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Abstract—With the proliferation of multi-cores in embed-
ded real-time systems, many industrial applications are being
(re-)targeted to multiprocessor platforms. However, exactly re-
producible data values at the outputs as function of the data and
timing of the inputs is less trivial to realize in multiprocessors,
while it can be imperative for various practical reasons. Also for
parallel platforms it is harder to evaluate the task utilization and
ensure schedulability, especially for end-to-end communication
timing constraints and aperiodic events. Based upon reactive
system extensions of Kahn process networks, we propose a
model of computation that employs synchronous events and
event priority relations to ensure deterministic execution. For this
model, we propose an online scheduling policy and establish a
link to a well-developed scheduling theory. We also implement this
model in publicly available prototype tools and evaluate them on
state-of-the art multi-core hardware, with a streaming benchmark
and an avionics case study.

I. INTRODUCTION

A not so well known fact about fixed-priority scheduling
is that it is commonly used in real-time systems not only
for meeting the deadlines but also for ensuring functional
determinism on uniprocessor platforms. This is so because
the schedule priority define the precedence (i.e., the relative
execution order) of communicating tasks [1], [2]. However,
when re-targeting the applications from single- to multi- pro-
cessors this property of priority is lost, and hence alternative
ways of ensuring ‘schedulable’ determinism is an important
issue for industry [3], where multi-cores are considered an
important target for next-generation real-time systems [3], [4].
Determinism is required for control stability and digital signal
quality, for testing and fault-tolerance by triple-modular redun-
dancy. Without deterministic communication it is impossible
to define and guarantee end-to-end timing constraints.

Deterministic execution in any concurrent platform can be
ensured by programming the application based on a determin-
istic model of computation, i.e., a formal design language, and
providing a correct implementation of the model semantics by
safe synchronization between concurrent threads. Historically,
in the academic research the streaming/KPN(Kahn process
network)-based models of computation have gained a lot of
popularity due to their affinity to signal/image processing, rel-
ative ease of multiprocessor implementation and applicability
of well-established task graph scheduling and timing analysis
theory [5]. In contrary, in industrial real-time applications
synchronous languages have gained popularity due to their
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simple concept of timing through synchronous events, well-
studied formal basis to define end-to-end precedence relation-
ships between events (and hence their timing constraints) as
well as their affinity to ‘reactive-control’ applications.

Nowadays, with ever growing integration of various func-
tionalities on shared resources it is practically relevant to
consider hybrid streaming/reactive control applications. A step
forward in this direction was combining KPNs with syn-
chronous events in reactive process networks (RPNs) in [6].
However, so far no scheduling algorithms have been proposed
for any proper subclass of RPN.

To close this gap and to help to address the industry needs
in deterministic and schedulable multiprocessor models, in this
paper we propose a subclass of RPNs called fixed-priority
process networks (FPPNs). The model and its semantics is
described in Section II. Then in Sections III and IV, for a
quite general subclass of FPPNs, we propose a scheduling
approach based on the scheduling theory of task graphs. In
Section V we evaluate our publicly available FPPN code
generation tools with a streaming (FFT) and a reactive control
(avionics) applications. In the last section we discuss related
work and present conclusions.

II. FIXED PRIORITY PROCESS NETWORKS

A. Preliminaries

Functional determinism requires that the data sequences
and time stamps at the outputs should be a well-defined
function of the data sequences and time stamps at the inputs.
Among deterministic models, the KPN (Kahn process net-
works) have gained popularity in the research on multiproces-
sor scheduling. They are deterministic due to the blocking of
the reads from the empty channels. Reactive process networks
(RPN) [6] extend KPN by events. Simultaneous occurrence
of events can lead to non-determinism, but [6] suggest that
determinism can be ensured by priorities between events. This
suggestion is exploited in our model, Fixed Priority Process
Network (FPPN). Our model differs from KPN and RPN by
assuming blocking access of processes to events and non-
blocking one to the data channels. Nevertheless, any FPPN can
be directly translated to an equivalent RPN where processes
never have to block for data [7].

We ensure determinism by so-called functional priorities,
whose effect is equivalent to the effect of fixed priorities on a
set of tasks under uniprocessor fixed-priority scheduling with
zero task execution times. The order in which such tasks
execute is defined first of all by the time stamps when the



tasks are released (we say, ‘invoked’) and secondly by the task
priorities. Controlling the execution order implies determinism.
This property extends from zero-delay to conventional tasks
provided their periods and deadlines have some restrictions [1],
[2]. Modeling their behavior makes FPPN functionally equiv-
alent to such real-time systems. However, we do not put any
restrictions on periods and deadlines. We use the priorities
not directly in scheduling, but rather in the definition of
model semantics. FPPN can be scheduled on single or multiple
processors by scheduling policies with and without priorities,
provided that the semantics is respected.

To define the semantics, we introduce some preliminary
definitions. We assume a set of variables, each variable ini-
tialized at start. The set of variables is divided into the set of
local variables, X , and channels. The latter are subdivided
into internal channels C, i.e., those shared between pairs
of processes, and the external inputs and outputs, denoted
I and O. Access to the channels is determined by channel
type, which define the effect of read and write actions. We
define two default channel types: a FIFO (first-in-first-out)
and a blackboard. The FIFO has a semantics of a queue. The
blackboard remembers the last written value, and it can be
read multiple times. Reading from an empty FIFO or a non-
initialized blackboard returns an indicator of non-availability
of data. An action of writing variable x ∈ X to channel c ∈ C
is denoted x!c. An action of reading is denoted x?c.

An event generator e is defined by the set of possible
sequences of time stamps τk that it can produce online. A
generator e is characterized by deadline de and a partitioned
subset Ie and Oe of external channels. [τk, τk + de] define
the time interval when k-th sample in Ie and Oe can be read
resp. written. The corresponding actions are denoted x?[k]Iei
and x![k]Oej . We define two types of event generators: multi-
periodic and sporadic. Both are parameterized by me, the
burst size, and Te, the period. Bursts of me periodic events
occur at times 0, Te, 2Te, etc.. For sporadic events, at most
me events can occur in any half-closed interval of length Te.

Next to write and read actions, we define variable assign-
ment and waiting until time stamp τ : w(τ). The actions are
assumed to have zero delay. The set of all actions is denoted
Act . Execution trace α ∈ Act∗ is a sequence of actions, e.g.,

α = w(0), x?[1]I1, x := x2, x!c1,w(100), y?c1, O1![2]y

In this example, at time 0 we read data from I1 sample [1]
and compute its square. Then we write to channel c1. At time
100 we read from c1 and write to output O1 sample [2].
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Fig. 1. Fixed Priority Process Network Example

Definition 2.1 (FPPN): An FPPN is a tuple PN =
(P,C,FP, ep, Ie, Oe, de,Σc,CT c) where P is a set of pro-
cesses, C ⊆ P × P is a set of internal channels, so (P,C)
is a directed graph. In addition to process network graph,
which can be cyclic, we define a directed graph (P,FP),
FP ⊂ P ×P , called functional priority graph, which must be
acyclic (a DAG). We use notation p1 → p2 for (p1, p2) ∈ FP .
The functional priority should be defined at least for the
processes accessing the same channel: (p1, p2) ∈ C ⇒ p1 →
p2 ∨ p2 → p1. ep is a mapping from process p to a unique
event generator, whereas Ie and Oe are mappings from event
generator to a (possibly empty) partition subset of external
input and output (I/O) channels. de defines the relative deadline
for accessing the I/O channels of generator e. Σc defines
alphabets for internal and external I/O channels. CT c defines
the channel types.

By abuse of notation c ∈ C is a channel (state variable)
and at the same time a pair of writer and reader, (p1, p2). For
p1 the channel is said to be an output and for p2 an input.

Because processes p are related one-to-one to event gen-
erators ep, we associate the generator attributes with the
processes, and use notations Tp, mp, dp, Ip and Op.

An example is shown in Figure 1. It represents an imag-
inary signal processing application with input sample period
200ms, reconfigurable filter coefficients and a feedback loop.

Definition 2.2 (Process): Each process p is associated with
a deterministic automaton (`p

0, Lp, Xp, Xp
0, Ip,Op, Ap, Tp).

where Lp is a set of locations, `p0 is initial location, Xp is set
of internal variables, Xp

0 are initial values of variables. Ip,Op

are (both internal and external) input and output channels:
Ip ⊆ Ip, Op ⊆ Op. Ap is a set actions, which consists of
variable assignments for Xp, reads from Ip, and writes to Op.
Tp is transition relation Tp : Lp × Gp × Ap × Lp, where Gp

is the set of predicates (guarding conditions) defined on the
variables from Xp.

Informally, a process represents a software subroutine with
a given set of locations (source-code line numbers), variables
and transitions (data and operators). The latter include the
current location (line number), the guard on variables (‘if’
condition), the action (operator body) and the next location.
A job execution run of a process automaton is a non-empty
sequence of automaton steps (executed lines of code) that
brings it back to its initial location (as a subroutine). We
assume that at k-th job execution run the external inputs Ip
and outputs Op are read/written only at sample index [k].

We give two definitions of FPPN semantics. An imperative
requirement for the execution of FPPN is synchronous arrival
of all simultaneous event invocations.

The zero-delay semantics can be defined in terms of rules
to construct the execution trace of FPPN for a given sequence
(t1,P

1), (t2,P
2) . . . where t1 < t2 < . . . are time stamps and

Pi is the multiset of processes invoked at time ti by their event
generators. The execution trace has the form:

Trace(PN ) = w(t1) ◦ α1 ◦w(t2) ◦ α2 . . .

where αi is a concatenation of job execution runs for the
processes in Pi included in an order such that if p1 → p2
then the job(s) of p1 execute earlier than the job(s) of p2.



The real-time semantics is a relaxed version of the zero-
delay one. It allows jobs to have any execution time and to start
concurrently to each other at any time after their invocation.
However, the FPPN execution should satisfy timeliness and
precedence. Timeliness means completion within the relative
deadline dp. Precedence concerns the jobs of the same process
and the jobs accessing the same channel. Each such subset
of jobs should execute in a mutually exclusive way and
respect the execution order of zero-delay semantics, sorted by
invocation time and priority.

Proposition 2.1 (Deterministic Execution): The sequences
of values written at all external and internal channels are func-
tionally dependent on the time stamps of the event generators
and on the data samples at the external inputs. 1

III. SCHEDULING MODELS

A. Task Graph Derivation

FPPN is a model of computation designed to formalize the
behavior of real-time tasks with deterministic communication,
including those uniprocessor scheduling settings that exploit
the schedule priority to ensure determinism. For the latter there
exists a family of relevant scheduling techniques, such as [1],
[2]. Such techniques can be seen as ready-to-use uniprocessor
scheduling methods applicable to FPPN and related models,
such as synchronous languages [2].

As a formal language, FPPN should show the same deter-
ministic behavior no matter which platform it is implemented
on. A correctly implemented formal language would ensure
deterministic execution on multiple processors, but ensuring
timeliness by multiprocessor scheduling would remain to be
challenging. This problem gets even harder when sporadic
tasks are involved. Therefore, to demonstrate scheduling for
FPPNs, we consider a practically relevant subclass of FPPNs
where the use of sporadic tasks is restricted.

From the subclass of FPPNs considered here one can
statically derive a task graph which then serves as input
to a scheduling algorithm. The algorithm generates a static
schedule, where we model sporadic processes by periodic ones
with worst-case demand of resources. To make it possible, we
put a restriction that each sporadic process p be connected
by a channel to exactly one ‘user’ process u(p), which must
be periodic and which must have at most the same period2:
Tu(p) ≤ Tp. This restriction is practically relevant, because a
sporadic process often plays an utility role, ‘configuring’ some
application parameters of a periodic process, e.g., in Fig. 1
process CoefB configures the filter coefficients of user process
FilterB.

The run-time sporadic jobs invoked inside the user period
are modeled by ‘periodic server’ jobs that arrive at the bound-
aries of the user period intervals. As indicated in the task
subgraph, the server jobs at time b must have precedence over
the user job that also arrives at time b. This is so because for
causality reasons the server jobs can only handle the real jobs
that have been invoked in the past, i.e., inside (a, b), whereas
FPPN semantics requires that the earlier jobs have precedence

1All proofs can be found in extended version of this paper, [7].
2one could relax the restrictions on the number of user processes and their

periods at the cost of somewhat more complex task graph construction
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Fig. 2. Handling a Sporadic Process. (Handling the priority – see Sec. IV)

over the later ones. For convenience, we say that the server
jobs for process p are generated by an imaginary m-periodic
‘server process’ p′. To ensure the precedence of the server
jobs we set: p′ → u(p). Note that this does not mean that
sporadic processes must always have priority over their users,
the higher priority is only required for their ‘servers’, which
are imaginary processes introduced to define the scheduling
algorithm.

The deadlines of the server jobs are corrected to com-
pensate for worst-case one-period postponement of job ar-
rival due to waiting until the job is handled by the server3:
dp′ = dp−Tu(p). Thus, we effectively assume arrival at time b
but count the deadline from time a, in order to be conservative.

Definition 3.1 (Task Graph): A task graph is a directed
acyclic graph (DAG) T G(J , E) whose nodes are jobs:
J = {Ji}. A job is characterized by a 6-tuple Ji =
(pi, ki, Ai, Di, Ci), where: pi is the process to which the job
belongs, ki is the invocation count of job, Ai ∈ Q≥0 is the
arrival time, Di ∈ Q+ is the required time (absolute deadline),
Ci ∈ Q+ is the WCET (worst-case execution time). A job
can be denoted p[k], i.e., k-th job of process p. The edges E
are called precedence edges and represent constraints on job
execution order.

The task graph for PN is derived as follows:

1) Obtain an imaginary process network PN ′ where
each sporadic process p is replaced by m-periodic
‘server’ process p′ with burst size mp′ = mp, period:
Tp′ = Tu(p), and priority relation: FP ′ : p′ → u(p).

2) Simulate the job invocation order in PN ′ for one
hyperperiod, i.e., time interval [0,H), where H is
the least common multiple4 of Tp in PN ′. The
simulation results in a sequence of jobs J = (pi[ki]).
Sequence J defines a total order <J

3) Construct graph T G(J , E) where the nodes J are the
elements of sequence J and the edges are defined for
a pair of jobs Ja = pa[ka] and Jb = pb[kb] as follows:
• (Ja, Jb) ∈ E ⇔ Ja<JJb ∧(pa ./pb∨pa =pb),

where:
• pa ./pb ⇔ (pa, pb)∈ FP ′ ∨ (pb, pa)∈ FP ′.

and the job parameters for job Ji = p[k] defined by:

3here we implicitly require that dp > Tu(p) but if it is not the case we can
use server jobs with a period T ′ being a fraction of Tu(p) instead, so that the
server deadlines become positive

4Tp ∈ Q+, so the lcm is computed for rational numbers



• Ai = Tp · b(k− 1)/mpc and Di = Ai + dp if
p is m-periodic

• Ai = Tp′ · b(k−1)/mp′c and Di = Ai +dp−
Tp′ if p is sporadic

4) Truncate all the required times Di to the hyperperiod:
Di := min(H,Di). This is required by the algorithm
described in Section III-B.

5) Remove redundant edges by transitive reduction.

Fig. 3 shows an example assuming Ci = 25ms.
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Fig. 3. Task Graph for the Process Network in Fig. 1

In this example, H = 200. Every process is represented by
mp · H/Tp vertices. Since CoefB is represented by its server
process, its period 700 is replaced by the period of its user
(FilterB), 200. Since mp = 2, CoefB is represented by two
jobs. InputA has priority over FilterA and NormA, and hence
it is joined to both of them. However, in the latter case the
edge is redundant due to a path from InputA to NormA.

B. Compile-time Scheduling Algorithm

To demonstrate availability of proper scheduling techniques
applicable for FPPNs, in this paper the scheduling is defined
by compile-time scheduling algorithm and online scheduling
policy. The compile-time algorithm schedules the given task
graph and prepares a configuration for the online policy. This
algorithm must have a scalable complexity, as it may face large
hyperperiods in multi-rate systems. We apply the precedence-
constrained scheduling theory, which is commonly used in
streaming languages [5] and which usually does not consider
jobs with multiple different arrival times and deadlines, but
they can be naturally incorporated, as shown here.

Currently we assume non-preemptive scheduling on a set of
M identical processors. We restrict ourselves to non-pipelined
scheduling and thus truncate the deadlines to avoid overlap
of subsequent task graph executions. We adopt this restriction
because of too little previous research on scalable pipelined
scheduling which would directly support periods, deadlines
and bounded number of processors at the same time. 5

The compile-time scheduling algorithm constructs a static
schedule, where all start times are fixed. This schedule is
repeated periodically and therefore is referred to as periodic
frame. The frame period is the hyperperiod H.

Let si be the starting time of job Ji w.r.t. the beginning of
the frame. The execution interval for job Ji is interval [si, ei),
where ei = si + Ci. Let us define the following predicate:
ψi,j : ei ≤ sj , stating that job Jj executes after Ji.

5For this combination of constraints, pipelined streaming currently knows
a rich set of scalable timing analysis but not scheduling techniques. One
usually employs non deadline-aware retiming and unfolding [5] or employs
less-scalable methods based on constraint solving and model checking.
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Fig. 4. A Static Schedule for the Task Graph in Fig. 3

Definition 3.2 (Static Schedule): A static schedule for a
task graph T G = (J , E) on a multiprocessor platform with
a finite set M of processors consists of defining for each job
Ji a mapping µi ∈M and a start time si ∈ Q≥0. A schedule
is called feasible if it satisfies the following constraints:

Arrival time: ∀i si ≥ Ai

Deadline: ∀i ei ≤ Di

Precedence: ∀i, j (Ji, Jj) ∈ E ⇒ ψi,j

Mutual exclusion: ∀i, j µi = µj ⇒ ψi,j ∨ ψj,i

The problem formulation can be seen as a generalization
of the classical problem, where all jobs have a zero arrival
and a common required time. The classical problem is NP-
complete. Therefore a heuristic algorithm is generally required
in practice. Like many precedence-constrained scheduling al-
gorithms, at compile time we also use list scheduling, which
assumes a heuristically computed schedule priority SP , a total
order where earlier jobs have higher priority. Note that SP
should not be confused with functional priority, FP , used
to determine the precedences in E . Normally, priority-based
scheduling defines a job Ji to be ready at time t if at that time
it has arrived and has not completed yet: Ai ≤ t < ei. The
list scheduling extends this condition by also requiring that
all predecessors should have completed: ∀j ∈ Pred(i).ej ≤ t,
where Pred(i) = {j |(Jj , Ji) ∈ E}. For a given SP , list
scheduling consists of a simple simulation of the fixed-priority
policy using the updated definition of ready jobs.

If the obtained static schedule satisfies the job deadlines
then it is feasible, otherwise the selected schedule priority
may be sub-optimal. Different heuristics exist for optimizing
priority order SP [8]. For defining the heuristics as well as
for facilitating the problem analysis in general it is useful to
introduce the well-known notions of ASAP start time A′i and
ALAP6 completion time D ′i (which stands for ‘as soon’ and
‘as late’ as possible). They provide a lower bound on si and
an upper bound on ei for any feasible schedule if one exists.
These times can be defined by recursive formulas:

A′i = max(Ai, max
j∈Prec(i)

A′j + Cj)

D ′i = min(Di, min
j∈Succ(i)

D ′j − Cj)

where Pred(i) and Succ(i) are predecessors and successors.
A less commonly known fact about ASAP and ALAP is that
they can serve to define an utilization metric that takes into
account the precedence constraints. This metric was originally
introduced for the case of no precedences and was called
load [9]. We define the task graph load as:

Load(T G) = max
0≤t1<t2

∑
Ji: t1≤A′

i∧D′
i≤t2

Ci

t2 − t1
where A′i and D ′i are ASAP and ALAP times.

6in the literature ALAP often refers to arrival



Proposition 3.1 (Necessary condition for schedulability):
A task graph T G can be scheduled on M processors only if
∀i.A′i + Ci ≤ D ′i and dLoad(T G)e ≤M .

As for heuristics to compute SP , apparently also in this
case it is useful to consider the EDF (earliest-deadline first),
often applied in preemptive online scheduling. For task graphs,
the definition of EDF should be adjusted by using ALAP
instead of the nominal job deadlines. Different variants of this
heuristics exist, such as ‘ALAP’-heuristic, b-level heuristic [8],
modified deadline monotonic [1], etc.. For certain problem
restrictions the EDF was proven optimal, see [8].

IV. ONLINE SCHEDULING POLICY

Our scheduling policy consists of repetition of the schedule
frame with period H. The jobs are mapped to the processors
according to mapping µi. In fully static scheduling, we would
also have used si for the start time of the jobs w.r.t. the start
of the frame. However, the statically computed start times are
not robust against inaccuracies in estimations of WCET, which
can appear in measurement-based and probabilistic WCET
estimations. Therefore instead we use a policy where the jobs
synchronize with their predecessors instead of relying on si
to ensure precedence constraint satisfaction. This policy is
predictable and known as static-order scheduling [5]. We have
adapted this policy to sporadic processes. After the start of
the new frame, on each processor independently the scheduler
picks the jobs in the order defined by the schedule si and
executes a ‘round’ that consists of the following steps:

• Synchronize Invocation: Wait for the event invoca-
tion that corresponds to the current job. For periodic
and m-periodic processes the event invocation occurs
at time Ai. For sporadic ones the invocation occurs
either at time Ai or earlier or does not occur at all. In
the latter case at time Ai the job is marked ‘false’.

• Synchronize Precedence: Wait until all task-graph
predecessors that run on other processors have com-
pleted. For example for job FilterB[1] we would wait
until InputA[1] has completed,

• Execute the job: unless it is marked ‘false’.

Recall (see Fig. 2) that for each sporadic process p the
variable number of jobs per frame is represented in the task
graph by server jobs. In general, the latter can be split into
H/Tu(p) subsets of the mp jobs invoked in the same user
period Tu(p). The jobs in n-th subset arrive at the same time:
A[n] = (n− 1) ·Tu(p) and always have a direct precedence to
the user job arriving at time A[n]. For example, in Fig. 3, jobs
CoefB[1] and CoefB[2] are in the same subset, they arrive at
time 0 and have precedence edge to FilterB[1].

All the jobs in a subset are invoked in time interval between
a = A[n] − Tu(p) and b = A[n], see Fig. 2. In our example,
for the jobs of process CoefB, we have arrival: A[1] = 0 and
Tu(p) = 200, so the jobs can be invoked in the interval from
a = −200 to b = 0. The negative time values should not be
surprising, as they are relative to the start of the current frame.

Consider the t-th job inside the subset. This job represents
the t-th real job invoked between a and b. If at run time less
than t jobs were invoked our scheduling policy marks the t-th
job and later jobs in the subset as ‘false’ and skips them.

If the real job of process p is invoked between a and
b then the online policy should see them as part of the
subset, see Fig. 2. However, what if the job arrives exactly
on the boundary? By periodicity, it is enough to consider
only boundary b. If the process has a higher priority than its
user then it should be executed before the user and therefore
included in the subset. Otherwise it should be executed after
the user and thus postponed to the next subset (or frame).

Therefore, if p → u(p) then the server jobs arriving at b
handle the real jobs invoked in the right-closed interval (a, b],
and in the opposite case the interval is left-closed.

Proposition 4.1 (Schedule Correctness): When based on a
feasible static-schedule input, the static-order policy always
meets the deadlines and correctly implements the real-time
semantics of FPPN.

V. EXPERIMENTS

In the context of CERTAINTY EU project an FPPN-related
programming language was defined. For that language we
developed scheduling and code generation tools as well as a
runtime environment for shared-memory multiprocessors [10].
The execution times for scheduling are obtained from pro-
filing, which is suitable for soft real-time applications. The
runtime was deployed to Linux multi-thread as well as MPPA
many-core [11] platforms. The tools are based on automatic
translation of the FPPN network and the schedule to a network
of timed automata. We support both the zero-delay semantics
for simulation and real-time semantics for concurrent real-time
execution, where multiple process automata can be mapped to
the same thread according to static mapping µi.

A. Streaming Application: FFT Transform
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FFT2_0_3

FFT2_0_0

FFT2_1_1

FFT2_1_2
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FFT2_2_1

FFT2_2_2

FFT2_2_3

FFT2_2_0

consumer

Fig. 5. FFT Task Graph

In this use case we have programmed a classical streaming
application: the FFT (Fast Fourier Transform) of four floating-
point numbers, shown in Fig. 5. We use our design framework
to compile and run this application on the Kalray MPPA
platform. All processes had the same period and deadline
Tp = dp = 200 ms, and the direction of data flow in FIFO
channels coincided with functional priority relation, and hence
the task graph maps one-to-one to the process-network graph.

The execution times of all processes were roughly 14ms,
which resulted in a load 0.93. However, single-processor
mapping did not meet deadlines, due to the runtime overhead.
The application was thus mapped on two processors, where
no deadline misses were observed. The Gantt chart of the
execution traces is shown in Figure 6. The first two rows show
the application jobs on two processors, while the third one
shows the execution of the runtime, on a separate processor.

As it can be seen the runtime causes an overhead at the
beginning of each frame, which is 41 ms for the first frame
(probably due to initial cache misses) and 20 ms for all subse-
quent frames, required to manage the arrival of 14 jobs. Also
inside the frame the runtime serves read/write synchronisation



Fig. 6. Real-time Execution of FFT on MPPA Platform

requests from the processes. While read/write overhead is
included in WCET estimations, the arrival overhead is not,
and taking it into account in schedulability analysis is future
work. For now we modeled it by an extra 41 ms job with
a precedence edge directed to the generator. This yielded a
load of ≈ 1.2, which explains the deadline misses in single-
processor mapping. We also observe that this application is
very fine grain (processing just one number per job), whereas
more coarse grain implementation would make the relative
impact of overhead small compared to the computation times.

B. Reactive-Control Application: FMS

In this experiment we consider a subsystem of avionics
Flight Management System (FMS) [4]. Because of current
limitations of our tools, we could only run it on a Linux
platform. We used one with an Intel i7 processor at 3.6GHz.
Figure 7 shows the application process network. This FMS
subsystem is responsible for calculating the best computed
position (BCP) and predicting the performance (e.g., fuel
usage) of the airplane based on the sensor data and sporadic
configuration commands from the pilot.
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Fig. 7. FMS Process Network

The sporadic processes had less functional priority than
their periodic users. The relative functional priority of the
periodic processes is rate-monotonic, which was in line with
the scheduling priority of the original uniprocessor proto-
type, making the two implementations functionally equivalent,
which we verified by testing.

For this process network we encountered a too high code
generation overhead due to a long hyperperiod (40 s) (an online
policy subroutine handling a few thousands jobs explicitly).
Therefore, we reduced it to 10 s by reducing the period
of MagnDeclin from 1600ms to 400ms and executing the
main body of the job once per four invocations. The derived
task graph contained 812 jobs and 1977 edges. The load of
this task graph was low ≈ 0.23 and, consistently, a single-
processor mapping encountered no deadline misses. To test
multi-processor execution, we still generated schedules for
different number of processors and reached similar conclusions
as for FFT concerning the runtime overhead and the job
granularity. For the Gantt chart and more results see [7].

VI. RELATED WORK AND CONCLUSIONS

In this work we proposed FPPN, a new model of computa-
tion that generalizes the determinism of real-time fixed-priority
systems [1], [2], [3] from single- to multiprocessor platforms
by reproducing the deterministic behavior of such systems us-
ing precedence constraints in semantics. From a quite general
practically-relevant subclass of FPPN, we derive static task
graphs and adapt the corresponding scheduling methods to
support deterministic and predictable communication between
deadline-constrained periodic and sporadic processes.

FPPN combines certain concepts of synchronous and
streaming languages. While practiced for a long time in
streaming, derivation of multi-tasking models from syn-
chronous languages has received attention only recently. [2]
proposes a task graph derivation and scheduling algorithm, not
supporting, however, sporadic events and multiple processors.
[1] also propose a task-graph priority assignment algorithm
for uniprocessors. From the streaming domain, the novelty of
our approach is the support of (a)periodic deadline-constrained
events. [12] is one of the few streaming languages supporting
external events with deadlines, though only periodic ones.
In [6] reactive process networks (RPNs) are proposed. FPPNs
represent a restriction of RPNs adapted to real-time tasks by
introducing the priority and explicit timing of events.

We provide online prototype tools [10] and present promis-
ing evaluation results on two use cases, including one from
industry. In future work we plan to support buffering and
pipelining, as well as mixed-critical scheduling.
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