
HAL Id: hal-01212223
https://hal.science/hal-01212223

Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability engineering of complex computing
systems

Mohamed Kaâniche, Jean-Claude Laprie, Jean-Paul Blanquart

To cite this version:
Mohamed Kaâniche, Jean-Claude Laprie, Jean-Paul Blanquart. Dependability engineering of complex
computing systems. 6th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’2000), Sep 2000, Tokyo, Japan. pp.36-46, �10.1109/ICECCS.2000.873926�. �hal-01212223�

https://hal.science/hal-01212223
https://hal.archives-ouvertes.fr

Published in the Proceedings of the 6th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS-2000), Tokyo, Japan, 2000, pp. 36-46

Dependability Engineering of Complex Computing Systems

Mohamed Kaâniche1, Jean-Claude Laprie1, Jean-Paul Blanquart2

1LAAS-CNRS / LIS 2ASTRIUM / LIS

7 av. du Colonel Roche 31 rue des Cosmonautes
31077 Toulouse Cedex 4 — France 31402 Toulouse Cedex 4 — France

{kaaniche, laprie}@laas.fr jean-paul.blanquar@astrium-
space.com

Abstract

This paper presents a development model focused on

the production of dependable systems. Three classes of
processes are distinguished: 1) the system creation
process which builds on the classical development steps
(requirements, design, realization, integration); 2)
dependability processes (i.e., fault prevention, fault
tolerance, fault removal and fault forecasting); and 3)
other supporting processes such as quality assurance and
certification. The proposed approach relies on the
identification of basic activities for the system creation
process and for the dependability processes, and then on
the analysis of the interactions among the activities of
each process and with the other processes. Finally, to
support the development of dependable systems, we define
for each system creation activity, a checklist that specifies
the key issues related to fault prevention, fault tolerance,
fault removal, and fault forecasting, that need to be
addressed.

1. Introduction

Design faults are generally recognized as being the

current bottleneck for dependability in critical
applications. As design faults have their origin in the
development process, this leads naturally to pay attention
to development models. Conventional development
models, either for hardware or for software, do not
explicitly incorporate all the activities needed for the
production of dependable systems. Indeed, hardware
development models traditionally incorporate reliability
evaluation (see e.g., [5]), but pay less attention to
verification and fault tolerance. On the other hand,
traditional software development models (waterfall,
spiral, etc.) incorporate verification and validation
activities but do not mention reliability evaluation or fault
tolerance.

Designing a dependable system that is able to deliver
critical services with a high level of confidence is not an
easy task. On the one hand, one has to face the increasing
trend in the complexity of computer based critical
applications that is related to the evolution towards large
scale and distributed architectures. On the other hand, the
diversity of the classes of faults at the origin of system
failures (be they accidental or intentionally malicious) and
of their consequences and severity, requires the
implementation and integration of multiple overlapping
and complex fault tolerance mechanisms. Therefore, there
is a need for a systematic and structured design
framework that integrates dependability concerns at the
very early stages of the development process. This is
especially important for systems that have to satisfy
several, and sometimes conflicting, dependability objec-
tives. Such a framework is also useful to support system
providers in satisfying the certification requirements
defined in application-sector specific standards (defense,
avionics, nuclear plant control, etc.) or more generally in
the IEC 61508 standard [11].

It is our opinion that the means for dependability (fault
prevention, fault tolerance, fault removal and fault
forecasting) should be explicitly incorporated in a
development model focused at the production of
dependable systems. In this paper, we present such a
model, which can be termed as dependability-explicit
development model.

This paper elaborates on our previous work reported in
[14]. Our objective is not to give a tutorial on the
techniques to be used to build dependable systems, but
rather to define a generic framework allowing
dependability-related activities to be structured and
incorporated into each stage of the system creation
process. As a matter of fact, all the techniques and
methods proposed in the literature to achieve fault
tolerance, fault forecasting, fault removal and fault
prevention (see e.g., [9] for a recent summary of the state
of the art) can be naturally integrated into our model.

The paper is structured into six sections. Section 2
presents the basic model proposed. Section 3 stresses the
importance of fault assumptions in the development of
dependable systems. Sections 4 and 5 give a list of
guidelines focusing on dependability related key issues to
be addressed during the requirements and the design
development stages. Finally, Section 6 draws up the main
conclusions of the paper.

2. Basic model

The production of dependable systems such that a
justified confidence can be placed on the services
delivered to the users requires the application of
complementary activities aimed at fault prevention, fault
tolerance, fault removal and fault forecasting. These
activities can be carried out iteratively, in a sequence or in
parallel, according to the lifecycle model chosen. The
dependability related activities can be grouped into
separate processes interacting with the system creation
process and with other supporting processes. Such
dependability focussed process-oriented development
approach, that generalizes for instance the model
proposed in the DO178B standard [20], provides a
structured framework that is well suited to explicitly
identify the dependability-related key issues that are
needed during the development and to ensure that these
issues are correctly implemented.

Following this concept, our basic model (Fig. 1)
identifies three classes of processes:
• the system creation process, which builds on the

classical development steps, i.e., requirements, design,
realization, integration;

• the dependability processes: fault prevention, fault
tolerance, fault removal and fault forecasting;

• other processes: quality assurance, certification, etc.

2.1 Basic processes

The system creation process orchestrates the activities
performed within the other processes. The requirements
activities are aimed at the statement of users needs, and
the (formal or informal) description of these needs in a
specification. Both types of activities are differentiated,
sometimes, by defining two distinct life cycle phases.
Usually, this is supported by differences, on the one hand,
in the levels of details and formalism and, on the other
hand, in terms of responsibilities. Nevertheless, both
activities are of the same nature and share a single
objective, that of defining the needs and services that the
system has to fulfil. Therefore, we decided not to make a
distinction between them.

The design and realization activities correspond to the
usual development steps leading respectively to the
definition of the system architecture and the
implementation of each component according to its
specification. As regards integration, this system creation
activity includes usual integration activities (i.e.,
assembling system components according to the
architecture defined during the design stage and
implemented during the realization stage) as well as the
final system integration into its operational environment
before delivery.

As regards the dependability processes, we have
identified the key activities that best characterize each
process, and we have searched for the minimum number
of classes needed to group these activities according to
their nature and objectives. This analysis led us to define
three main classes of activities for each dependability
process. Such classification is aimed at facilitating the
identification of the key issues to be considered with
respect to fault prevention, fault tolerance, fault removal
and fault forecasting, and the analysis of the interactions
that exist among the different processes. Each
dependability process and the corresponding classes of
activities are briefly presented in the following.

The fault prevention process is structured into three
major classes of activities:
• choice of formalisms and languages,
• organization of the project,
• planning of the project and evaluation of risks

incurred from the system development.
The fault tolerance process is composed of three main

activities:
• the study of the behavior in the presence of faults,

aimed at eliciting the faults against which the system
will be protected,

• the system partitioning, aimed at structuring the
system into error confinement areas, and at identifying
the fault independence areas,

• the fault and error handling, aimed at selecting the
fault tolerance strategies, at determining the
appropriate mechanisms, without forgetting the

Design

Réalisation

IntegrationRequirements

Fault Tolerance Process

Fault Forecasting Process
Fault Removal Process

Quality Assurance Process
Certification Process

Fault Prevention Process
System Creation Process

Realization

Time

Dependability
Processes

Figure 1. Dependability-explicit development

model

protection of those mechanisms against the faults
which are likely to affect them.
The fault assumptions produced by the study of the

behavior in the presence of faults constitute a basis for
system partitioning, and inputs for the fault and error
handling.

The fault removal process is composed of three main
classes of activities:
• verification, that consists in checking whether the sys-

tem adheres to properties termed the verification
conditions, using techniques such as reviews,
inspections, modeling and behavior analyses, testing,
etc.

• diagnosis, that consists in searching for the faults
preventing the verification conditions from being met,

• and system modification to perform the necessary
corrections.
Finally, the fault forecasting process is composed of

three classes of activities:
• statement of dependability objectives,
• allocation of objectives among system components,
• and, evaluation of dependability measures to assess

whether the system satisfies the objectives or not.

2.2 Interactions between processes

The definition of the dependability requirements and
the fault tolerance mechanisms to be implemented in the
system should result from a global analysis and iterative
refinements that take into account all the dependability
processes as well as the system creation process. This
leads to several interactions between these processes and
among the dependability processes themselves. This can
be illustrated for instance by the need, on the one hand, to
verify evaluation results and on the other hand to evaluate
the progress of verification activities (through the
evaluation of test stopping criteria, test coverage, etc.).
Another example concerns the interactions between the
fault tolerance and the fault forecasting processes. In
particular, the dependability properties to be taken into
account for fault forecasting should be defined precisely
and related to the dependability requirements derived
from the analysis of the system behavior in the presence
of faults performed within the fault tolerance process.
This includes the definition of the acceptable degraded
operation modes as well as of the constraints imposed on
each mode, i.e., the maximal tolerable service interruption
duration and the number of consecutive and simultaneous
failures to be tolerated, before moving to the next
degraded operation mode. This analysis should be done
iteratively at each system decomposition step to define the
criticality levels of system functions and components and
the minimum level of fault tolerance to be implemented in
the system. This also leads to the need to evaluate the
system’s capability to tolerate faults by assessing the fault

tolerance coverage with respect to the fault assumptions
as well as the validity of these assumptions (see §3).

2.3 Integration within the development cycle

The model proposed is in fact a meta-model. It is not a
classical life-cycle model as it defines for each process the
logical links between the activities to be conducted
irrespective of their temporal sequencing. The system
components can be developed according to various
strategies as illustrated in the example given in Fig. 2.
Indeed, similarly to the model of DO-178B, groups of

activities can be instantiated several times in order to
accommodate several approaches in the development of a
given system. In the example presented in Fig. 2, the
system consists of four subsystems. The first one is
developed in accordance with the waterfall model. The
second one is reused but a number of customizations are
introduced to meet the requirements. The third one is
reused without modification. The last one is developed
following a prototyping approach. Finally, the integration
of the system is performed progressively, first within the
different subsystems and then, between the subsystems, to
arrive at the final product.

3 Fault assumptions

Fault assumptions constitute a key point in the devel-

opment of dependable systems. At each system descrip-
tion abstraction level, associated fault assumptions should
be defined taking into account the fault assumptions
established at the higher levels [21]. This leads to a hier-
archy of fault models. Ensuring the consistency of these
fault models is a difficult task that requires a thorough
examination and in-depth analysis. In particular, it is
essential to study how the faults that occur at a given level
manifest and propagate to the higher and lower levels.
Error propagation analysis is important for the

FP Fault Prevention
FT Fault Tolerance
FR Fault Removal
FF Fault Forecasting

Req Requirements
Des Design
Rea Realization
Int Integration

Req
Des

Int

Int

Req

Int

Req
Rea
Int

Req
Rea
Int

Final Product

Traditional
waterfall

reusability with
adjustments

reusability
without changes Prototyping

Int

Req

Rea

Req
Des
Rea
Int

Req
Des

FRReq

Rea
IntFT

FP

FF

Requirements
& System Design

Des

Des

Figure 2. Example of application of the model

specification and the design of error confinement barriers.
It is also important for the optimization of fault tolerance
verification experiments based on fault injection [23].

It is worth noting that fault assumptions related to the
fault prevention, fault tolerance, fault removal and fault
forecasting processes are generally not identical. Faults to
be prevented are not the same as those to be tolerated or
as those to be removed. For example, some verification
techniques are only suitable to reveal the presence of
some specific faults, depending on the location of the
faults and on observability and controllability constraints.
On the other hand, the fault assumptions examined during
fault forecasting activities should be, generally, weaker
than those considered by the other processes because of
the need to validate the system under pessimistic
conditions that are as close as possible to the actual
operation environment. Therefore, each activity of the
dependability processes should have clearly stated and
justified associated fault assumptions. The assessment of
the results of the activity are to be performed in
accordance with the corresponding assumptions and to be
accompanied by an evaluation of the validity of these
assumptions [17].

The following sections give an overall view of the
main activities needed for the development of a
dependable system, focusing on the Requirements and
Design stages. Guidelines in the form of commented
checklists focusing on dependability related key issues to
be addressed during the requirements and the design are
presented. The activities related to the fault prevention
process are discussed for the requirements stage only.
Similar activities are performed during the other
development stages (See [14] for complete description).

4. Checklist for the “Requirements”

The checklist defined for the requirements phase is

summarized in Fig. 3 and commented in the sequel.
Requirements elicitation begins with the detailed de-

scription of the main functions to be accomplished by the
system together with the definition of the dependability
objectives to be satisfied. This includes the identification
of the functions that are required only by some categories
of users1 (e.g., when different operational profiles are
possible) and those that are accomplished only during
some phases of the system mission. Different mission
phases generally lead to different utilization profiles and
conditions. In some contexts, the requirements elicitation
has to cover the entire system life cycle including system
installation, system operation and maintenance, and
system decommissioning phases. Also, at this stage, it is
important to identify the development constraints related

1 A user is another system (human or physical) which interacts with the
former [13].

to the operation of the system, and those that arise from
some certification standards.

The design and the realization of the system are
strongly influenced by the knowledge of future evolution
of end-users needs (evolution of functional services,
performances, hardware execution environment, etc.).
Anticipation of the requirements evolution will make
future modifications of the system to match the new
requirements easier, and therefore, less expensive. Simi-
larly, for software systems, it is desirable that portability
and interoperability requirements be expressed early in
the development process. The expression of such needs
allows the isolation, during the design, of the components
and subsystems that are expected to evolve.

In order to match users’ expectations, the system end-
users should be involved, as much as possible, in the
requirements’ definition. This is especially important to
highly-critical systems that rely on human operators to
ensure the supervision and monitoring of system depend-
ability during its operation and maintenance. For these
systems, the tasks to be assigned to the operators and
those to be accomplished by the computing system are to
be defined as early as possible and to be validated by the
end-users to ensure a wide acceptability of the system and
to prevent as much as possible the occurrence of human
interaction faults.

4.1. Fault prevention process

Fault prevention activities carried out during the

requirement elicitation stage are aimed at the definition of
the development environment formalisms and tools as
well as the organization and the planning of the project.
These activities lead to the choice of one or several devel-
opment approaches, to the distribution of the development
activities between project teams and to the planning of
each development stage and the definition of transition
criteria between stages. The success of the project
depends on the decisions taken at this step. As different
possibilities can be envisaged, the assessment of the risks
associated to these decisions would help in reaching a
satisfactory trade-off. Particularly, the selection of the
different formalisms and tools to be used during the
development may be determined by constraints imposed
by the dependability objectives, the certification
standards, and also by performance, cost and development
delay constraints. Especially, the introduction of a new
technology, or new development methods is to be
preceded by an assessment of associated project manage-
ment and development risks. Additional decisions need to
be taken with respect to the independence between
development and validation teams, and the level of
training, competence, and experience of all persons
involved in the development.

4.2. Fault tolerance process

The main goals of fault tolerance process activities

during the Requirement phase are: 1) describe the system
behavior in the presence of failures (at system level) and
identify the set of undesirable events that might have
unacceptable consequences on the system and its
environment, and 2) define the dependability related
functions to be implemented in the system to satisfy the
dependability objectives. Undesirable events might come
from the system environment or from the system itself.
For each system function, one has to establish a list of

failures (failure assumptions) which might occur during
system operation, maintenance, installation, and
decommissioning and study their consequences. Several
issues are to be considered for the definition of this list: 1)
the system boundaries and its interactions with other
systems, 2) the environmental conditions and their
evolution during the system lifetime, 3) the dependability
properties to be satisfied, 4) the availability of additional
means provided by the system environment for the
detection and recovery of unacceptable behavior of the
system.

The list of the failure assumptions is to be completed
by the specification of the acceptable degraded operation
modes as well as of the constraints imposed on each
mode, i.e., the maximal tolerable service interruption
duration and the number of consecutive and simultaneous
failures to be tolerated, before moving to the next
degraded operation mode. The analysis of the impact of
the simultaneous loss or degradation of multiple functions
and services requires particular attention. Depending on
the dependability needs and the system failure
consequences on the environment, the need to handle

more than one nearly concurrent failure mode could be
vital. Such analysis is particularly useful for the
specification of the minimal level of fault tolerance that
must be provided by the system to satisfy the
dependability objectives. It also provides preliminary
information for the minimal separation between critical
functions that is needed to limit their interactions and
prevent common mode failures.

Due to the antagonism that exists between some
dependability attributes (for example, availability and
safety, availability and security), the analysis of system

System Creation Process
• Functional specifications

- Definition of system functions (expected values and timing behavior)
- Description of mission phases and their sequencing (phased systems)
- Preliminary task distribution between the operators and the computing system

• Definition of the operational environment
- System boundaries, utilization environment and user profiles
- Operation and maintenance modes

• Development, validation and operating constraints
- Physical constraints (weight, technology, etc.), Maintenance and operation constraints
- Foreseeable evolutions, Reusability, Portability, Interoperability, Testability

Fault Prevention Process
• Formalisms and languages

- Standards, rules and certification requirements, development environment, formalisms and tools
• Project organization

- Definition of life-cycle models, Assignment of tasks to project teams, Resource management
• Project planning and project risk assessment

- Identification of risks and means for risk reduction
- Selection of development strategies and technologies
- Planning of development stages and definition of transition criteria between stages
- Project reviews planning, Configuration management planning

Fault Tolerance Process
• Description of system behavior in presence of failures

- Identification of relevant dependability attributes and necessary tradeoffs
- Failure modes and acceptable degraded operation modes
- Maximum tolerable duration of service interruption for each degraded operation mode
- Number of consecutive and simultaneous failures to be tolerated for each degraded operation mode

Fault Removal Process
• Verification Planning

- Static verification techniques, Testing strategies (testing criteria, test generation techniques)
- Specification of test-beds and environment simulators

• Verification assumptions
- Classes of functions, behavior and expected faults to be analyzed by each verification technique
- Predicates to be verified

• Verification of the requirements
- Functional and behavioral analyses , Reviews and inspections of the specification
- Prototyping, User-based validation, Expert reviews

• Definition of functional verification scenarios
Fault Forecasting Process

• Expression of dependability objectives
- Definition of quantification measures and assignment of quantified targets

• Analysis of failure modes and their consequences on delivered service
- Identification of failure modes
- Classification of failures by severity
- Specification of the classes of faults and failures to be addressed

• Fault forecasting assumptions
- Modeling assumptions and parameters

• Function-by-function dependability allocation
- Classification of system functions by criticality levels

• Fault forecasting planning
- Selection of appropriate methods and tools for qualitative analysis and quantitative evaluation
- Definition of a data collection environment

• Data collection and analysis
- Feed-back from existing products, Follow-up of the product under development

Figure 3. Checklist for the Requirements

failure consequences, the definition of acceptable
degraded operation modes and the specification of the
minimal levels of fault tolerance to be provided by the
system, should take into account, globally, the different
dependability properties to be satisfied by the system.
Therefore, the consequences of each functional failure
assumption are to be stated with respect to each relevant
system dependability attribute. This will help in searching
for appropriate tradeoffs between the different fault
tolerance techniques and mechanisms to be implemented
in the system during ulterior development stages.

Finally, the dependability needs identified at the
requirement stage should be described in the form of a
specification. This specification could be refined depend-
ing on the dependability objectives and lead to a set of
consistent specifications where each specification focuses
on a specific objective: a safety specification, a security
specification, etc. These specifications will need to be
refined during the design and lead to the development of
more detailed fault assumption models for system com-
ponents. Particularly, it will be necessary to verify during
ulterior development stages that the assumptions estab-
lished at this stage are all considered, and possibly update
them to ensure the consistency between the fault assump-
tions established at each system decomposition level.

4.3. Fault removal process

The primary purpose of verification activities is to

ensure that the specified requirements are compliant with
the stated objectives and expected system users needs.
The specified functional and dependability related
requirements are to be checked for their correctness,
completeness, consistency and verifiability. Verification
activities also cover the results of the evaluation and
dependability assessment activities performed within the
fault forecasting process. At this stage of the
development, the verifications will be based mainly on
functional and behavioral analyses using static
verification techniques (reviews, inspections, simulation,
model-checking, etc.), and on engineering judgments. The
validation of the dependability requirements and failure
assumptions require particular attention. Data collected
from similar systems and the state of the art of the
corresponding application sector practices are needed to
support the justification of the validity of the assumptions.
The verification assumptions defining the scope of each
verification technique used at this level should be clearly
stated. This will help, in particular, in identifying the
classes of behavior and functions that need extra checking
during ulterior stages of the development because, for
instance, they cannot be covered during the requirement
phase.

The functional models that are generated during the
requirement development stage, to describe and verify the
behavior of the system, will also serve to generate

functional and dependability verification scenarios to be
used later for system testing.

The specification of the system is to be completed by
the specification of fault removal techniques to be used
during the development. Static verification techniques
(inspections, reviews, walkthroughs, etc.) and testing
strategies (by specifying the testing criteria and the test
inputs generation methods) should be defined at this stage
to allow the control of the dependability of the future
system at the beginning of the development. The devel-
opment of simulators and support environments for
system and fault tolerance verification (e.g., by means of
fault injection) may be as long and as complex as that of
the system itself and may affect its development.
Therefore, it is desirable, when possible, that the devel-
opment of the simulators occurs concurrently with that of
the system to ensure an efficient integration of the two
systems and to better take into account any modification
of the requirements when they occur.

4.2. Fault forecasting process

A key issue during the requirement phase is to define the
dependability objectives and requirements based on the
assessment of the potential levels of occurrence of
undesired events and failures, and the classification of the
system functions by criticality levels. The higher the
rating of the consequences of an undesirable event, and
the higher the probability of its occurrence, the lower is
its level of acceptability. Each application sector typically
has its own methods for rating the acceptability of hazards
and risks, which depend on laws, regulations or an
assessment of public perception. The results of failure
analysis and evaluation activities include lists of failures
and undesirable events with the corresponding levels of
acceptability. Unacceptable ones are those which must be
eliminated (prevented, avoided) by the system design.
Clearly, failure analysis and evaluation activities provide
critical inputs to the analysis performed within the fault
tolerance process to identify the minimum levels of fault
tolerance to be implemented in the system. For each
function and operation mode, one has to allot a
probability of success (or failure). It is important to
explain how these probabilities are derived and what are
the assumptions that are considered. Any validation of the
system has to be completed by an evaluation of the
validity of the failure assumptions and the corresponding
probability allocation. Such a validation should take into
account the possibility of 1) multiple failure occurrence
(due, for example, to a high fault detection latency), 2) a
lack of fault tolerance coverage resulting from
deficiencies of fault tolerance mechanisms, or 3) a lack of
independence between failures.

On the basis of the definition of system functions, the
tolerable degraded operation modes and the associated

success probabilities, the criticality of the different func-
tions can be assessed. This classification is derived from
the analysis of the failure modes and their severity. The
classification of functions by criticality levels (sometimes
called integrity levels [11]), together with the maximal
tolerable duration of service interruption associated to the
services to be delivered will allow, during the design, to
select the appropriate error handling mechanisms and,
especially, to choose reconfiguration policies for fault
processing.

The probability allocations used in the evaluation
process can be derived from data collected from similar
systems and from applicable certification standards. The
definition of a data collection procedure is necessary to
ensure the control of the system development process and
to collect necessary data to carry out qualitative and
quantitative evaluations. The data may be collected on the
system under development or on similar systems.
Particularly, these data could be used to estimate some
characteristics of the system utilization environment at the
beginning of the development, to establish a preliminary
list of failure assumptions and to perform preliminary
dependability assessments before data on the product
under development are available. Also, data should be
collected to analyze the activity of the operators involved
in the system’s operation and maintenance, and to support
the definition and optimization of the tasks’ distribution
between operators and the computing system. These data
can be collected from the field during the operational use
of similar systems or during the testing of mock-ups and
initial prototypes.

5. Checklist for the “Design”
The key issues to be considered during the design are

summarized in Fig.4 and commented in the sequel.
The main objective of the design activity is to define

an architecture allowing the system requirements to be
met. Three major issues need to be addressed: 1) the
system structure, 2) the system behavior and 3) the inputs
and outputs for each component and data flow between
components. The architecture definition consists in
decomposing the system into hardware and software
components, identifying the functions to be allocated to
the operators responsible for system operation monitoring
and maintenance, with the definition of the modes of

interaction between the operators and the computing
system. A component is, in itself, a system that has to be
specified and designed. The specification-design
recursion ends when the components from the lowest
level are regarded as atomic. The relationships between
system components can be described in terms of relations
such as: “uses the service of”, “is composed of”,
“inherits from”[7, 10, 15, 16]. Although no general
method is available to decompose a system into
components, the design of the system has to be thought by
taking into account the future characteristics of the system
such as its anticipated evolution, the desired portability,
reusability and fault tolerance. Moreover, taking into
account the testability of the system early in the design
will facilitate the verification of the system and improve
its maintainability. The architecture has to be defined by
taking into account the components that can be reused
with or without adjustments to meet the requirements of
the system. In particular, the decision to use commercial
off the shelf (COTS) components should be examined
thoroughly especially to address dependability related
problems [12, 22].

5.1. Fault tolerance process

The design of a system leads to the definition of

several levels of abstraction. For each level of abstraction,
it is necessary to establish the corresponding fault
assumptions taking into account those defined for the
other levels. The progressive refinement of fault assump-
tions and the traceability of the assumptions established at
different design levels is particularly a difficult problem
that needs to be addressed carefully to allow better control
of the dependability related functions design. The identifi-
cation of the fault classes to be handled by the system for
each system component (and those that could be
discarded) results from the analysis of their impact on
system operation modes, taking into account the system
level dependability objectives. These analyzes are
supported by qualitative and quantitative evaluations and
various viewpoints should be considered, for example, the
nature of the faults, their origin, their persistence, etc. As
temporary faults constitute a predominant cause of
systems failure in operation, particular attention should be
put on the error and fault handling mechanisms that are
designed to address this type of faults.

The fault and failure hypotheses strongly depend on
the type of architecture. The case of distributed
architectures is particularly difficult [6, 18]. Distributed
systems require a detailed description of the failure modes
of the distributed nodes as well as of the communication
network interconnecting these nodes. On the other hand,
fault assumptions condition the choice of the fault
tolerance mechanisms and the architecture of the system.
A trade-off should be found between fault assumptions
coverage (compared to the faults that really occur in
operation) and the complexity of the mechanisms to be
implemented to address these faults [17]. Conservative
fault assumptions (e.g., Byzantine faults) will result in

higher assumption coverage at the expense of an increase
in the level of redundancy and the complexity of fault
tolerance mechanisms. The search for a satisfactory trade-
off should be guided by the dependability requirements.

Ideally, the design should list for each system compo-
nent or for each system function all classes of faults that
need to be covered by fault tolerance mechanisms and
those for which only fault avoidance is planned. Espe-
cially, the single points of failure (the functions or
components that are not fault-tolerant; for example, fault
tolerance mechanisms themselves) have to be clearly
identified and, ideally, formally specified and verified.

An important aspect of fault tolerance structuring is the
definition of error confinement areas and fault inde-

System Creation Process
• Architecture definition

- Structure: Decomposition into layers and/or components (men, hardware, software)
- Behavior: System states and events for each layer and interaction between layers
- Data types, data flow and interfaces between components

• Selection of development technologies
- Identification of hardware and software components

• Identification of reusable components
- Definition of necessary adjustments

• Operation and maintenance procedures preparation
• Integration plan preparation

- Architecture integration strategy
- Planning of system integration in its operational environment

Fault Prevention Process
• Formalisms and languages
• Project management
• Project planning and project risk assessment

Fault Tolerance Process
• Description of system behavior in presence of faults

- Fault assumptions (faults considered, faults discarded)
• System partitioning

- Fault tolerance structuring: (Fault containment regions, Error containment regions)
- Fault tolerance application layers

• Fault tolerance strategies
- Redundancy, Functional diversity, Defensive programming, Protection techniques, etc.

• Error handling mechanisms
- Error detection, Error diagnosis, Error recovery

• Fault handling mechanisms
- Fault diagnosis, Fault passivation, Reconfiguration

• Identification of single points of failure
Fault Removal Process

• Verification assumptions
- Classes of expected faults to be analyzed, Predicates that should be verified

• Verification of the design
- Behavioral analyses
- Reviews and inspections of the design
- Prototyping and simulation for man-machine interfaces verification
- Design verification against the requirements

• Verification of fault tolerance mechanisms
- Error and fault handling algorithms (formal) verification
- Simulation-based fault injection (fault models)

• Unit and integration testing planning
- Testing strategies (testing criteria, test case generation methods)
- Fault injection strategies

• Definition of functional and structural verification scenarios
• Verification of evaluation results

Fault Forecasting Process
• Fault forecasting assumptions
• Analysis of failure modes and their consequences on the services to be delivered
• Component-by-component dependability allocation
• Preliminary assessment of the system dependability

- Analytical models, Simulation
- System scaling: Redundancies (men and computing system), Coverage

• Data collection and analysis
Figure 4. Checklist for the Design

pendence areas. Error confinement leads to the definition
of error propagation barriers (between components). The
definition of fault independence areas corresponds to the
identification of components or sets of components whose
faults are supposed to be not correlated. Fault independ-
ence areas serve also to define the granularity of fault
diagnosis and to specify the on-line replacement units.
The number of fault independence areas that constitute an
error confinement area depends on the number of
simultaneous faults to be tolerated and the type of error
recovery mechanisms adopted (backward recovery or
forward recovery). Particularly, it is important to identify
the error propagation channels that may result from any
information communication coming from a given fault
independence area. Common mode failures may result
from the presence of such channels. The choice between
backward error recovery and forward error recovery can
be influenced by the maximal tolerable service
interruption duration as defined in the requirements.
Depending on the maximum tolerable service interruption
duration, backward or forward error recovery can be
attempted, otherwise, fault masking is the alternative. The
choice should also take into account the available
possibilities for communication with the environment.
The advantages of fault masking techniques against
backward and forward recovery concerning the time
needed for error recovery may be lost if redundant output
interfaces (actuators) with the environment are not
available.

The structuring of systems into layers offers another
point of view to address error propagation and to define
the fault tolerance mechanisms. A fault that affects a
given layer may lead to the propagation of errors, not only
to higher layers (the provided service is incorrect), but
also to lower layers (for example through illegal service
solicitation). The first objective of error propagation
barriers is to stop the propagation of errors to the higher
levels (i.e., the final users). Better error processing
efficiency is obtained when these barriers are close to the
layer containing the faults producing the corresponding
errors. The error coverage can be improved by the imple-
mentation of successive barriers; each barrier aiming to
process the errors coming from the same layer and the
errors which propagate from the lower layers. However,
the error propagation to lower levels, where possible,
should be taken into account (e.g. through the design of
access control mechanisms, the use of defensive
programming, etc.).

Besides the definition of error handling mechanisms,
the design should also lead to the elaboration of fault
processing mechanisms. These mechanisms include
techniques and algorithms for fault diagnosis, passivation
of faulty components, and if needed, system reconfigura-
tion allowing the restoration of the redundancy level or
the transition to a more degraded operation mode.

Error and fault handling functions can be centralized or
distributed among various components or groups of
components. In the latter case, the fault and error assump-
tions should take into account the distribution of error and
fault processing algorithms. In particular, the communica-
tion and synchronization between distributed nodes, and
state consistency of concurrent processes are difficult
problems that should be thoroughly studied. Moreover,
the large size and distributed nature of new systems lead
to the possibility of multiple fault manifestations
occurring at nearly the same time. This, in turn, requires
multiple recovery mechanisms to be active at the same
time, with the resulting risks of multiple interference,
deadlocks, and unpredictable behavior [3].

Besides the issues above, it is important to emphasize
that the choice of a specific fault tolerance mechanism
also depends on the type of the components considered,
the faults to be addressed, and the dependability attributes
to be satisfied. For example, error detection and
correction codes are well suited to address memory and
bus errors, whereas duplication and comparison is often
used for processors. Also, security related requirements
lead to the implementation of some specific protection
mechanisms (e.g., identification and authentication) even
though the same mechanisms can be used for other
purposes, for instance for safety. Additional design
decisions need to be taken concerning which mechanisms
should be used to deal with design faults, how to protect
the fault tolerance mechanisms themselves, and how to
cope with interaction faults due to the operators. Other
critical issues related to the cost of the system, its
performance, the constraints imposed by certification
authorities, and the risks associated with the design
decisions should be considered to find a final optimal
solution.

5.2. Fault removal process

The design phase can be seen as a succession of specifica-
tion and design steps. Each design step should be verified
against its requirements. All the issues mentioned in the
requirements should be addressed. Particular attention is
to be put on checking the refinement of fault assumptions
and the adequacy of fault processing and error detection
and recovery mechanisms. Common cause analysis can be
used to support the examination of failure independence
assumptions and verify the correct partitioning of the
system into independent fault and error confinement
areas. The design of single point of failure components
should be thoroughly examined and verified using, for
example, formal verification techniques. Verification
should also address the feasibility and completeness of the
planned tests, and analyze the planned procedures for
system maintenance and operation.

Besides the assumptions considered in the design,
assumptions are also to be specified for the verification
activities. Particularly, when formal verification
techniques are used to verify, for example, the fault
tolerance algorithms, it is important to define the
assumptions behind the proofs and verification
conditions. Concurrently with the definition of the system
architecture, a verification plan specifying the techniques
and methods to be used for unit and system integration
testing should be prepared. Particularly, the system
validation tests to be applied before the delivery of the
system to the customers should be planned. The choice of
an integration strategy leads to the definition of the testing
environment that will be used for system integration
testing. Such choice may have an impact on the
organization of integration tests. Indeed, a bottom-up
integration strategy requires the development of drivers
that simulate the environment of the components to be
tested. This testing strategy allows the early testing of
elementary components. However, the interface errors
between components can only be revealed later in the
development process. On the other hand, a top-down
integration strategy requires the development of possibly
sophisticated test stubs that simulate the functions
accomplished by the lower-level components.

5.3. Fault forecasting process

The choice of an optimal architecture and the

allocation of dependability requirements to system
components are supported by preliminary dependability
evaluations to analyze if the dependability objectives can
be met by the selected architecture. Analytical modeling
and simulations are two main techniques that can be used
to derive the quantitative evaluation measures. Several
methods can be used to build the evaluation models [19]
(fault trees, FMECA, Markov chains, Stochastic Petri
nets, etc.). Each one of these methods is based on some
modeling assumptions that need to be stated and justified
in the context of the evaluation performed. The classes of
faults to be considered in the evaluation of system
behavior (for example independent and correlated faults)
and the assumptions about the statistical distribution and
the parameters used in the evaluation models have to be
clearly specified. These assumptions are to be defined
early in the development process to identify the
techniques and tools that will be used for system
dependability analysis and evaluation. The specification
of these assumptions leads to better interpretation of
evaluation results. For instance, to avoid any ambiguity,
the specification of a target fault coverage rate should be
completed by the definition of the classes of faults to be
considered. It should be specified whether the target fault
coverage rate concerns physical faults of a specific type
(e.g. stuck-at faults only) or any type of faults. If some
simplifying assumptions are considered, the

approximations made should be justified using, for
example, sensitivity analyses.

At early stages of the development, there is no precise
knowledge of the reliability of the components that will
be integrated in the architecture. The preliminary depend-
ability evaluations consist in sensitivity studies assuming
a range of variation of the parameters used in the evalua-
tion models: for example, different component failure
rates can be assumed, and their impacts on the global
reliability studied. These evaluations will be facilitated
when the product to be developed results from improve-
ments of previous similar products. As a consequence,
several components for which reliability data are
available are reused in the new architecture. However, as
the statistics and data collected from other products might
correspond to different utilization environments and
conditions, the uncertainty related to environmental
condition variation should be assessed.

The risk that may arise during the design of fault toler-
ance mechanisms and error propagation barriers is to
introduce too many mechanisms to compensate the lack
of fault tolerance coverage. The evaluation of the
contribution of each fault tolerance mechanism to the
global fault tolerance coverage enables this risk to be
reduced [2, 4]. Coverage evaluation can be supported by
fault injection experiments [1] or by analytical modeling
[8]. During the design phase, faults can be injected in
simulation models to check the efficiency of fault
tolerance mechanisms. These experiments enable early
analysis of the efficiency of fault tolerance mechanisms
on the system dependability. The evaluation of error
detection latency and error recovery completion time is
particularly important to assess the likelihood of
occurrence of multiple nearly coincident faults.

6. Summary and conclusions

The dependability-explicit development model

presented in this paper provides a general framework
allowing the different activities performed during the
development of dependable systems to be structured and
organized. Grouping fault prevention, fault tolerance,
fault removal and fault forecasting activities into
supporting processes that interact with the system creation
process and with each other, aims to ensure that
dependability related issues are not overlooked, but rather
considered at each stage of the development process. It is
noteworthy that the framework proposed within the
dependability-explicit development model to structure
dependability related activities does not rely on a specific
life cycle model. Any life cycle model that fits the needs
and the constraints of the target system can be used.

The dependability-explicit development model is
generic and can be applied to a wide range of systems and
application domains. For a given system, a number of

customizations might be needed. Some activities could be
discarded if, for example, some system components are
reused or if the dependability objectives to be satisfied do
not require the implementation of these activities. The list
of key-activities and guidelines proposed in the paper for
the requirements, design, realization and integration
development stages can be applied, irrespective of the
development methods used (conventional functional
approach, object-oriented, etc.). These guidelines focus on
the nature of activities to be performed and the objectives
to be met, rather than on the methods to be used to reach
these objectives. Indeed several complementary
techniques and practices could be used to reach the same
objectives. The selection of optimal solutions depends on
the complexity of the system, the dependability attributes
to be satisfied, the confidence level to be achieved, and
the constraints related to cost limitation or imposed by the
certification standards. Especially, the model proposed
can be used to support the ongoing standardization efforts
towards the definition of application sector specific
standards focused on the development and certification of
dependability related issues. Indeed, it can be used as a
baseline to define and to structure the objectives and the
requirements related to dependability to be satisfied by
the product to be assessed as well as the evidence to be
provided to show that the product satisfies the
dependability requirements assigned to it. These
requirements are to be defined taking into account the
specific constraints and needs of each application sector.

References
[1] Arlat J., Crouzet Y. and Laprie J.-C., “Fault Injection for

Dependability Validation of Fault-Tolerant Computing
Systems”, in Proc. 19th Int. Symp. on Fault Tolerant
Computing (FTCS-19), pp.348-355, IEEE Computer
Society Press, Chicago, IL, USA, June 1989.

[2] Arnold T. F., “The Concept of Coverage and its Effect on
the Reliability Model of a Repairable System”, in Proc.
2nd Int. Symp. on Fault-Tolerant Computing (FTCS-2),
pp.200-204, IEEE Computer Society Press, Newton, MA,
USA, June 1972.

[3] Avizienis A., “Infrastructure-Based Design of Fault-
Tolerant Systems: How to Get High-Confidence
Computing for All”, in Proc. 1998 IFIP Int. Workshop on
Dependable Computing and Its Applications (DCIA98),
pp.51-69, Johannesburg, South Africa, January 1998.

[4] Bouricius W. G., Carter W. C. and Schneider P. R.,
“Reliability Modeling Techniques for Self-Repairing
Computer Systems”, in Proc. 24th. National Conference,
pp.295-309, ACM Press, 1969.

[5] BSI, Reliability of Constructed or Manufactured Products,
Systems, Equipment and Components, Part 1. Guide to
Reliability and Maintainability Programme Management,
British Standard Institution, Report N°BS 5760, 1985.

[6] Cristian F., “Understanding Fault-Tolerant Distributed
Systems”, Communications of the ACM, 34 (2), pp.56-78,
1991.

[7] Davis A. M., Software Requirements: Objects, Functions,
and States, PTR Prentice Hall, Englewood Cliffs, NJ,
USA, 1993.

[8] Dugan J. B. and Trivedi K. S., “Coverage Modeling for
Dependability Analysis of Fault-Tolerant Systems”, IEEE
Trans on Computers, 38 (6), pp.775-787, 1989.

[9] FTCS-25, Proc. 25th Int. Symp. on Fault-Tolerant
Computing (FTCS-25). Special Issue, IEEE Computer
Society Press, 1995.

[10] Ghezzi C., Jazeyeri D. and Mandrioli D., Fundamentals of
Software Engineering, Prentice-Hall, 1991.

[11] Functional Safety of Electrical/Electronic/Program-mable
Electronic Safety-Related Systems, International
Electrotechnical Commission SC 65A 1998.

[12] Koopman P., Sung J., Siewiorek D. and Marz T.,
“Comparing Operating Systems Using Robustness
Benchmarks”, in Proc. Symp. on Reliable and Distributed
Systems (SRDS'97), pp.72-79, IEEE Computer Society
Press, Durham, NC, USA, 1997.

[13] Laprie J.-C. (Ed.), Dependability: Basic Concepts and
Terminology (in English, French, German, Italian and
Japanese), Dependable Computing and Fault Tolerance, 5,
265p., Springer-Verlag, Vienna, Austria, 1992.

[14] Laprie J.-C. et al., Dependability Handbook, Cépaduès,
Toulouse, France, 1995-96.

[15] Neumann P. G., “On Hierarchical Design of Computer
Systems for Critical Applications”, IEEE Trans on
Software Engineering, SE-12 (9), pp.905-920, 1986.

[16] Parnas D. L., “On the Criteria to be Used in Decompos-ing
Systems into Modules”, Communications of the ACM, 15
(12), pp.1053-1058, 1972.

[17] Powell D., “Failure Mode Assumptions and Assumption
Coverage”, in Proc. 22nd IEEE Int. Symp. on Fault-
Tolerant Computing (FTCS-22), pp.386-395, IEEE
Computer Society Press, Boston, MA, USA, July 1992.

[18] Powell D., “Distributed Fault Tolerance: A Short
Tutorial”, in Proc. 1998 IFIP Int. Workshop on
Dependable Computing and its Applications (DCIA98),
pp.1-12, Johannesburg, South Africa, January 1998.

[19] Reibman A. L. and Veeraraghavan M., “Reliability
Modeling: An Overview for System Designers”, IEEE
Computer, 24 (4), pp.49-57, 1991.

[20] RTCA, Software Considerations in Airborne Systems and
Equipment Certification, RTCA/EUROCAE, Paper 591-
91/SC167-164, N°DO-178 B.5, November 1991.

[21] Siewiorek D. P. and Swarz R. S., Reliable Computer
Systems - Design and Evaluation, Digital Press, Bedford,
MA, USA, 1992.

[22] Voas J. M., “Certifying Off-the-Shelf Software
Components”, Computer, 31 (6), pp.53-59, 1998.

[23] Yount C. R. and Siewiorek D. P., “A Methodology for the
Rapid Injection of Transient Hardware Errors”, IEEE
Trans on Computers, 45 (8), pp.881-891, 1996.

