parameter 𝑝 𝑗 for the model j is obtained as 
 
 𝑝 𝑗 = argmin𝑝𝑗 𝑅𝑗 (𝑝𝑗 ) (7) 

The AIC function for a model j is defined as follows 
 
 𝐴𝐼𝐶𝑗 = 𝑁 ln𝜎𝑗2 + 2𝐾𝑗 +

2𝐾𝑗 (𝐾𝑗 + 1)𝑁 − 𝐾𝑗 − 1
 

(8) 

Where Kj is the number of elements in the vector of parameters pj, and σj is the estimate of the 
standard deviance of the measure using the model j: 
 
 𝜎𝑗2 =

𝑅𝑗 (𝑝 𝑗 )𝑁 − 1
 

(9) 

 
Under the assumptions that the measures di are independent identically normally distributed random 
variables, the AIC function is an unbiased estimate of the Kullback-Leibler distance between the 
measure and the model. In practice, we want this distance to be minimal; we want the model to be as 
close to the reality as possible. This means, that we search for the model with the lowest value of AIC. 
In order to compare different models, we must choose some candidate models at first. In our case, 
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these candidate models are simple polynomials of the Taylor series, but these models can be 
represented by any function. Then, the optimal parameters 𝑝 𝑗 of the models are determined by the 
least-squares and the minimal residuals (9) are evaluated. The model chosen by the AIC criterion is 
not simply the model having the lowest residuals. It is a model which has a low residual but a low 
number of parameters as well. AIC criterion selects a model which is optimal in a sense of the 
prediction. It means that the selected model would give the best prediction of unmeasured data. 
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