
HAL Id: hal-01212365
https://hal.science/hal-01212365v1

Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building distributed sensor network applications using
BIP

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga,
Saddek Bensalem

To cite this version:
Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem. Build-
ing distributed sensor network applications using BIP. 2015 IEEE Sensors Applications Symposium
SAS 2015, Apr 2015, Zadar, Croatia. �10.1109/SAS.2015.7133617�. �hal-01212365�

https://hal.science/hal-01212365v1
https://hal.archives-ouvertes.fr

Building Distributed Sensor Network Applications
using BIP

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga and Saddek Bensalem
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

CNRS, VERIMAG, F-38000 Grenoble, France
Email:firstname.lastname@imag.fr

Abstract—The exponential increase in the demands for the
deployment of large-scale sensor networks, makes the efficient
development of functional applications necessary. Nevertheless,
the existence of scarce resources and the derived application
complexity, impose significant constraints and requires high de-
sign expertise. Consequently, the probability of discovering design
errors, once the application is implemented, is considerably high.
To address these issues, there is a need for the availability of early-
stage validation, performance evaluation and rapid prototyping
techniques at design time. In this paper we present a novel
approach for the co-design of mixed software/hardware appli-
cations for distributed sensor network systems. This approach
uses BIP, a formal framework facilitating modeling, analysis and
implementation of real-time embedded, heterogeneous systems.
Our approach is illustrated through the modeling and deployment
of a Wireless Multimedia Sensor Network (WMSN) application.
We emphasize on its merits, notably validation of functional and
non-functional requirements through statistical model-checking
and automatic code generation for sensor network platforms.

I. INTRODUCTION

The recent introduction of sensor networks in various appli-
cation fields has been a significant technological advance. Such
fields include health-care, transportation, agriculture, envi-
ronmental monitoring, security systems, high-energy physics,
industrial process control, factory and building automation
and more. The applications of distributed sensor networks are
broad due to the sensor devices’ unique characteristics, of
which they are composed. Each sensor is a tiny, low-cost, low-
power, energy harvesting, multifunctional device. As usually
being deployed in a large-scale distributed environment, it
needs to configure itself automatically in order to collect,
process and send information to a central processing unit,
called base station or sink. The transmission is handled by
the underlying network, which can be either wired or wireless.
The use of wireless networks is often preferred over wired due
to the derived limitations of the cost of wiring.

The successful development of functional applications, en-
suring the several benefits of sensor networks, is however
extremely challenging. This is due to their scarce resources,
imposing constraints such as the limitations in the communica-
tion cost, the energy consumption, the memory usage and the
achievable network bandwidth. These limitations are enhanced
as they are usually deployed in inaccessible or distant areas
(e.g mountains, forests) and thus cannot be frequently changed
in case of a failure. In addition, specific applications have
strict timing constraints for data handling, which may not be
guaranteed due to the influence of the communication and

The research leading to these results has been partially funded by the French
BGLE ACOSE and the European ARTEMIS ARROWHEAD projects

data processing latencies. It is also worth considering that
design errors in the final application development stage are
highly probable, even if there is detailed knowledge of the
application area and the hardware platforms. Moreover, if an
error is observed at that stage, the debugging is extremely hard
and time-consuming.

To address these challenges we propose a model-based
design approach, in order to demonstrate the behavior and
functionality of such applications. A model-based framework
improves the quality, the modularity and reusability of the
developed software artifacts. It further allows separation of
concerns, in order to describe software and hardware architec-
ture at a certain level of abstraction and apply modifications in
them independently. Moreover, validation and verification are
enabled in every development stage. The overall contribution
of this work is the construction of a full-fledged design flow,
based on a single semantic framework (BIP [1]), facilitating
the rapid development of correct and functional sensor network
applications. This flow supports application and system model-
ing, validation of functional correctness and performance anal-
ysis. It also permits automatic code generation in distributed
sensor network platforms, leading to a significant reduction in
the development time and errors of a manual implementation.

The paper is organized as follows. Section II provides a
brief introduction to the area and the current challenges of
distributed sensor network applications. Section III presents the
proposed design flow and details on its key steps. Section IV
illustrates its use in a concrete WMSN application and Section
V provides conclusions and perspectives for future work.

II. SENSOR NETWORK APPLICATIONS

A major design factor in the development of sensor network
applications is the communication, in order to exchange sensed
data. As each network node is a resource-constrained device,
the developed applications should have low bandwidth de-
mands and tolerance to the communication latencies. Recently,
the significant size reduction of inexpensive hardware, such
as microphones and cameras, made the addition of audio
and video capabilities for multimedia applications on a sen-
sor network environment possible [2]. The development of
such applications is mainly based on the increasingly popular
lightweight versions of Linux, often referred to as embedded
Linux [3]. This is because of their open-source environment
and the support of several off-the-shelf platforms. Multimedia
sensor network applications have strict timing constraints for
data delivery and are extremely demanding in terms of memory
and storage. Therefore, the usage of compression algorithms
is necessary. Figure 1 illustrates such an application deployed
over a wireless network for audio streaming and synchroniza-

tion of the local sensors’ clocks.

synchronize
slaves

speaker

Master Node

WiFi

synchronize
local clock

micro

Slave Node

synchronize
local clock

micro

Slave Node

Fig. 1: WMSN Application example

The successful development of functional distributed sensor
network applications depends on whether the following goals
are ensured.

Addressing functional and non-functional requirements.
This goal focuses on the ability to identify and the methods
to evaluate these requirements at design time [2]. On the
one hand, non-functional requirements concern the optimal
exploitation of the available hardware resources. Such require-
ments include the impact of the communication and computa-
tion delays as well as the packet delivery ratio (as an extent
of the network connectivity) in resources, like memory usage
or battery life. On the other hand, functional requirements
involve the correctness and performance of the application.
More specifically, they aim at managing buffer utilization and
improving the efficiency of the compression algorithms for the
multimedia. Occasionally, functional requirements are strongly
affected by the non-functional, as described in [4].

Synchronization of the local sensors’ clocks (clock syn-
chronization). In many applications the exchanged data needs
to be accurately timestamped in order to be further processed.
Nonetheless, this poses a serious application development
problem, as the construction of a common time reference in a
distributed system is hard to achieve. The solutions proposed
to this problem have a common obtained synchronization
accuracy in the microsecond scale. A traditionally adopted
solution is the Network Time Protocol (NTP) [5], which nev-
ertheless uses several trials to compute the average Round Trip
Delay (RTD), resulting in less accuracy and increased resource
consumption. As a result, it is suitable only for applications
with low precision demands. A protocol that achieves high
synchronization accuracy, even though it relies on the RTD
calculation, is the Precision Time Protocol (PTP) [6]. However,
the derived hardware enhancements (as in [7]) introduced
to achieve microsecond accuracy may not be available in
lightweight and resource-constrained environments. A new
family of protocols for software-based clock synchronization is
derived by applying the Kalman filter algorithm [8]. Compared
to PTP, this family neither relies on the RTD calculation nor
requires the interaction or the development of dedicated drivers
to access the hardware, since it operates in the application
level. The underlying Kalman filter algorithm tracks the ad-
vance of a reference clock and automatically adapts to it.

Tools for application development and code debugging.
As multimedia sensor network applications require the dense
deployment of the small-scaled sensors, the communication
latencies and the conflicts occurring in the protocol stack
are unpredictable. Therefore, the probability of having design
errors in the final development stage is extremely high. This
happens due to the absence of separation of concerns so as

the application is developed independently from the hardware
architecture. In this scope, a developer has to specify and build
separate artifacts for the software and the hardware architec-
ture, which can be also reused in other applications. Then,
they should be able to define the optimal methodology for the
deployment of the application on the given architecture so that
it functions properly. This procedure is called mapping [9].

Meeting all the aforementioned goals is extremely de-
manding. A starting point to this challenge would be the
availability of simulation and validation tools in the early
development stage so as the system is validated beforehand
and the design goals are ensured. Previous work in this scope
is mainly divided in three categories. The first category targets
specific sensor network operating systems [10] by using the
Mathwork’s tools for modeling, simulation and automatic code
generation. These tools are well known due to their vast
variety of libraries, however they are not able to address
functional and non-functional system requirements. Secondly,
the metamodeling frameworks, addressing such requirements,
use the UML tools to model and the Eclipse platform to
generate code for sensor network applications [11]. Though
certain developed frameworks ([12]) are also able to validate
the previously mentioned requirements, they do not focus
on clock synchronization and the generated code is usually
not complete. Finally, formal modeling approaches for such
applications provide validation support for functional and non-
functional requirements [13] [14] as well as clock synchroniza-
tion [15], but they do not implement tools for automatic code
generation. Therefore, as far as knowledge is concerned, the
existing work doesn’t take into account all the above design
goals simultaneously. To this extent, in the following section
we propose a novel method for the systematic development of
distributed sensor network applications, enabling separation of
concerns and targeting all their design goals.

III.DESIGN FLOW

We hereby present our approach, based on a design flow,
which leads to a framework for 1) the construction of a
faithful sensor network system model for analysis as well as
performance evaluation and 2) the generation of deployable
code for applications in the domain of sensor networks. The
design flow is based on the BIP framework 1 described below.

BIP (Behavior-Interaction-Priority) [1] is a highly expres-
sive, component-based framework with rigorous semantic ba-
sis. It allows the construction of complex, hierarchically struc-
tured models from atomic components, which are characterized
by their behavior and interfaces. Such components are transi-
tion systems enriched with data. Transitions are used to move
from a source to a destination location. Each time a transition
is taken, component data (variables) may be assigned with
new values, which are computed by user-defined functions
(in C/C++). Atomic components are composed by layered
application of interactions and priorities. Interactions express
synchronization constraints and define the transfer of data
between the interacting components. Priorities are used to filter
amongst possible interactions and to steer system evolution so
as to meet performance requirements, e.g. to express schedul-
ing policies. A set of atomic components can be composed into
a generic compound component by the successive application
of connectors and priorities. BIP is supported by a rich toolset

1http://www-verimag.imag.fr/BIP-Tools,93.html

including tools that are used to check stochastic systems. This
technique is called Statistical Model Checking (SMC) [16] and
performs quantitative verification targeting functional and non-
functional system requirements.

Example 1: Figure 2 shows a graphical representation of
one atomic component in BIP, which models the behavior of
the PLL process (presented in Section III-A). Its behavior is
described as a transition system with control locations idle,
recvMsg, process and sndRes. The PLL component receives
synchronization frames through the CLK RECV port. It sub-
sequently moves from the idle to the recvMsg state. After
an interaction through the port LOCAL CLK, it calculates a
software clock through the internal port update and returns
to the initial (idle) state. CLK REQ port is used to receive
requests for calculating the local clock. The value of the local
clock is calculated at the internal transition prepare and is
exported through port CLK RES.

idle recvMsg

processsndRes

CLK RECV
micReq:=1

CLK REQ
newFrame:=1

LOCAL CLK

update
[newFrame = 1]

refClk:=Mclk+delay
res:=pll clock in(refClk)

prepare
[micReq = 1]

timeElapsed:=local clock-tUpdate
Sclk:=pll get clock(res,timeElapsed)

CLK RES

CLK REQ CLK RES Sclk

CLK RECV

frame LOCAL CLK

lclk

Fig. 2: PLL component

The BIP design flow, illustrated in Figure 3, uses PPM
specifications (described in Section III-A) as a retargetable
input model to: (1) automatically construct a sensor network
system model in BIP and (2) automatically generate the code
for execution on the target distributed sensor network plat-
form. The proposed flow is used to evaluate functional, non-
functional and clock synchronization requirements of sensor
network applications. To achieve that, first, we apply SMC on
the system model in BIP and second, we execute the generated
code on the target sensor network platform. It is important to
mention that the two paths, meaning the construction of the
system model in BIP and the generation of executable code
are consistent with each other. This is accomplished because
both approaches integrally preserve the behavior of the input
application software and the Sensor Network Components in
BIP faithfully model the target sensor network.

The proposed design flow proceeds in four main steps:
1) The construction of an abstract system model. This model

represents the behavior of the application software run-
ning on the hardware platform according to the mapping,
but without including all hardware dependent (e.g. execu-
tion times, data processing delays) and network-specific
information (e.g. packet delivery ratio, end-to-end delays).

2) The generation of executable code that is deployed on the
physical hardware platform. This is performed by initially
developing code templates based on the input hardware
specifications. Once these templates are fully constructed
by the user, they can be reused for any sensor network
application. They are subsequently parametrized, using
node configuration files, in order to automatically generate
the executable code.

3) The construction of the system model in BIP by injecting

all the missing hardware dependent and network-specific
information to the constructed abstract system model.

4) The performance analysis on the calibrated system model
in BIP with the use of Statistical Model Checking (SMC).
The results are used as a feedback to the user to propose
enhancements in the design.

Fig. 3: Proposed Design Flow

A. Pragmatic Programming Model
The Pragmatic Programming Model (PPM) is a description

language developed to provide a simple and convenient way for
describing highly-parallel applications expressed as networks
of communicating processes. The language has been inspired
by DOL (Distributed Operation Layer) [9], which is a frame-
work devoted to the specification as well as the analysis of
mixed software/hardware systems and provides a Kahn Process
Network (KPN) model of the application.

In PPM, application software is defined by using a process
network model. It consists of a set of deterministic, sequential
processes communicating asynchronously through shared ob-
jects, such as FIFOs, shared memories and mutexed locations.
The process network structure in PPM is described by using
XML specifications [4] and the process behavior is described
using structured C code, with well defined communication
primitives. Figure 4 presents an WMSN application in PPM,
which is referring to the application described in Section IV.
It consists of (1) one clock synchronization process synchro,
sending out synchronization data through the FIFOs (SO1,
SO3), and (2) two audio capturing processes micro, sending
out audio data, through the FIFOs (SO2, SO4). The synchro-
nization data is received by two processes PLL (implementing
the clock synchronization protocol) and the audio data by an
audio reproduction process speaker.

synchro PLL

speaker micro

PLL

micro

SO1

SO2

SO3

SO4

Fig. 4: WMSN Application PPM Model
The mapping associates application software components

to devices of the hardware platform, that is, processes to
processors and shared objects to remote communication media.
Specifications of the latter, including communication interface
and protocols, are also described in the mapping to provide

all the necessary details for the code generation and the
construction of the system model. The mapping in PPM is a
XML description file, specifying how the application software
is deployed on the target platform. As illustrated by the
example of Figure 5 the application processes (“app-node” in
XML) are bound to a hardware platform node (“hw-element”
in XML).

<deployment>
<app-node name="pll"/>
<hw-element name="node" hw-class="udoo" index="0"/>
<hw-property name="networkInterface" value="wlan0"/>
<hw-property name="srcPort" value="375"/>
<hw-property name="dstPort" value="250"/>
<hw-property name="dstIP" value="10.0.0.14"/>

</deployment>
<deployment>

Fig. 5: WMSN Application Mapping XML Description
B. System model in BIP

In our design flow we construct the system model in BIP
to faithfully represent the behavior of the application running
on the underlying hardware and network. The construction
proceeds in two steps, as presented in the design flow. The
first step is the construction of the intermediate abstract system
model in BIP and the second step is the construction of the
complete system model in BIP.

The abstract system model in BIP is built in several steps.
Firstly, the application software model in BIP is constructed by
translating the PPM model. Secondly, HW specific components
are constructed systematically from the characteristics of the
sensor network platforms as well as the entities and commu-
nication mechanisms of the network protocols. Finally, the
derived application software model is progressively enriched
with the HW specific components, given a specified mapping.
However, the derived abstract system model in BIP does
not include all the hardware-dependent (e.g. execution times,
data processing delays) and network-specific information (e.g.
packet delivery ratios, end-to-end delays). The above infor-
mation is injected to the model in the form of probabilistic
distributions which are obtained by profiling techniques and
execution of the generated code on the physical hardware
platform. This technique is called calibration and results in
obtaining the complete system model in BIP. To compute the
probabilistic distributions, we analyze the debugging traces
from the execution of the generated code on the hardware plat-
form and extract all the necessary information for a distribution
fitting procedure [17].
C. Code Generation

The method used for automatic code generation is based
on an infrastructure generating deployable code from PPM
specifications. The generated code is portable and can be even-
tually deployed and run on any hardware architecture including
sensor networks. Moreover, it consists of the functional code
and the glue code. In the case of sensor networks, the func-
tional code is generated from the application software in PPM,
which consists of processes and shared objects. Processes are
implemented as threads, and shared objects are implemented
according to the underlying hardware architecture. Specifically,
the threads are created and allocated to sensors in line with the
process mapping, which also specifies configuration parame-
ters for the employed communication protocols. The glue code
implements the deployment of the application to the sensor
network platforms and is obtained from the mapping.

The generated code is described in C language. Both
functional and glue code are implemented using retargetable

template files and sensor network hardware specific files. The
tool is implemented in C++ and it consists of approximately
35 files and 11235 lines of code.

IV.CASE STUDY: INDUSTRIAL WMSN APPLICATION

We demonstrate our approach through a case study provided
by an industrial partner (Cyberio 2) and illustrated in Figure 4.
It targets on audio capturing and reproduction over a WiFi
wireless network with the addition of clock synchronization.
In this case, we focus on a sender-to-receiver synchronization,
where the base station broadcasts periodically (period T=5s) a
frame containing the hardware clock value (synchro process) to
all the nodes through the wireless network. Each node applies
a Phase Locked Loop (PLL [18]) synchronization technique,
to construct a software clock. The construction is based on the
Kalman filter algorithm (described in [4]). The PLL system
takes the broadcasted clock as as an input and keeps the
local clock synchronized to it. The expected synchronization
accuracy for the particular case study, defined as the difference
between the input and output clock, is specified as 1µs. The
resulting clock is used by the micro process to timestamp
the audio frames. Subsequently, the base station is able to
reproduce the received audio frames through the speaker
process in the correct chronological order.

For the implementation of the WMSN application, we use
a wireless sensor network that consists of three nodes. Each
node is a UDOO platform 3, which consists of a computational
core, a WiFi card and a sound card. The computational core is
responsible for the node’s processing operations, the WiFi card
for the wireless communication of the network and the sound
card for capturing or reproducing sound. The wireless network
is supported by a Snowball SDK platform 4 used as Access
Point (AP). To capture and reproduce audio samples, we used
the API provided by the Advanced Linux Sound Architecture
(ALSA) 5. This API supplies structures and functions in order
to communicate with the node’s sound card through the ALSA
library.
A. Code Generation on Distributed Sensor Network Platform

In the deployed application, the clock synchronization pro-
tocol runs in parallel with an audio application. The synchro
and speaker processes are mapped to the Master UDOO node,
whereas the PLL and micro processes to the Slave UDOO
nodes (see [4]). The shared objects are mapped to the WiFi
cards, which manage the communication through the Snowball
SDK AP. The sensor network nodes communicate by using
User Datagram Protocol (UDP) through various modes, such
as unicast, broadcast and multicast.

We hereby present some experimental results obtained from
the generated code for the case study. The results focus on the
clock synchronization accuracy of a slave node. Specifically,
in Figure 9 we plot the time difference between the Master
and the software clock computed in the PLL process of the
Slave, called synchronization error. The software clock follows
the advance of the Master clock and maintains a relative
offset from it (here around 100µs) with a resulting accuracy
of 76µs. As illustrated in [18], in a PLL-based approach
this offset depends on the synchronization frequency of the
application. Although an increase of this frequency results

2www.cyberio-dsi.com/
3http://www.udoo.org/features/
4http://www.calao-systems.com/articles.php?pg=6186
5http://www.alsa-project.org/main/index.php/Main Page

in better synchronization, it equally augments the number
of transmitted packets in the network. This leads to higher
energy consumption, thus shortening the network lifetime.

The execution of the generated code has also provided

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180
S

yn
ch

ro
ni

za
tio

n
er

ro
r

(u
se

c)

Number of samples

Fig. 6: Synchronization accuracy (in µs) from the generated
code

debugging traces, which we analyzed, in order to compute
probabilistic distributions for specific case study parameters.
These parameters concern the computation of each device
hardware clock, the packet delivery ratio and the end-to-end
delays. The debugging traces were used to calibrate the BIP
abstract system model and produce the BIP system model
(design flow step 3), described in the following section.
B. BIP System Model

This section presents the system model constructed for the
WMSN case study. It consists of the Master component and
two instances of the Slave component, using the same inter-
faces and interactions with the other system components. For
comprehension purposes, Figure 7 illustrates a simpler system
containing only one instance of the Slave component. The
Master transmits periodically synchronization packets through
the port CLK SEND which contain its hardware clock value.
This value as well as the Slave’s hardware clock value are
computed using probabilistic distributions for their hardware
clock model. The timing model is a discrete time step advance,
associated with the interaction TICK. This interaction is used
as a strong synchronization among all the system components,
implementing a timing model. The transmitted and received
packets are stored in a buffer component (Mbuffer and Sbuffer
instances of Figure 7), which follows a FIFO queuing policy.
The data processing is done by the WiFi component, modeling
the wireless network, which also transmits packets to every
Slave component in the model. This component is using
probabilistic distributions for network-specific characteristics,
such as the packet delivery ratio and the end-to-end delays.
Whenever a synchronization packet is received by the Slave
component (CLK RECV port), it computes the software clock.
Hence, each audio packet is transmitted through the AU-
DIO SEND port and timestamped with the latest computed
value of the software clock. A detailed description of the BIP
system components from Figure 7 can be found in [4].
C. Analysis and experimental results

We conducted two sets of experiments, focusing on equally
important requirements in the development of multimedia
sensor networks. The first analyzed the utilization of the
buffer components concerning only the audio capturing and
reproduction in the system. Thus, this experiment focused
on a functional requirement, which is influenced by non-
functional requirements such as the packet delivery ratio and
the end-to-end delays. In the second experiment we focused

on the obtained clock synchronization accuracy. Therefore, we
observed the difference between the Master clock (θM) and
the software clock computed in every Slave (θS) without the
impact of the audio capturing and reproduction. These require-
ments were described as stochastic temporal properties, using
the Probabilistic Bounded Linear Temporal Logic (PBLTL)
formalism [16]. Their probabilistic results, obtained using the
SMC BIP tool, are accordingly presented.

TICK

READ

speaker

SEND RECV

RECV

REQ REQ

RECV

Sbuffer

TICK

SEND RECV

CLK_RECV

LOCAL_CLK

CLK_REQ

CLK_RES

Slave
micro

LOCAL_CLK

AUDIO_SEND

CLK_REQ

CLK_RES

Mbuffer WiFi
Mclock

GET_CLK

Sclock

CLK_SEND

TICK synchro
TICK

Master

PLL

Fig. 7: BIP abstract system model of the case study

Experiment 1: Buffer utilization. We evaluated the
property of avoiding overflow or underflow in each buffer
component by considering the following properties: φ1 =
(SSbuffer < MAX), as well as φ2 = (SMbuffer > 0), where
SSbuffer and SMbuffer indicate the size of the Slave and
Master buffer components respectively. The value of MAX
is considered as fixed and equal to 400. As illustrated in
Figure 8 P (φ1) = 1 for the considered value of MAX ,
meaning that overflow in the SBuffer is avoided. Furthermore,
the probability of underflow avoidance in the Mbuffer depends
on the initial playout delay (p1). Specifically, in Figure 8 we
can observe this for delays greater than 1430 ms P (φ2) = 1,
meaning that the Master component should start the consump-
tion of audio packets when this time duration has elapsed.

●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●

●●●

0 100 200 300 400 500 600 700 800 900 1000

0
20

40
60

80
10

0

size(Sbuffer)

P
ro

ba
bi

lit
y(

%
)

●●●

●●●

●

●

●

●

●●

0 160 320 480 640 800 960 1120 1280 1440 1600

0
20

40
60

80
10

0

Initial playout delay (ms)

P
ro

ba
bi

lit
y(

%
)

Fig. 8: Probabilities of φ1 (left) as a function of the Sbuffer
size and φ2 (right) as a function of p1 (in ms)

Experiment 2: Synchronization accuracy. The property
of maintaining a bounded synchronization accuracy is defined
as: φ3 = (|(θM − θS) − A| < ∆), where A indicates a fixed
offset between the Master and each computed software clock
and ∆ is a fixed non-negative number, denoting the resulting
bound. Initially, we used several probabilistic distributions
from the execution results of the application to test if the
expected bound ∆ = 1µs is achieved. However, as it can be
depicted by Figure 9 the achieved bound by the simulations
was always above the defined bound of 1µs for A = 100µs.
We accordingly repeated the previous experiments, in order
to estimate the best bound. Therefore, we tried to estimate the
smallest bound which ensures synchronization with probability
P (φ3) = 1, by repeating the previous experiment for a variety
of ∆ between 10µs and 80 µs. The simulations have shown

that the synchronization bound was 76 µs, as it is also observed
by the execution results of the generated code in Section IV-A.

0 200 400 600 800 1000 1200
20

40

60

80

100

120

140

160

180

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(u

se
c)

Number of samples

Fig. 9: BIP system model synchronization accuracy (in µs)

V. CONCLUSION

We have presented a novel approach, based on a design
flow, facilitating the development of correct and functional
distributed sensor network applications. This design flow takes
as input the application software and the hardware specifica-
tion (for the communication protocol and the sensor network
platforms) as well as the mapping between them and constructs
a system model in BIP. This model is executable, meaning that
it can be tested, simulated and validated using the associated
tools of the BIP toolset. Moreover, through the use of rapid
prototyping, our approach supports the automatic code gen-
eration for the target sensor network platform. We illustrated
the presented approach through a Wireless Multimedia Sensor
Network (WMSN) application, used to evaluate functional and
non-functional requirements through statistical model check-
ing. It also exploits the advantages of the generated code for
deployment on the target platform and for debugging purposes.
The conducted experiments focus on buffer utilization and
clock synchronization accuracy.

As a future work, we are considering improvements in
order to decrease the relative offset between the software
clock, which is computed in each device, according to a
reference clock. Thus, we are experimenting with various
clock synchronization frequencies, whilst trying to keep the
amount of packets in the network as low as possible. This
may as well lead to a change of the clock synchronization
protocol. Additionally, we focus on multimedia applications
for environments supporting lower resource platforms than
Linux. In this scope, Basu et al. introduced formal models
for TinyOS, which is an evenly popular environment for the
development of such applications, in [19]. Although support-
ing communication with lower resource consumption, such
systems allow the transmission of a small amount of data in
each packet. Therefore, in the target multimedia applications,
data is often transmitted in several packets. Consequently, the
network is more frequently occupied, resulting in a higher
collision rate and packet losses. In order to analyze the impact
of the additional latencies in the available resources, we plan
to develop a similar design flow for such systems.

REFERENCES

[1] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen,
and J. Sifakis, “Rigorous component-based design using the BIP frame-
work,” IEEE Software, Special Edition from Routines to Services 28 (3),
pp. 41–48, 2011.

[2] S. Misra, M. Reisslein, and G. Xue, “A survey of multimedia streaming
in wireless sensor networks,” Communications Surveys & Tutorials,
IEEE, vol. 10, no. 4, pp. 18–39, 2008.

[3] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The platforms
enabling wireless sensor networks,” Communications of the ACM,
vol. 47, no. 6, pp. 41–46, 2004.

[4] A. Lekidis, P. Bourgos, S. Djoko-Djoko, M. Bozga, S. Bensalem, “De-
sign Flow for the Rapid Development of Distributed Sensor Network
Applications,” Verimag Research Report, Tech. Rep. TR-2014-13, 2014.

[5] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: a survey,” Ad Hoc Networks,
vol. 3, no. 3, pp. 281–323, 2005.

[6] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “IEEE 1588-Standard
for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems,” in Conference on IEEE, vol. 1588,
2005.

[7] A. Mahmood, G. Gaderer, H. Trsek, S. Schwalowsky, and N. Kero,
“Towards high accuracy in IEEE 802.11 based clock synchronization
using PTP,” in Precision Clock Synchronization for Measurement Con-
trol and Communication (ISPCS), 2011 International IEEE Symposium
on. IEEE, 2011, pp. 13–18.

[8] B. R. Hamilton, X. Ma, Q. Zhao, and J. Xu, “ACES: adaptive clock
estimation and synchronization using Kalman filtering,” in Mobile
Computing and Networking, 2008, p. 152–162.

[9] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping Applications
to Tiled Multiprocessor Embedded Systems,” in Proceedings of the
Seventh International Conference on Application of Concurrency
to System Design, ser. ACSD ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 29–40. [Online]. Available:
http://dx.doi.org/10.1109/ACSD.2007.53

[10] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and
S. Olivieri, “A framework for modeling, simulation and automatic code
generation of sensor network application,” in Sensor, Mesh and Ad Hoc
Communications and Networks, 2008. SECON’08. 5th Annual IEEE
Communications Society Conference on. IEEE, 2008, pp. 515–522.

[11] T. Rodrigues, P. Dantas, F. C. Delicato, P. F. Pires, L. Pirmez, T. Batista,
C. Miceli, and A. Zomaya, “Model-driven development of wireless
sensor network applications,” in Embedded and Ubiquitous Computing
(EUC), 2011 IFIP 9th International Conference on. IEEE, 2011, pp.
11–18.

[12] B. Akbal-Delibas, P. Boonma, and J. Suzuki, “Extensible and precise
modeling for wireless sensor networks,” in Information Systems: Mod-
eling, Development, and Integration. Springer, 2009, pp. 551–562.

[13] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel, “GLONEMO:
Global and accurate formal models for the analysis of ad-hoc sensor
networks,” in Proceedings of the first international conference on
Integrated internet ad hoc and sensor networks. ACM, 2006, p. 3.

[14] S. Tschirner, L. Xuedong, and W. Yi, “Model-based validation of QoS
properties of biomedical sensor networks,” in Proceedings of the 8th
ACM international conference on Embedded software. ACM, 2008,
pp. 69–78.

[15] F. Heidarian, J. Schmaltz, and F. Vaandrager, “Analysis of a clock
synchronization protocol for wireless sensor networks,” Theoretical
Computer Science, vol. 413, no. 1, pp. 87–105, 2012.

[16] S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, A. Legay, and
A. Nouri, “Statistical Model Checking QoS properties of Systems with
SBIP,” in Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change. Springer, 2012, pp.
327–341.

[17] A. Nouri, M. Bozga, A. Molnos, A. Legay, and S. Bensalem, “Building
faithful high-level models and performance evaluation of manycore
embedded systems,” in Formal Methods and Models for Codesign
(MEMOCODE), 2014 Twelfth ACM/IEEE International Conference on.
IEEE, 2014, pp. 209–218.

[18] F. Ren, C. Lin, and F. Liu, “Self-correcting time synchronization
using reference broadcast in wireless sensor network,” IEEE Wireless
Commun., vol. 15, no. 4, pp. 79–85, 2008.

[19] A. Basu, L. Mounier, M. Poulhies, J. Pulou, and J. Sifakis, “Using BIP
for Modeling and Verification of Networked Systems–A Case Study
on TinyOS-based Networks,” in Network Computing and Applications,
2007. NCA 2007. Sixth IEEE International Symposium on. IEEE, 2007,
pp. 257–260.

