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Abstract—The real-time system design targeting multipro-
cessor platforms leads to two important complications in real-
time scheduling. First, to ensure deterministic processing by
communicating tasks the scheduling has to consider precedence
constraints. The second complication factor is mixed criticality,
i.e., integration upon a single platform of various subsystems
where some are safety-critical (e.g., car braking system) and the
others are not (e.g., car digital radio). Therefore we motivate
and study the multiprocessor scheduling problem of a finite
set of precedence-related mixed criticality jobs. This problem,
to our knowledge, has never been studied if not under very
specific assumptions. The main contribution of our work is
an algorithm that, given a global fixed-priority assignment for
jobs, can modify it in order to improve its schedulability for
mixed-criticality setting. Our experiments show an increase of
schedulable instances up to a maximum of 25% if compared to
classical solutions for this category of scheduling problems.

I. INTRODUCTION

The real-time system design targeting multi and many-
core platforms leads to two important issues. Firstly, to ensure
deterministic processing by communicating tasks one has to
consider scheduling problems with precedence constraints,
i.e., task graphs. Such tasks often have multiple execution
rates and hence their jobs have different arrival times and dead-
lines [1]. However, the precedence constrained scheduling the-
ory for multiple processors usually considers common arrival
times and deadlines of connected jobs. Luckily many practical
applications are not sporadic but synchronous-periodic, so they
can be modeled by a finite task graph that represents one
hyperperiod and enables simple static analysis. We abstract
from job periodicity and consider just a static set of jobs
with arbitrary statically known arrival times, deadlines, and
precedence relations.

Modern technology opens the possibility to integrate upon
a single chip various subsystems which required multiple chips
and boards in the past, which offers power and weight savings.
However, this integration leads to the second issue we raise
here – the mixed criticality. The point is that some subsystems
are safety critical [2]; therefore, according to current industry
standards, one cannot let other subsystems share resources with
them, to avoid that their errors and faults have consequences
for the safety critical subsystems. The current industry practice
assumes complete time or space isolation of subsystems having
different levels of criticality, which reduces the benefits of
integration. It is much more efficient [3] to let the scheduler
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Fig. 1. Proposed algortirhm MCPI. T stands for task graph and PT for
priority table.

use the resources in a flexible way during the normal operation,
and only when faults occur give all the resources entirely to the
safety critical subsystems, to provide them ample means for
fault recovery. In addition, one needs to protect highly critical
subsystems from timing misbehavior, especially execution time
overruns of less critical ones [4]. For static sets of jobs on
single processor, the basic principles and results of corre-
sponding scheduling policies were presented in [3], whereas
we investigate extensions towards precedence constraints and
multiple processors.

For mixed criticality scheduling problems Audsley ap-
proach can be used for correct priority assignment [1], but this
approach is mainly restricted to uniprocessor scheduling [5].
This is because Audsley approach is based on the assumption
that the completion time of the job with the least priority may
be computed ignoring the relative priority of the other jobs.
This assumption is no longer true in multiprocessors systems.
Audsley approach can still be used, by using pessimistic
formulas to compute the completion time of the least priority
job [5]. However, in the case of finite set of jobs, it can be hard
to find a formula with an acceptable level of pessimism. The
main contribution of this paper is the Mixed Criticality Priority
Improvement (MCPI ) algorithm, that overcomes the limitation
of Audsley approach in multiprocessor system. MCPI, in fact,
assigns priorities starting from the highest. This allows us
to compute exact completion times. The drawback of this
approach is that, unlike Audsley approach, just picking up
a job that meets the deadline is not enough for correctness.
For this reasons we need an heuristic to help us to select a
“good” job in each step. Fig. 1 shows an overview of MCPI.
The algorithm takes as input the task graph T, the number
of processors m and a priority table PT. The latter may be
generated by any known multiprocessor algorithm. We call
this algorithm support algorithm. The algorithm is based on
the concept of Priority Direct Acyclic Graph (P-DAG), which
defines a partial order on the jobs showing sufficient priority
constraints needed to obtain a certain schedule. We build such
a structure by adding, at each step, jobs from PT, starting from
the one with the highest priority. Each time we add a job, we
apply a modification to the priority order given by table PT, to



increase the schedulability of safety critical scenarios. When
the construction of the P-DAG is terminated, we generate a
new priority table by topological sort of the P-DAG.

The paper is organized as follows. Section II-A gives an
introduction to the formalism of multiprocessor scheduling
in Mixed Critical System. Section III defines P-DAGs and
their properties. The MCPI algorithm is then described in
Section IV. In Section V we discuss the related work and in
Section VI we give experimental results. Finally in Section VII
we discuss conclusions and future work.

II. SCHEDULING PROBLEM

A. Problem Definition

In a dual-criticality Mixed-Critical System (MCS), a job Jj
is characterized by a 5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index
• Aj ∈ Q is the arrival time, Aj ≥ 0
• Dj ∈ Q is the deadline, Dj ≥ Aj
• χj ∈ {LO,HI} is the job’s criticality level
• Cj ∈ Q2

+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is
the WCET at criticality level χ.

We assume that Cj(LO) ≤ Cj(HI)[3]. We also assume that
the LO jobs are forced to complete after Cj(LO) time units
of execution, so (χj = LO) ⇒ Cj(LO) = Cj(HI). A task
graph T of the MC-scheduling problem is the pair (J,→)
of a set J of K jobs with indexes 1 . . .K and a functional
precedence relation→⊂ J×J. The criticality of a precedence
constraint Ja → Jb is HI if χ(a) = χ(b) = HI. It is LO
otherwise.

A scenario of a task graph T = (J,→) is a vector of
execution times of all jobs: (c1, c2, . . . , cK). If at least one
cj exceeds Cj(HI), the scenario is called erroneous. The
criticality of scenario (c1, c2, . . . , cK) is the least critical χ
such that cj ≤ Cj(χ), ∀j ∈ [1,K]. A scenario is basic if for
each j = 1, . . . ,K either cj = Cj(LO) or cj = Cj(HI).

A (preemptive) schedule S of a given scenario is a mapping
from physical time to Jε × Jε × . . . × Jε = Jmε where Jε =
J∪{ε}, where ε denotes no job and m the number of processors
available. Every job should start at time Aj or later and run
for no more than cj time units. A job may be assigned to only
one processor at time t, but we assume that job migration is
possible to any processor at any time. Also for each precedence
constraint Ja → Jb, job Jb may not run until Ja completes. A
job J is said to be ready at time t iff:

1) all its predecessors completed execution before t
2) it is already arrived at time t
3) it is not yet completed at time t

The online state of a run-time scheduler at every time
instance consists of the set of completed jobs, the set of ready
jobs, the progress of ready jobs, i.e., for how much each of
them has executed so far, and the current criticality mode,
χmode, initialized as χmode = LO and switched to ‘HI’ as
soon as a HI job exceeds Cj(LO). A schedule is feasible if
the following conditions are met:

Condition 1. If all jobs run at most for their LO WCET, then
both critical (HI) and non-critical (LO) jobs must complete
before their deadline, respecting the precedence constraints.

Fig. 2. The task graph of a localization system of an airplane.

Condition 2. If at least one job runs for more then its LO
WCET, than all critical (HI) jobs must complete before their
deadline, whereas non-critical (LO) jobs may be even dropped.
Also LO precedence constraints are ignored.

The reason why we allow to have precedences from LO
jobs to HI jobs can be seen in the example of Fig. 2.
There we have a task graph of the localization system of
an airplane, composed of four sensors (jobs s1-s4) and the
job L, that computes the position. Data coming from sensor
s4 is necessary and sufficient to compute the plane position
with a safe precision, thus only s4 and L are marked as HI
critical. On the other hand, data from s1, s2 and s3 may
improve the precision of the computed position, thus granting
the possibility of saving fuel by a better computation of the
plane’s route. So we do want job L to wait for all the sensors
during normal execution, but when the systems switch to HI
mode we only wait for data coming from s4.

Based on the online state, a scheduling policy determinis-
tically decides which ready jobs are scheduled at every time
instant on m processors. A scheduling policy is correct for
the given task graph T if for each non-erroneous scenario it
generates a feasible schedule. We require that the scheduling
policies are predictable, i.e., never postponing any jobs when
getting less workload.

A task graph T is MC-schedulable if there exists an correct
scheduling policy for it. A fixed-priority scheduling policy is
a policy that can be defined by a priority table PT , which is
a vector specifying all jobs in a certain order. The position of
a job in PT is its priority, the earlier a job is to occur in PT
the higher the priority it has. Among all ready jobs, the fixed-
priority scheduling policy always selects the m highest-priority
jobs in PT . A priority table PT defines a total ordering
relationship between the jobs. If job J1 has higher priority than
job J2 in table PT , we write J1 �PT J1 or simply J1 � J2,
if PT is clear from the context. In this paper we assume
global fixed-priority scheduling which allows non-restricted
job migration. A priority table PT is required to be precedence
compliant i.e., the following relation should hold:

J → J ′ ⇒ J �PT J ′ (1)

The above requirement is reasonable, since we may not sched-
ule a job before its predecessors complete. The use of fixed-
priority in combination with the adopted precedence aware
definition of ready job is called in literature List Scheduling.

We combine list scheduling with fixed priority per mode
(FPM), a policy with two tables: PTLO and PTHI. The former
includes all jobs. The latter only HI jobs. As long as the current
mode is LO, this policy performs the fixed priority scheduling
according to PTLO. After the switch to the HI mode, this
policy drops all pending LO jobs and applies priority table
PTHI. Since scheduling after the mode switch is a single-
criticality problem, such a table can be obtained by using
classical approaches. Therefore, we focus on producing the
table PTLO, in the following simply denoted as PT .



Fixed-priority (FP) online policy (without precedences), is
predictable [6], while list scheduling (with precedences) is
not. Therefore, online we use a predictable policy described
in Sec. IV-B. For predictable policies it is sufficient to re-
strict the offline schedulability check to simulation of basic
scenarios [3]. To be more specific [7], firstly, we check the
scenario with execution times cj = Cj(LO), i.e., the LO
scenario. Secondly, for each HI job Jh, we check the scenario
where the jobs that completed before Jh have cj = Cj(LO),
while the other jobs (including Jh) have cj = Cj(HI). Such a
scenario is denoted HI[Jh]. We check these scenarios offline
under list scheduling, and then use their start times as arrival
times online.

B. Characterization of Problem Instance

To characterize the performance of scheduling algorithms
one uses utilization and related metrics computing the demand-
capacity ratio. For a job set J = {Ji} and an assignment of
execution times ci the appropriate metric is load [8]:

`oad(J, c) = max
0≤t1<t2

∑
Ji∈J: t1≤Ai∧Di≤t2 ci

t2 − t1

For a multiprocessor system there does not exist a neces-
sary and sufficient schedulability bound on load, whereas it
exists for uniprocessor systems: `oad ≤ 1. For m-processor
system the corresponding bound is only necessary, but not
sufficient [9]: `oad ≤ m. In Section V we discuss also
sufficient conditions on load for fixed priority scheduling.

From the problem instance T(J,→) it is convenient to
derive the following graphs:

1) HI-criticality task graph: THI(JHI,→HI), where the nodes
and edges are the subset of HI jobs and precedences

2) MIX-criticality task graph: TMIX(JMIX,→), where the
jobs in JMIX are obtained from the original set of jobs J
by modifying only job deadlines: DMIXi = Di − (Ci(HI) −
Ci(LO)).

For static mixed-criticality jobs, [10] and [11] propose the
following characterization of mixed-criticality load:

LoadLO(T) = `oad(J, C(LO))

LoadHI(T) = `oad(JHI, C(HI))

LoadMIX(T) = `oad(JMIX, C(LO))

The necessary schedulability condition for load on m
identical processors then generalizes to mixed criticality as
follows: LoadLO(T) ≤ m ∧ LoadHI(T) ≤ m. However, it was
noticed in [11] that in the LO scenario the jobs should meet
deadlines DMIXj , otherwise deadlines Dj can be missed in a
HI scenario, so they made this condition stronger by replacing
LoadLO by LoadMIX.

Lemma II.1 (Necessary condition for schedulability). Mixed-
critical problem instance T is schedulable only if

LoadMIX(T) ≤ m ∧ LoadHI(T) ≤ m (2)

In MIX-criticality graph TMIX we should have for all jobs:

Ai + Ci(LO) ≤ DMIXi

whereas in HI-criticality graph THI we should have:

Ai + Ci(HI) ≤ Di

For practical reasons, we refine the load to a new metric:

stress(J, c) = max
0≤t1<t2

m

min{m, |J′|}
·
∑

J′=Ji|t1≤Ai∧Di≤t2 ci

t2 − t1

The m/|J′| scale factor is used to consider the fact that if
there are j < m ready jobs then only j processors can be used
to schedule them.

Based on stress , one can define StressLO, StressHI and
StressMIX. One can also rewrite the necessary conditions (2)
using stress, but that would not make them stronger. Never-
theless in general, we have stress ≥ `oad , therefore we use it
as a more ‘realistic’ metric of ‘complexity’ of the scheduling
problem, as for the problem instances of growing complexity
it approaches the critical bound m faster than the load.

The formulas of Load and Stress introduced above do not
take into account precedence constraints. To solve this issue,
we define ASAP arrival times and ALAP deadlines, known in
the task graph theory [12], but so far mainly used to derive
priority tables rather than to compute the load1.

For a task graph with execution times c, ASAP arrival time
A∗ is the earliest time when a job can possibly start:

A∗j = max
i

(Aj , A
∗
i + ci | Ji are predecessors of Jj)

Dually, ALAP deadline D∗ is the latest time when a job is
allowed to complete:

D∗j = min
i

(Dj , D
∗
i − ci | Ji are successors of Jj)

It is trivial that substituting ASAP arrival time and ALAP
deadline to the job parameters does not change the schedulabil-
ity of the task graph, so the necessary conditions in Lemma II.1
remain valid, whereas the lemma becomes, in general, stronger.
It should be noted that, by definition, to compute LoadMIX

one should do the ASAP/ALAP calculation in MIX-criticality
graph TMIX using C(LO), whereas for LoadHI it should be done
in graph THI using C(HI). Therefore ASAP arrival and ALAP
deadlines for the same job are mode-dependent, and one should
use these mode-dependent values also for the second part of
Lemma II.1, where we check the properties of individual jobs.
In the sequel, unless mentioned otherwise, we assume in the
algorithms and analysis that the load and stress values are
computed using ASAP and ALAP values.

III. PRIORITY DAG

In this section we will introduce the idea of Priority DAG
(P-DAG). Informally it is a graph that defines a partial order
on the jobs showing sufficient priority constraints needed to
obtain a certain schedule. This structure makes it easier to
reason on priorities than a priority table, since the latter is
a total order and thus contains also non necessary priority
constraints. We will imply for the rest of this section that we
are using preemptive list scheduling and we always refer to

1In literature the word ALAP is usually used for latest arrival



the basic LO scenario. A priority table PT defines a total
order on the set of jobs J of T. A priority table PT defines
one and only one schedule S when applying list scheduling
on m processors, we indicate it with the following notation:
PT �m S.

Consider a task graph T = (J,→), a number of processors
m and the graph G = (J,B), where B is a partial order
relation defined on J.

Definition 1 (P-DAG). We call PT(G) the set of all priority
tables that can be obtained by a topological sort of G. G is a
P-DAG on m processors for schedule S iff:

∀PT, PT ∈ PT(G)⇒ PT �m S (3)

Two P-DAGs giving the same schedule are called equivalent.

Definition 2 (Canonical P-DAG). A Canonical P-DAG for a
schedule S is a P-DAG G:

∀PT, PT ∈ PT(G)⇔ PT �m S (4)

Let S be the schedule of a task graph T = (J,→) produced
by a priority table PT on m processors. Given two jobs J1
and J2, we say that J1 blocks by J2 (J1 `S J2) if in the
schedule S there is a point in time t where J2 is ready but not
running while J1 is running. It’s trivial that:

J1 `S J2 ⇒ J1 �PT J2 (5)

Lemma III.1. Given a task graph T = (J,→), a table PT
and a number of processors m. Consider the blocking relation
`S , where S is such that PT �m S. Then G = (J,`S) is a
canonical P-DAG for S.

Proof: We need to prove that (4) holds. Let us first prove
that G is actually a P-DAG (i.e., (3) holds). This trivially comes
from the observation that during the execution of the schedule
S, we only need to define a priority when a job blocks another.
So the priorities defined by `S are sufficient to generate S.

To prove that the priorities defined by `S are also neces-
sary, let us suppose by contradiction that there exist a table
PT ′ such that PT ′ �m S and PT ′ /∈ PT(G). The latter
means that ∃ J1, J2 so that J1 `S J2 and J1 ⊀PT ′ J2. By the
first statement and by (5), we have J1 ≺PT ′ J2 that contradicts
the second statement.
Example III.1. Let us consider the tasks of Fig 2, where J is
defined as follows:

Job A D χ C(LO) C(HI)
s1 0 3 LO 1 1
s2 0 3 LO 1 1
s3 0 3 LO 1 1
s4 0 4 HI 1 3
L 0 6 HI 1 3

consider the priority table PT = {s1 � s2 � s3 � s4 �
L}. On two processors PT produces the schedule S shown in
Fig. 3(a). From the figure is easy to derive the blocking relation
`S . We have: s1 ` s3, s2 ` s3, s1 ` s4, s2 ` s4. Notice that L
is never blocked, because, due to precedence constraints, it is
never ready until time 2, when all its predecessors complete.
From the blocking relation `S , we can derive the canonical
P-DAG G = (J,`S), shown in Fig. 3(b).

(a) Schedule (b) P-DAG

Fig. 3. The figures of Example III.1.

1: Algorithm: Forest PDAG
2: Input: task graph T
3: Input: priority table PT
4: Output: P-DAG G
5: G = (∅, ∅)
6: while PT 6= ∅ do
7: JCurr ← PopHighestPriority(PT )
8: G.J← G.J ∪ {JCurr}
9: PT ′ ← TopologicalSort(G)

10: Simulate(G .J,PT ′)
11: for all trees ST ∈ G do
12: if ∃ J ′ ∈ ST : J ′ ` JCurr then
13: G. B← G. B ∪{(JCurr, root(J ′))}
14: end if
15: end for
16: end while
17: return G

Fig. 4. The forest P-DAG generation algorithm

Also, the following is trivial:

Lemma III.2. If adding an edge to a P-DAG G does not
introduce a cycle, the resulting graph G′ is still a P-DAG and
it is equivalent to G. Also PT(G′) ⊆ PT(G).

Definition 3 (Redundant edges). An edge (J1, J2) of a P-DAG
G is called redundant iff there exists another path in G from
J1 to J2.

Removing redundant edges from a P-DAG G will not have
any effect on PT(G). The following trivially follows from
Lemmas III.1 and III.2:

Lemma III.3. Consider a task graph T = (J,→) and a graph
G = (J,B). Let B∗ be the transitive closure of B and S be
a schedule generated by a priority table PT ∈ PT(G). Then
G is a P-DAG iff:

J ′ `S J ′′ ⇒ J ′ B∗ J ′′, ∀J, J ′ ∈ J (6)

We are interested in generating P-DAGs that are shaped
like forests (i.e., a set of unconnected trees). The reason why
we want such a structure will be clear in Section IV, where
we use the properties of forest to prove some properties of our
algorithm.

We propose in this section an algorithm that generates
forest-shaped P-DAG. We will first explain the algorithm and
then prove its correctness. The algorithm is shown in Fig. 4, it
takes a task graph and a precedence compliant priority table as
input and proceeds as follows. The highest priority job JCurr
is removed from the table PT and added to the graph G. Then
(line 10) we simulate a run of the jobs included in G, using as
priority table a topological sort of G. During this sumulation
we keep note of the jobs that block JCurr and add an edge



Fig. 5. Forest P-DAG

from JCurr to the root of all the subtrees of G that include a
job that blocks JCurr.

Example III.2. Consider the task graph and the priority table
of Example III.1. We will apply Forest PDAG algorithm to
them. In the first step the algorithm picks up s1, the highest
priority jobs from PT , and will add it to the graph. In the
second iteration, we pick up s2, since it is not blocked by any
job, we continue without adding any arc. Then we pick up s3,
that is blocked by both s1 and s2, so we add the arcs (s1, s3)
and (s2, s3). At the next iteration we pick up job s4, that is
also blocked by both s1 and s2, so we add an arc from the
root of the tree that contains the blocking jobs (i.e., s3) to s4.
In the final iteration we pick up job L, that is not blocked by
any job, thus we add it to the graph without inserting any arcs
from it. The resulting graph is shown in Fig. 5.

Theorem III.4. Let G be the graph generated by the For-
est PDAG algorithm. Then G is a P-DAG and a forest.

Proof: We will prove both by induction, by showing that
at the n-th step, the statement is true for the partial graph Gn
and for priority table PTn, where both are composed of the
first n elements of PT .

Basic step. The basic step is trivial. We have a priority table
PT1 = {J1} with one element and a graph G1 = ({J1}, ∅).
A graph of one element is a forest and the only possible
topological sort of G1 gives PT1.

Inductive step. We know by inductive hypothesis that
Gn−1 is a P-DAG and can generate PTn−1. Also Gn−1 is a
forest. We only add edges from Jn to the root of the trees, this
operation may only generate another tree, thus Gn is a forest.
Also, since Jn has no parents in G, we can do a topological
sort of Gn starting from node Jn, giving it the n-th position on
the priority table, same position it has in PTn At the second
step, the partial graph that we have to explore is exactly Gn−1,
so we can generate PTn−1 from it. Since by construction up
to the (n− 1)-th element PTn and PTn−1 are equal, we can
generate PTn by topological sort of Gn.

IV. ALGORITHM

We define here the Mixed Criticality Priority Improvement
(MCPI) algorithm. It is basically an algorithm to compute
offline job priorities under list scheduling, while online we use
precedence-unaware global fixed priority with adapted arrival
times. As previously discussed, our aim is to overcome the
limitation of Audsley approach in multiprocessor systems, by
assigning priorities starting from the highest. This allows us to
compute exact completion times. We first discuss the offline
computation of priorities and then we describe the online
policy.

1: Algorithm: MCPI
2: Input: task graph T
3: Input: priority table SPT
4: Output: priority table PT
5: SPT ← PTTransform(SPT )
6: CheckLOscenarioSchedulability(T,SPT )
7: G← GeneratePDAG(T, ∅, SPT )
8: PT ← TopologicalSort(G)
9: if anyScenarioFailure(PT,T) then

10: return (FAIL)
11: end if
Fig. 6. The MCPI algorithm

Fig. 7. The initial PT transformation

A. Offline priorities computation

As shown in Fig. 1, MCPI takes as input a priority
table, produced by a support algorithm. If we use support
algorithm ALGO, we indicate that with the following notation:
MCPI(ALGO). A panoramic of the possible support algorithms
is given in Section V.

We use FPM policy, i.e., we have generate two tables, one
for LO mode and one for HI mode. As previously discussed,
scheduling in HI mode is a single criticality problem. Thus
we will compute PTHI for HI with the support algorithm
using C(HI) execution times. MCPI is just used to compute
PTLO, that we will simply indicate with PT . To build such
a PT MCPI takes the priority table generated by the support
algorithm and tries to improve the HI scenarios schedulability
by increasing the priorities of HI jobs as much as possible
without undermining the LO schedulability.

The pseudocode of the algorithm is given in Fig. 6. The
algorithm takes as inputs the support priority table SPT and
the task graph T. We require SPT to satisfy property (1).
In case the support algorithm does not imply property (1),
we apply a transformation to SPT such that (1) will hold.
The transformation is done as follows. We repeatedly scan the
priority table, from the highest to the least. For each job J that
has higher priority than some of its predecessors, we rise the
priority of those predecessors moving them immediately before
J , keeping their relative order. This procedure is illustrated in
Fig 7, where we show the task graph, the priority table and its
modifications.

We then check LO scenario schedulability. If the schedula-
bility holds, it will be kept as an invariant during the execution.
Subroutine GeneratePriorityDAG generates a forest P-DAG,
based on the support priority table SPT . It is a modified
version of Forest PDAG . Then we obtain a priority table
from G by using the well-known TopologicalSort procedure
(see e.g., [13]), which traverses the trees in G from the roots
to the leafs while adding the visited nodes to PT . Finally, the
subroutine anyScenarioFailure evaluates whether Condition 2



1: Algorithm: GeneratePDAG
2: Input: task graph T
3: Input: priority table SPT
4: In/out: P-DAG G
5: if T 6= ∅ then
6: Jcurr ← SelectHighestPriorityJob(J, SPT )
7: G.V ← G.V ∪ {Jcurr}
8: Simulate(G .J,PT ′)
9: for all trees ST ∈ G do

10: if χ(Jcurr) = LO then
11: if ∃ J ′ ∈ ST : J ′ ` Jcurr ∨ J ′ → Jcurr then
12: InsertAsRoot(Jcurr, ST )
13: end if
14: else
15: InsertAsRoot(Jcurr, ST )
16: end if
17: end for
18: PullUp(Jcurr, G, SPT )
19: J← J \ {Jcurr}
20: GeneratePDAG(T, G, SPT )
21: end if
Fig. 8. The algorithm for computing priority tree in MCPI

is met. In this case the algorithm succeeds. The check is
done by a simulation over the set of all scenarios HI[Jh],
as explained in Section II-A.

In Fig. 8 function GeneratePDAG is shown. This is a
recursive function that takes as inputs the task graph T, the
support priority table SPT , and the graph G generated so far
(that will be empty at the beginning of the first iteration). The
function is very similar to the algorithm of Fig. 4. It selects
the highest priority job (i.e., the first unassigned job of table
SPT ) and adds it to the graph G. Then:

1) if χ(Jcurr) = LO: we add an arc from Jcurr to all the
root of the trees ST present in G where ∃ J ′ : J ′ ` Jcurr.
We also add an arc from Jcurr to the root of the subtrees ST
present in G where ∃ J ′ : J ′ → Jcurr.

2) if χ(Jcurr) = HI: an arc from Jcurr to the root of all
the trees present in G is added.

The reason why we add extra arcs, compared to the proce-
dure shown in Fig. 4 is to ensure safety of further modifications
of G. These modifications are done by function PullUp when
called on Jcurr. This function is the core of the algorithm. It
modifies the P-DAG generated so far trying to improve the HI
schedulability of the initial priority order. Notice that if this
function were not called, the algorithm would just generate a
P-DAG of the initial priority table SPT . After the PullUp,
we just remove the current jobs from J and the function is
called again recursively.

Function PullUp is described by the pseudocode in Fig. 9.
The idea behind this function is to try to improve the schedu-
lability of HI scenarios by raising the priorities of HI jobs,
“swapping” their position in the graph with LO jobs while
keeping the LO scenario schedulability an invariant.

Function LOpredecessors(J,G) returns the set of direct
descendants of LO criticality: {Js | J B Js, χs = LO}. At
each step in Fig. 9 we pick the least priority predecessor from
the working set PREC, then subroutine CanSwap(J, J ′, G)
checks if it can be safely swapped. If so, we perform the swap

1: Algorithm: PullUp
2: Input: job J
3: Input: priority table SPT
4: In/out: priority tree G
5: PREC = LOpredecessors(J,G)
6: while PREC 6= ∅ do
7: J ′ ← SelectLeastPriorityJob(PREC, SPT )
8: PREC ← PREC \ {J ′}
9: if CanSwap(J, J ′, G) then

10: TreeSwap(J, J ′, G)
11: PREC ← PREC ∪ LOpredecessors(J ′, G)
12: end if
13: end while
Fig. 9. The pull-up function

Fig. 10. The effect of a Swap. The red triangle marked with S represent the
successors of J , while the triangle marked with P and P ′ are, respectively
the predecessors of J and J ′.

and extend the working set of children. The function proceeds
until this set is empty. Subroutine CanSwap(J, J ′, G) per-
forms a ‘swap’ modification of graph G (described below),
thus obtaining new tentative graph G′ and a corresponding
tentative schedule S . This new schedule is calculated by fixed
priority simulation in LO scenario for a PT ′ ∈ PT(G′). The
new schedule is accepted by CanSwap if it is LO-schedulable.
Note that CanSwap immediately rejects to swap J and J ′ if
J ′ →∗ J , to maintain the precedence compliance of priorities.

Function TreeSwap(J, J ′, G) performs the following
modification on graph G:

1) (J ′, J) is transformed into (J, J ′)
2) if ∃Jp : (Jp, J ′), (Jp, J

′) is transformed into (Jp, J)
3) ∀Js : ∃(J, Js), (J, Js) is transformed into (J ′, Js)

The swap is illustrated in Fig. 10. After the swap we update
the set PREC to take 3) into account and we reiterate.

Example IV.1. Consider again the instance and the priority
table of Example III.2. Let us apply MCPI on them. The table
PT is already precedence compliant, so PTTransform will
not modify it. Then we check LO schedulability, by simulation.
The result of the simulation of the LO scenario is the Gantt
chart of Fig. 3(a), where it is easy to check that no jobs miss
its deadline.

Then we apply function GeneratePDAG. In the first itera-
tion we add s1 to G. It is not blocked by any other job, so we
proceed with the second iteration. s2 is added to G, again we
do not have any blocking. Next we add job s3, and we have
the following blocking relations: s1 ` s3 and s2 ` s3. Thus
we add the following edges to G: s1 B s3 and s2 B s3. Then
we add s4. Since it is a HI job, we add the edge s3 B s4,
since s3 is the root of the only tree of G.

Since s4 is a HI job, we run PullUp on it. First we swap



Fig. 11. The effect of function PullUp on job s4.

Fig. 12. The schedule obtained by MCPI in Example IV.1.

it with s3, after checking that after this operation the jobs will
still meet their deadlines. Then we swap it also with s1 and s2.
The result of PullUp function is shown in Fig. 11. Finally we
add job L to the graph and the edge s3 B L. Since s3→ L,
we may not swap further, thus obtaining the following P-DAG:

From topological sort we obtain the priority table PT =
{s4 � s1 � s2 � s3 � L}. The priority table thus obtained
leads to the schedule of Fig. 12. The reader may easily verify
that using the initial priority assignment, the schedule will
fail in scenario HI[s4], where s4 will run for 3 times unit,
while using the table generated by MCPI the task graph is
schedulable in HI[s4] and HI[L].

Theorem IV.1. The Graph produced by GeneratePDAG
procedure is a forest P-DAG.

Proof: GeneratePDAG proceeds similarly to For-
est PDAG, which is correct by Theorem III.4. There are only
two differences:

1) it adds more edges at each step
2) it performs the swap modification

Since, by Lemma III.2, with extra edges added, G still remains
a P-DAG, we observe, by Theorem III.4, that GeneratePDAG
ensures that G is a P-DAG at least until the first swap.

To complete the proof we have to show that after the
swap operation G remains to be a P-DAG. Let us assume
by contradiction that, after a swap TreeSwap(Js, Jp, G), the
resulting graph G′ = (T′,B) is no longer a P-DAG. Notice
that Js is a HI job, and thus after inserting it G becomes a
connected tree. Also, after the first swap, G is still a tree, such
that Jp is the new root and job Js is the root of a subtree
that contains all jobs except Jp (see Fig. 10). After multiple
swaps, we will have a tree composed of a chain of LO jobs
in the upper part, connected to a subtree that has Js as root.
This is illustrated in Fig. 13.

On the left side of the figure we have a tree with HI job J
as root. After swapping J with J ′,J ′′ and J ′′′ (in this order),
we obtain the tree on the right side. This tree is composed of
a chain of J ′,J ′′ and J ′′′ and a subtree whose root is J .

By Lemma III.3 and the contradicting hypothesis, we have
that G′ can generate a table PT ′ that leads to a schedule S

Fig. 13. The effect of multiple Swaps.

such that:
∃J ′, J ′′ : J ′ `S J ′′ ∧ J ′ 7∗ J ′′

For TreeSwap(Js, Jp, G) all the possible J ′ ` J ′′ relations
that were not present before the swap are such that either
J ′ = Jp or Jp → J ′. This is because, by lowering Jp

priority (i.e., shifting forward its execution), it might enter in
the execution window of another job. The same holds for its
successors in G.

For Jp, we can then rewrite our contradicting hypothesis
as follows:

∃J ′′ : Jp `S J ′′ ∧ Jp 7∗ J ′′

After the swap, Jp is the root of a subtree ST . So ∀J ∈
ST, Jp .∗ J . All jobs J ′′ that are not in ST are in the chain
above Jp, this means that ∀J ′′, Jp 7∗ J ′′ ⇒ J ′′ .∗ Jp which
implies that ∀PT ′ ∈ PT(G), Jp 0S J ′′.

Let us now consider jobs J ′ such that Jp → J ′. An
invariant of our algorithm is precedence compliance, i.e., Jp →
J ′ ⇒ J ′ .∗ Jp. This means that all such J ′ are in the chain
above Jp. The same reasoning as in the previous case holds.

Theorem IV.2. The computational complexity of MCPI is
O(Ek2 +mk3log(k)), where k is the number of jobs, E the
number of edges and m the number of processors.2

B. Predictable Online Policy

The online policy should be predictable, in the sense that
lowering the execution times may not increase the termination
time. List scheduling is, in general, non-predictable. Therefore,
online we execute a predictable policy that behaves the same
way as list scheduling in basic scenarios. Recall that offline we
check schedulability by simulating all basic scenarios. For each
of them we record all jobs start time in a table and provide the
table to the online policy. Online, we keep track of the current
basic scenario, assuming LO when in LO mode and HI[Jh]
when job Jh causes a switch to HI mode. We assume that
jobs arrive not at their nominal arrival times, but at their offline
start times specified in the table of the current scenario. The
modified arrival times ensure that precedences are satisfied.
Therefore our online policy uses the default classical global
fixed priority scheduling which is known to be predictable.

V. RELATED WORK: DISCUSSION AND ANALYSIS

Although our scope is finite set of jobs, most of the
literature concerns with instances that have an infinite set of

2We will provide all missing proofs in an extended version



jobs, generated by periodic or sporadic tasks. Periodic tasks are
said to be synchronous if the offsets between the first arrival
of different tasks are statically known. The deadlines can be
implicit (i.e., equal to the period), constrained (i.e., less or
equal to the period) or pipelined (i.e., larger than period).

Our work can be applied for scheduling the hyperpe-
riod of periodic synchronous non-pipelined(i.e., implicit or
constrained-deadline) tasks with precedence constraints. How-
ever, we still consider general real-time policies, even if not
originally designed for such systems, as they can be reused as
starting point for our priority-improvement algorithm. We are
particularly interested in the policies tailored for multiproces-
sor systems, assuming global fixed priority for jobs.

1) Multiprocessor Scheduling: Whereas for uniprocessor
scheduling a fixed-job-priority algorithm (EDF) is optimal,
for multiprocessor case, dynamic job priorities are essential
for optimality[5]. Moreover, the EDF heuristic can be very
inefficient for multiprocessors. In seminal work of Dhall and
Liu [14] it was shown that the best, i.e., maximal, load that
can be guaranteed for any schedulable job instance for EDF
on multiprocessors is no better than for EDF on uniprocessor.
For arbitrarily small ε > 0 one can find a feasible job instance
with load 1+ ε that is not schedulable by EDF. For this, let us
consider m small-deadline jobs with utilization ε/m each and
one job with utilization 1 and a large deadline. If the last job,
which has a large utilization, was given the highest priority
then the schedule would be feasible.

In [15] it was shown that in general implicit-deadline
periodic task sets under global fixed priority for jobs have
the following best guaranteed utilization: (m+1)/2. Roughly
speaking, the fixed priority scheduling can be guaranteed to
find a multiprocessor schedule if the system is loaded by no
more than one half, and even this is only possible if job priori-
ties are well calculated, e.g., the plain EDF cannot provide this
guarantee, as explained earlier. Therefore, EDF modifications
have been proposed to provide this guarantee. The main idea
of several such algorithms is so-called ‘separation’ of jobs,
i.e., separating those that have low and high contribution to
load. One of such algorithms is fpEDF, formulated for periodic
tasks [15], and later on generalized to sporadic tasks under
name EDF-DS, where DS stands for density separation (see
[5] for references). In our notation, this algorithm computes
job density as δi = Ci/(Di −Ai) and it differs from EDF by
always giving the jobs with δi > 1/2 the highest priority, ties
are broken arbitrarily. For the other jobs, the priority is the
default EDF. Obviously, this strategy resolves the Dhall-effect
counterexample mentioned earlier.

2) Precedence-constrained Scheduling: The list scheduling
can be seen as generalization of fixed-priority scheduling
by handling precedence constraints using synchronization be-
tween dependent jobs, i.e., including wait for predecessor com-
pletion into the condition of job ‘ready’ status. Synchronization
is essential for multiprocessors, whereas for single processor
systems it may be sufficient to require precedence compliance
of the priority [16], [1]. In both cases, it is generally recognized
that the definition of EDF heuristics should be adjusted by
using ALAP deadlines D∗ instead of the nominal deadlines
for priority assignment. For example, the list scheduling knows
so-called ‘ALAP’ and b-level heuristics [12]. Single-processor
scheduling uses this approach for priority assignment with

adjusted deadlines [16]. Sometimes the ALAP-adjusted EDF
is a part of an optimal strategy, see [12] for further references.

3) Mixed-critical Scheduling: There are many works on
mixed-critical scheduling for uniprocessor systems that assume
the FPM scheduling policy and compute priorities either by
a variant of Audsley approach or by improving the EDF
priorities. Our previous work, MCEDF [7] algorithm can be
seen as a combination of the two, also based on P-DAG. How-
ever in the present paper we extended the P-DAG analysis to
support precedence relation and multiple processors. Moreover
we abandon Audsley approach replacing it by more elaborate
priority improvement in P-DAGs, while, by the following
theorem, offering a generalization of MCEDF.

Theorem V.1. For single processor and without precedence
constraints, MCPI(EDF) is equivalent to MCEDF3

EDF sets the PT in the increasing deadline order, therefore
the EDF improvement strategies perform deadline modification
of HI jobs, reducing their deadlines to improve their priorities
w.r.t. LO jobs and re-use EDF schedulability analyzes for the
modified problem instance. One of the strategies for deadline
modifications scales the relative deadline of all HI jobs by the
same factor x, 0 < x < 1. This strategy was generalized for
multiprocessors in [17], where it was combined with EDF-DS.

There are only a few works on precedence-constrained
mixed-criticality scheduling. For single processor, [1] gener-
alizes Audsley approach based algorithm OCBP to support
precedence constraints for synchronous systems. In [18], mul-
tiprocessor list scheduling algorithm was proposed. However,
it is restricted to jobs that all have the same arrival and deadline
times. Finally, [19] consider pipelined scheduling for task
graphs. However, they implicitly assume that the deadlines
are large enough, such that they can be ignored during the
problem solving, as only period (throughput) constraints were
considered and not deadline (latency) ones.

4) Analysis: From the analysis of literature we make
the following choices. For multiprocessor scheduling we use
density separation, i.e., EDF-DS, for the construction of FPM
priority tables: PTLO and PTHI To represent the state-of-the art
approach to mixed critical multiprocessor scheduling, we apply
deadline modification to the HI jobs, but instead of the deadline
scaling, we use the deadlines DMIX, which anyway should be
met in the LO mode. In fact, we base the construction of the
LO priority table on the MIX-task graph, TMIX. In this graph we
calculate ALAP deadlines. The resulting values for DMIX

∗ are
substituted as the ‘deadlines’ when calculating the job density
and deadline-based priority in the context of EDF-DS. The
resulting LO priority table serves as input for MCPI. For fair
comparison with related work in the experiments, we use this
table as the reference to evaluate the improvement brought by
the MCPI into this table. For the HI table PTHI we use the
ALAP deadlines calculated in HI task graph THI.

VI. IMPLEMENTATION AND EXPERIMENTS

We evaluated the schedulability performance of
MCPI comparing it with those the performance of the
support algorithms. We randomly generated task graphs with

3We will provide all missing proofs in an extended version



m jobs arcs step δ σs instances EDF EDF-DS MCPI(EDF) MCPI(EDF-DS) diff(%) diff-DS(%)
2 30 20 0.005 0.01 3.2 128800 20924 21023 27375 27467 30.83% 30.65 %
4 60 40 0.02 0.05 6 50500 6839 6887 8263 8310 20.82% 20.66 %
8 120 80 0.05 0.125 12 31575 3065 3082 3521 3538 14.88% 14.80%

TABLE I. EXPERIMENTAL RESULTS.

integer timing parameters. Every task graph was generated
for a target LO and HI stress pair. The method to generate
the random problem instances is similar to the one used in
[7]. We restricted our experiments to “hard” task graphs,
i.e., those satisfying the following formula:

StressLO(T) + StressHI(T) ≥ σs (7)

The reason of this choice is that task graphs under that line
are relatively easy to schedule. We ran multiple job generation
experiments, ranging the target of StressLO and StressHI in
the area defined by (7) with a fixed step s. Per each target,
ten experiments were run, generating the points lying near the
target with a certain tolerance δ. The result of the experiments
are shown in Table I. We ran experiments for 2, 4 and 8
processors. For each generated task graph, we checked the
schedulability of EDF, EDF-DS, MCPI(EDF), MCPI(EDF-
DS). All algorithms were applied using the FPM scheduling
policy, the ALAP and ASAP arrivals and deadlines, starting
from modified deadline DMIX in the LO mode, as described
in Section V. From the result we can see that MCPI gives
a big improvement in schedulability compared to the support
algorithm, reaching a maximum of 30.83%.

Fig. 14 and Fig. 15 give the contour graph of the density of
the generated points in grayscale, where black is the maximum
value and white is 0. The horizontal axis is Load LO, the vertical
is LoadHI. We used Load in the axes because it better reflects
required parallelism. Figures from Fig. 14(a) to Fig. 14(d)
refer to the experiments made for 2 processors. In particular
Fig. 14(a) shows the density of the generated task graphs,
Fig. 14(b) shows the percentage of instances schedulable by
EDF-DS among the generated ones. Likewise Fig. 14(c) shows
the percentage of task graphs schedulable by MCPI (EDF-DS)
and Fig. 14(d) shows the percentage of task graphs schedulable
by MCPI (EDF-DS) and not schedulable by EDF-DS. As
expected the schedulability decreases while the distance from
the axis origin increase. Fig. 14(d) is particularly interesting,
because it shows how MCPI increases the schedulability over
the support algorithm when the load increases. Notice that
approximately around point (1.7, 1.7) the density is higher,
suggesting that around this point MCPI is more effective.

Figures from Fig. 15(a) to Fig. 15(d) show respectively
the same information of figures from Fig. 14(a) to Fig. 14(d),
but referred to experiments on 4 processors. From those graph
we have confirmation of the conclusions made above. Also
in Fig. 15(d) we have an area where MCPI is particularly
effective, approximately around point (3.3, 3.1).

VII. CONCLUSIONS

We addressed the problem of multi-processor scheduling
of mixed criticality task graphs in synchronous systems. The
advantage of our algorithm over state of the art was demon-
strated by experiments on a large set of synthetic benchmarks,
demonstrating a good improvement in schedulability.

In multi-processor scheduling is hard to apply the Auds-
ley approach, previously proven effective for single-processor
mixed-critical scheduling with precedence constraints [1].
Therefore in our algorithm, MCPI , we assign the priorities
in a different order. Nevertheless, MCPI still generalizes an
Audsley-approach compliant algorithm MCEDF [7], when
applied to single-processor instances without precedences.

In future work, we plan to extend the algorithm for multiple
criticality levels and to support pipelining.
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(a) Density of Generated Jobs (b) Schedulable by EDF-DS[1/2]

(c) Schedulable by MCPI (d) Schedulable by MCPI and not by EDF-DS[1/2]

Fig. 14. The contour graphs of random task graphs for 2 processors. The horizontal axis is LoadLO, the vertical is LoadHI.

(a) Density of Generated Jobs (b) Schedulable by EDF-DS[1/2]

(c) Schedulable by MCPI (d) Schedulable by MCPI and not by EDF-DS[1/2]

Fig. 15. The contour graphs of random task graphs for 4 processors. The horizontal axis is LoadLO, the vertical is LoadHI.


