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Abstract

We analyze data collected on a commercial telecommu-
nications system and summarize some of the lessons lear-
ned from this study. The data correspond to failure and
fault information recorded during system validation and
operation: 3063 trouble reports corresponding to a five
year period during which 5 versions of the system have
been developed and more than one hundred systems have
been introduced in the field. The failure information in-
cludes software failures as well as hardware failures due to
design faults.

1 . Introduction

The quality and dependability of a product can only be
improved through a complete program that has to be fol-
lowed from the earliest phases of the development process.
A major part of a quality program is based on the analysis
of the problems revealed in the considered product as well
as in previous releases and similar products to make re-
commendations for future developments, i.e., learn from
past experience. The results presented in this paper concern
the analysis of failure and correction data collected on a
commercial telecommunications system, including hard-
ware and software failures. The system considered is a new
generation of a family of products; the results presented
constitute a part of more global results of a program aimed
at improving the quality of this family. The data were
collected during validation and operation phases.

Since quality programs are prerequisite to system
quality, most of the companies have their own programs
and collect and analyze their own data. Several papers have
been devoted to the analysis of failure data within a quality
program, they are either specific to telecommunications
systems (see e.g., [1-8]) or related to more general
application domains such as in [9, 10]. Moreover, most of
the published results dealing with reliability growth
mainly focus on software reliability. However, hardware
reliability growth resulting from the removal of design
faults has been seldom studied. The data analyzed in this
paper cover both software and hardware reliability growth.

The paper is structured as follows. Section 2 presents
the system and the data collected. In Section 3 preliminary
analyses of collected data are performed whereas some
statistics on the software failures and faults are given in

Section 4. Section 5 gives the evolution of the failure
intensities of the hardware, the software and its main
functions. The failure rates are evaluated in Section 6.

2 . System and data presentation

The system development started at the end of the eigh-
ties. A series of versions have been successively developed
and released to the customers. Each new version includes a
set of new features and improves the system by correcting
the faults identified in previous versions. The development
teams are organized into specification teams, design teams,
coding teams and finally integration and system testing
teams. This organization allows concurrent development of
multiple versions: when the specification of version “i” is
completed, specification documents are delivered to design
teams, and the specification of version “i+1” starts. This
process is also iterated for the other activities. Three stages
can be distinguished in the life cycle of each version. The
first stage corresponds to the traditional development
phases: specification, design, coding and integration & tes-
ting. In the second stage, the version is delivered to a spe-
cific committee for acceptance testing, i.e. validation be-
fore release. Finally, the version is delivered to the
customers. It is noteworthy that the previous products that
belong to the same family of telecommunication systems
were developed according to the traditional waterfall model.
Therefore, the development of the system analyzed in this
paper required a cultural and organizational evolution.

The study covers five versions (referred to as v.1 to v.5
in this paper): v.1 and v.2 are prototypes that were not de-
livered to the customers. These prototypes have been tested
by the company, also beta-testing and acceptance testing
have been applied to these versions. v.3 was the first
commercial version. The system has been progressively
introduced in the field; more than one hundred installations
were operational at the end of the period considered.

As part of the product assurance quality activities, a
large amount of data are collected reporting failure and cor-
rection information. This study covers a period of five
years including validation and operation. Two periods can
be distinguished: the first period covers the beginning of
data collection until the release of v.3 and the second
period starts from the v.3 release until the end of data col-
lection. The data collected during the first period corres-



pond to the validation of v.1, v.2 and v.3. However, the
second period includes data related to the operational use of
v.3, v.4 and v.5 as well as data related to the validation of
v.4 and v.5. This is due to the interleaving of development
and operation phases in the development process.

2.1. Data collection

Failure reports (FRs) are used to record any discrepancy
between the expected and the observed system behavior.
The FRs received from the customers or from validation
teams are recorded in a database and then analyzed by a
specific Committee. Only one FR is kept per observed
failure (i.e., rediscoveries are not recorded): if several FRs
cover identical failures, only one (the first) is entered into
the database. An FR is both a failure report and a correc-
tion report since it also contains information about the
fault(s) that resulted in an abnormal behavior of the
system. In our study, we used the following information
extracted from the available FRs.
Registration date: gives the day during which the
abnormal behavior was noticed.
Closure date: this information is not available on all
FRs. The date indicated refers to the day when the solution
is found and tested and not to the date of fault fixing in the
operational sites. The following situations may occur:
• If the faults are identified and the corrections are

implemented and tested then the FR can be closed.
• The analysis of the FR may lead to classifying it as

irrelevant if it does not correspond to a failure of the
system. Then, the closure date corresponds to the day
when the FR is stored in the archive database.

Type: FR classification as hardware, software, documen-
tation, irrelevant (duplicate FRs or reports eliminated
because they do not refer to system failures for instance),
others (firmware, errors in operating procedures, etc.).
Fault location: identifies the components in which the
faults were corrected.
Vers ion:  gives the version in which the fault(s)
corresponding to the failure was (were) corrected (not the
version in which the failure occurred).

2.2. Software Description

The software is implemented according to a modular
architecture. It is composed of 77 Atomic Components
(ACs) fulfilling elementary functions. These ACs can be
grouped into the following functions (this grouping
resulted from a discussion with the system developer):
• Basic: low level operating system functions,
• Switching: switching and synchronization,
• Billing,
• Call processing,
• Support: user interface management, system support

and supervision,
• Terminals: junctors and subscribers interfaces.

The number of ACs and the size in kilo-lines of source
code (KLOC) of these functions are given in Table 1 for
v.4 and v.5. The sum of ACs (79) is higher than the num-

ber of ACs of the software because two ACs appear in two
different functions. Table 1 shows a large variation of the
functions' size. There are two large functions (Support and
Terminals), two others can be considered as medium
(Billing and Call processing) and two small.

Function # of ACs Size v.4 Size v.5
Basic 12  33  32
Switching 9  35  40
Billing 6  87  80
Call processing 11 107 113
Support 24 272 257
Terminals 17 304 294
Total 79 836 815

Table 1 - Number of ACs and size in KLOC of software functions.

3 . Preliminary analyses

The database contains 3063 FRs collected during five
years. Table 2 presents the number of FRs by type. The
software FRs constitute the most important part of the
data. Even though the hardware and documentation FRs
relative percentages are not high, the corresponding
number of FRs is significant. It is noteworthy that only
hardware design faults are included in the database.
Usually, these data are ignored and only physical faults are
taken into account in the analysis of hardware reliability.

Type #FRs (%)
Software 1853 (60.5%)
Hardware   195 (6.4%)
Documentation   165 (5.4%)
Irrelevant1   716 (23.4%)
Others   134 (4.4%)
Total 3063

Table 2 - Number of FRs by type

The analysis of time evolution between registration and
closure of FRs gives insights into the maintenance effort
needed to solve the problems met by customers during
operation for instance, and to follow up the efficiency of
the FR analysis process. This analysis requires the
identification of FRs with closure dates. Only 2446 FRs
have closure dates. Regarding the non closed 617 FRs,
three possibilities may hold: a) these FRs have not been
solved yet or b) they have been solved but the closure dates
are not recorded and c) even if a solution is found, the
development team decided to integrate the corrections later.

Figure 1 plots the number of FRs recorded and the
number of closed FRs per unit of time (UT). Both curves
have similar shapes but they are skewed in time due to the
correction delay: an increase of the recorded FRs is
followed by an increase of the closed FRs later. Figure 2
plots the FRs life duration, i.e. the delay between the
registration and the closure of FRs. It appears that most

1 This percentage is not very high when compared to those
observed for other real-life systems: for example the
figures published in [7, 11, 12] show that about half of the
FRs are irrelevant.



FRs are solved in few months. However, about 12% have
a life duration higher than 12 months (the FRs without
indication of the closure date are included in this set).
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4 . Software FRs: descriptive analyses

Due to space limitation, we limit the analyses to: a) the
relationship between FRs and corrected faults, b) the
distribution of faults and fault density and c) the fault
distribution among the most error prone function ACs.

4.1. Software FRs and corrected faults

Analysis of the relationship between failures and correc-
ted faults can be based only on those FRs for which the
fault location is indicated. Among the 1853 software FRs,
only 1512 identify the corrected ACs: they are denoted
CFRs. Since some failures led to corrections in more than
one AC, the number of corrected faults in ACs obtained
from the analysis of the 1512 CFRs and the associated
ACs is equal to 1801. Table 3 shows the number of CFRs
that led to the modification of 1, 2, etc. ACs. The high
percentage of CFRs that led to modify only one AC de-
notes a strong independence between ACs. A large propor-
tion of the CFRs that led to modify more than one AC is
attributed to “Terminals” which contains some highly
dependent ACs implementing different types of junctors.

The fault reduction factor defined as the ratio between
the number of failures and the number of corrected ACs
estimated from Table 3 is around 0.91. This value is of the
same order of magnitude of fault reduction factors
estimated in other case studies (see for instance [13])

# ACs modified # CFRs (%)
1 1348 (89%)
2   103 (7%)
3     32 (2%)

� 4   229 (1.8%)

Table 3 - CFRs and ACs modified

4.2. Fault distribution and fault density analysis

Identifying the most error prone functions is helpful for
debugging and maintenance tasks. As in Section 4.1, the
analysis is based on the set of 1512 CFRs. A quick analy-
sis shows that 38% of ACs contain 80% of all the soft-
ware corrected faults (the 38% of ACs constitute about
54% of the code). The distribution of faults in the func-
tions is presented in figure 3. As expected, the relative dis-
tribution of faults is consistent with the relative sizes of
the functions. “Support” and “Terminals” correspond to
67% of the software size and contain 71% of the corrected
faults. Compared to the previous products developed by the
same company, these functions are also those supporting
more new features than the others, due to the large increase
of the system processing capacity and also the introduction
of sophisticated Human Computer Interfaces. Therefore,
during the development of these functions the developers
have faced new problems. Hence, the knowledge cumulated
through feedback from previous products could not be used
to reduce the number of faults in these functions.
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Figure  3 - Distribution of faults in respective functions

Fault density, defined as the number of faults divided by
size, is a common measure generally used to evaluate
software code quality. Figure 4 plots the fault density for
software functions: “Support” has the highest fault density
while similar results are obtained for the other functions.

Figure 5 plots the fault density distribution among
ACs: similar distributions are obtained before and after v.3
release, however the proportion of ACs having low fault
density is higher for the period after v.3 release (even
though the corresponding period is longer): about 95% of
ACs have a fault density less than 3 faults/KLOC. This
result is comparable to fault density values reported for
other systems [14, 15]. It can be concluded that the quality
of code is on average similar to what is commonly achie-
ved in the field. It is noteworthy that the fault densities
reported correspond to five years of data collection, which
is a long period compared to the studies reported which are
generally limited to the first year of operation.
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4.3. Faults distribution in “Support” function

Function “Support” deserves particular analyses as it is
the one most error prone. The ACs belonging to this
function can be further grouped into three sub-functions:
HI (human-system interaction), SV (system supervision)
and SP (other system support functions).

These sub-functions respectively account for 34%, 24%
and 42 % of the function “Support” total size. Detailed
statistics on the distribution of corrected faults among HI,
SV and SP sub-functions are given in Table 4.

Sub-function HI SV SP
Corrected faults 16 % 40 % 44 %
Before v.3 release 7 % 50 % 43 %
After v.3 release 31 % 22 % 47 %

Table 4 - Corrected faults distribution among H, SV and SP

It appears that most of the faults discovered were
contained in SV and SP. The combined analysis of the re-
lative distribution of size and corrected faults shows that
SP is the most error prone part. Generally, the design and
validation of supervision functions are complex because
this part of the system mainly deals with the abnormal be-
havior of the system that is difficult to specify. Moreover,
the analysis of fault distribution, before and after v.3
release, shows that HI and SV exhibit a particular beha-
vior: most of the HI faults were revealed after the system
delivery, whereas the opposite situation is observed for
SV. This is confirmed by Figure 6, which indicates for
each AC the number of faults corrected before and after the
release of v.3 and by Figure 7 which gives the evolution
of the cumulative number of corrected faults in each sub-
function. The identification of faults in HI functions is fa-
cilitated by the use of the system in the field. This is a
more general result that is due to the fact that end-user re-
quirements related to system exploitation and maintenance
are difficult to identify early in the development process.
More involvement of these users in the definition of sys-
tem requirements and extensive use of prototyping tech-
niques should lead to the early detection of HI faults.
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5 . Failure intensity

Failure intensity, characterizing the number of failures
per unit of time, is a good indicator of the reliability
evolution. First, we analyze the evolution of the number
of software and hardware failures reported from all system
installations. In a second step, we show the relationship
between the failures and the versions of the software. Then
we consider the failure intensity of an average system.

5.1. Hardware and software failure intensities

Figure 8 plots the evolution of the software failure
intensity. We can notice a sharp increase of failure
intensity around UT 17. Before that date, the failure
intensity has been globally increasing. Afterwards, it was
decreasing denoting a global reliability growth. However,
local variations in failure intensity are observed due to a)
the introduction of new versions (see Section 5.2) and b)
the gradual installation of new systems (see Section 5.3).

Figure 9 plots the hardware failure intensity evolution
(195 failures due to design faults have been recorded). A
large proportion (40%) appeared during the first 15 UTs.
During this period, the hardware failure intensity is about
5 failures/unit of time compared to about 20 failures/unit
of time for the software while the hardware FRs constitute
only 7% of the relevant data (See Table 2). This result is
not surprising because the hardware design faults are often
revealed at the beginning of the testing period.

5.2. Software FRs distribution among versions

Figure 10 plots the software failure intensity evolution
per version. Even though all the software FRs are not
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considered here (not all of them indicate the corrected
ACs), this curve is very similar to that of figure 8. The
approximate periods of validation of each version are indi-
cated in figure 10. We can clearly see that some of the FRs
corresponding to the peak at UT 17 remained not corrected
until v.3: v.2 was just a slight modification of v.1, with
addition of some features. It was under development for a
very short period and a large part of FRs in v.2 were defer-
red until the development of v.3. The validation of v.3
started around UT 26 and its commercialization around UT
31. Note that the failures occurring before UT 26 and attri-
buted to v.3 have been observed in v.1, v.2 or v.3 while
the corresponding corrections have been introduced in v.3.

Considering figure 8 and figure 10 together, one can see
that the peaks observed in figure 8 around UT 27 and UT
43 are directly linked with the beginning of v.3 and v.4
validation whereas the peak observed around UT 36
corresponds to the beginning of the v.3 operational life. It
is noteworthy that similar curves have been reported in [4].

5.3. Average system software failure intensity

In order to analyze software reliability as perceived in
time by the users, failure intensity has to be normalized by

considering that of an average system (i.e., failure
intensity divided by the number of systems in use). Figure
11 plots the failure intensity for an average system during
the operation period starting at the release of v.3. Due to
the high number of systems in operation, the average
failure intensity observed during the operation period is
some orders of magnitude lower than the failure intensity
observed before the release of the first commercial version
to the field. This illustrates the software reliability growth.
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Figure 11 - Software failure intensity for an average system and
evolution of the number of installations

6 . Reliability evaluation

This section is devoted to reliability growth model ap-
plication to estimate the software and hardware failure rates
in operation. Models permit predictions of the product re-
liability which enable proper planning of the maintenance
effort. This, in turn, minimizes the maintenance cost wi-
thout decreasing customer satisfaction. Reliability predic-
tions give the developer more knowledge about the product
and the corresponding development process and could be
helpful for the development and maintenance of further
products. Comparison of the modeled product with the
“state of the art” can provide information about possible
optimization of the development process. Moreover, the
evaluation of software functions reliability leads to the
identification of  the system parts that need special
attention during the development and validation phases.

For this purpose, we have applied several reliability
growth models to the observed failure intensity of an
average system, in particular the hyperexponential model
(HE) [16]. HE is a non homogeneous Poisson process
model characterized by the following failure intensity [16]
(�, �sup and �inf are to be estimated from the data):

h(t) = 
�  �sup e-�supt + �  �inf e

-�inft

 �  e-�supt + �  e-� inft
 , 0� � �1, � + � =1

h(t) is non-increasing with time from h(0)= ��sup +
��inf to h(�) = �inf: �inf is referred to as the residual
failure rate. This model has been applied with success to
several data sets (see e.g. [3]).

We will first apply the HE model to the whole
software, then to the software functions and finally to the
hardware system. We concentrate on the operational period
starting at v.3 release, considering an average system.

The result of the HE model application to software data
is given in figure 12. The residual failure rate for this case
equals 1.4 10-3 /h. The residual failure rates estimated by



the HE model for the various functions are given in
Table 5. The highest value corresponds to the “Support”
function which contains the highest number of CFRs.
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Figure 12 - HE model applied to the software failure data

Function Residual failure rate (/h)
Basic 8.2 10-6

Switching 3.0 10-6

Billing 2.7 10-5

Call processing 4.3 10-5

Support 2.7 10-4

Terminals 7.7 10-5

Table 5 -  Software functions residual failure rates (failures/hour)

Figure 13 plots the HE model applied to the hardware
failure intensities for an average system. The residual fai-
lure rate is 2.5 10-5 /h. The estimated hardware failure rate
is thus about 50 times smaller than the estimated software
failure rate. However, we should keep in mind that only
design hardware faults are included in this evaluation. One
should add the failure rate due to physical faults to obtain
the failure rate of the hardware.
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Figure 13- HE model applied to the hardware failure data

7 . Conclusion

The data reported in this paper allowed us to analyse se-
veral issues related to the quality and the reliability of a te-
lecommunications commercial system. Both software fai-
lures and hardware failures due to design faults are conside-
red. Regarding the results obtained for the software, the es-
timated fault densities as well as the failure rates are of the
same order of magnitude of what we have already observed
on other similar telecommunications systems. Therefore,
the organizational and cultural evolution due to the modifi-
cation of the development process did not have a negative
impact on the reliability of the system. Most of the pro-
blems discovered in the software were attributed to new
functionalities and major modifications of the previous
products belonging to the same family. Unfortunately, the
data analyzed in this paper did not allow us to explicitly
analyse the impact of reuse on software reliability and qua-
lity. The enrichment of the data collection procedure by re-

porting this kind of information is necessary to make these
analyses. The other interesting aspect of the data analysed
in this paper concerns hardware failures related to design
faults. Usually, these failures are not accounted for in sys-
tems reliability evaluation. However, given the relative
importance of these failures, hardware design faults should
no longer be ignored. These failures can be analysed using
all the body of the results that have already been applied
for software reliability growth evaluation.
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