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Abstract—This paper focuses on the estimation of the fun-
damental frequency in balanced three-phase power systems.
Specifically, we propose a Maximum Likelihood Estimator (MLE)
that exploits the multidimensional nature of electrical signals.
For perfectly sinusoidal signals, we show that the MLE can
be expressed according to the periodogram of the instantaneous
positive component. For harmonic signals, we demonstrate that
the MLE can be approximated by a cumulated periodogram
of the zero, positive and negative sequence components. As
compared to single-phase estimators, statistical analysis and
simulation results prove that the proposed estimator decreases the
Mean Square Error by a factor of three, whatever the Signal to
Noise Ratio (SNR) or data length. Furthermore, simulations with
experimental data show that the proposed technique outperforms
classical spectral estimators such as MUSIC.

Index Terms—Frequency Estimation, Power System, Smart
Grid, Maximum Likelihood Estimator, Cramér-Rao Bounds

I. INTRODUCTION

The electrical network has undergone profound changes
during the last decades. These changes are mainly due to two
factors: the integration of renewable energy sources and the
emergence of new consumer usages. Despite its ecological
benefit, this mutation greatly complicates the management of
the electricity grid. On one hand, renewable energy sources are
intermittent and diffuse that make the energy generation hardly
controllable and predictable. On the other, new usages such as
the charging of Electric Vehicles are large energy consumers
and make difficult to maintain the balance between energy pro-
duction and consumption. To solve this problem, a promising
solution relies on the use of Information and Communications
Technology. The future ”Smart Grid” is expected to be able
to monitor and optimize its structure to maintain the balance
between energy production and consumption.

In Smart-Grid, the electrical signal is measured and ana-
lyzed at substations with Phasor Measurement Units (PMUs)
to monitor the grid state. A PMU is a device that is able
to estimate several signal parameters from the current or
voltage signals, such as the phasor or fundamental frequency.
Among these parameters, the fundamental frequency plays
a key role. Indeed, deviation from the nominal value can
indicate a mismatch between production and consumption [1].
Furthermore, a large deviation can cause damage to equipment
and should be detected at an early stage. For these reasons,
frequency estimation is the backbone of smart grid monitoring.

Many frequency estimation techniques have been proposed
[2], [3] and applied to electrical signals. These include the
Discrete Fourier Transform [4], PLL [5], high resolution
approaches [6], [7], Least square [8], and adaptive filtering [9].
Nevertheless, these techniques are general and do not take
into account the particularities of electrical signals. From a
statistical point of view, these particularities offer opportu-
nities to improve the frequency estimation. Following this
idea, several authors have developed parametric estimators
specifically designed for electrical signals. A Least square
estimators exploiting the harmonic structure of electrical signal
has been described in [10], [11]. Another interesting feature
of electrical signals is their multidimensional nature. Indeed,
electrical signals are composed of three ”phases” that can be
used jointly for frequency estimation. Several techniques that
exploit this property are available in the literature [12]–[20].
Most of them are based on Power electronic analysis tools such
as the Clarke or Fortescue Transform. Despite their simplicity,
these techniques have several limitations. First, these tech-
niques assume perfect sinusoidal signals and their performance
degrade drastically in the presence of harmonic components.
Then, since these techniques focus on instantaneous frequency
estimation, they may produce suboptimal estimators if the
fundamental frequency is near constant over a period of time.

Despite this rich literature, there is no technique that jointly
exploits the multidimensional and harmonic structure for fre-
quency estimation. Furthermore, it is not clear how these
particularities improve the performance of the frequency esti-
mator. In this study, we address the fundamental frequency es-
timation problem for three-phase systems. Specifically, under
the assumption of a balanced system, we propose a parametric
frequency estimator that jointly exploits the multidimensional
and harmonic structure of electrical signals. The contribution
of this study is twofold: first, we derive the Maximum Likeli-
hood Estimator (MLE) of the fundamental frequency, then we
provide a statistical analysis aiming at measuring the benefit
of using the multidimensional and harmonic structure. The
remainder of the paper is organized as follows. Section II
presents the signal model and the assumptions. Section III de-
scribes the MLE frequency estimator and Section IV provides
an analysis of the Cramér-Rao Bounds. Finally, Section V
reports on the performance of the proposed estimator with
synthetic and experimental signals.



II. SIGNAL MODEL

In a three-phase system, voltage or current signals are
composed of three components. Under balanced conditions,
these components are phase-rotated from each other by 2π

3 .
In the ideal case, each component is a sinusoidal signal
with (normalised) angular frequency ω0 ∈ [0, π[. In practice,
electrical signals may be corrupted by harmonic content [21].
These frequency components are introduced by large non-
linear loads [21], [22]. Using these properties, the nth sample
on the mth phase (m = 0, 1, 2) can be expressed by [23]

xm[n] =

L∑
l=1

al cos

(
lω0n+ ϕl −

2mlπ

3

)
+ bm[n]. (1)

where al and ϕl correspond to the amplitude and initial phase
of the lth harmonic component (l = 1, 2, · · ·L) and bm[n] is
the additive noise. Note that this signal model corresponds to
the one described in the IEEE Standard 1459 for three-Phase
nonsinusoidal balanced systems (see [23, Section 3.2.3]). In
this paper, the problem of interest is to estimate ω0 from N
observations of the three-phase signal. Using matrix notation,
the three-phase signal can be expressed as

x = G(ω0)s + b (2)

where
• x and b are 3N × 1 column vector which are defined

respectively as

x , [x0[0], · · · , x0[N − 1], · · · , x2[0], · · · , x2[N − 1]]T

b , [b0[0], · · · , b0[N − 1], · · · , b2[0], · · · , b2[N − 1]]T

where (.)T denotes the matrix transpose.
• s is a 2L × 1 vector containing the amplitude

and initial phase. This vector is defined as s ,
[a1 cos(ϕ1), a1 sin(ϕ1), · · · , aL cos(ϕL), aL sin(ϕL)]

T .
• G(ω0) is a 3N × 2L matrix that is defined as

G(ω0) ,

 G0(1, ω0) G0(2, ω0) · · · G0(L, ω0)
G1(1, ω0) G1(2, ω0) · · · G1(L, ω0)
G2(1, ω0) G2(2, ω0) · · · G2(L, ω0)


where Gm(l, ω0) , [<e[aTm(l, ω0)],−=m[aTm(l, ω0)]] is
a N × 2 matrix and am(l, ω0) is defined as

am(l, ω0) , e−j
2πlm

3 ×
[
1, e2lω0 , · · · , elω0(N−1)

]
From a statistical point of view, the goal of this study is to
estimate ω0 from x when s and b are unknown. To achieve
this goal, we make the following assumptions:
• AS1) The number of components L is known.
• AS2) The signal on each phase is corrupted by an additive

white gaussian noise with zero mean and covariance σ2,
i.e. b = N (0, σ2I3N ), where I3N corresponds to the
identity matrix of size 3N × 3N .

• AS3) The number of samples, N , is greater than (2L+
1)/3.

Note that if L is unknown, it can be estimated with
information criteria techniques [24]. Concerning AS2), this
assumption is motivated by the Central Limit Theorem.

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the Maximum Likelihood Estima-
tor (MLE) of the fundamental frequency. Under assumption
AS2), the MLE corresponds to the least squares estimator. The
estimate of ω0 and s are therefore obtained by minimizing

‖x−G(ω)s‖2 (3)

with respect to ω and s, where ‖.‖2 corresponds to the vector
norm. This nonlinear problem is a separable least squares
problem. Consequently, it can be shown that the estimate of
ω0 is obtained by maximizing [25, Section 8.9]

C(ω) = xTG(ω)
(

GT (ω)G(ω)
)−1

GT (ω)x (4)

In the general case, the maximization of (4) must be performed
by a grid-search algorithm or iterative techniques. Another
issue is the computation of the inverse of GT (ω)G(ω) in (4).
Using the expression of G(ω), this matrix can be decomposed
as

GT (ω)G(ω) =


P1,1(ω) P1,2(ω) · · · P1,L(ω)
P2,1(ω) P2,2(ω) · · · P2,L(ω)

...
. . .

...
PL,1(ω) PL,2(ω) · · · PL,L(ω)


(5)

where

Pu,v(ω) ,
2∑

m=0

GT
m(u, ω)Gm(v, ω) (6)

Although Pu,v(ω) has a simple form, the inverse of
GT (ω)G(ω) is difficult, if not impossible, to obtain analyt-
ically. However, in some particular cases, the structure of
Pu,v(ω) can be simplified and the inverse of GT (ω)G(ω)
derived analytically.

A. Single sinusoidal component (L = 1)

In the ideal case, the electrical signal contains only a
sinusoidal component. Setting L = 1 in (5), we obtain

GT (ω)G(ω) = P1,1(ω) =
3N

2
I2. (7)

Using this result, the cost function in (4) can be expressed as

C(ω) = 2

3N

∥∥∥GT (ω)x
∥∥∥2 (8)

This expression can be simplified using the definition of G(ω)
and x. By introducing the complex number j2 = −1, we obtain

C(ω) = 2

3N

∣∣∣∣∣
N−1∑
n=0

2∑
m=0

xm[n]e−j(ωn−
2mπ

3 )

∣∣∣∣∣
2

(9)

where |.| corresponds to the complex modulus.
Theorem 1: When L = 1, the MLE of the fundamental

frequency is obtained by maximizing

Py1(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

y1[n]e
−jωn

∣∣∣∣∣
2

(10)



where y1[n] ,
∑2
m=0 xm[n]e

2jmπ
3 is called the (instanta-

neous) positive sequence component.
Theorem 1 shows that the MLE of ω is given by the highest

peak of the periodogram of the positive sequence component.
We can note that the three-phase MLE is closely related to the
MLE proposed by Rife [26]. Indeed, the main difference be-
tween these two estimators is the analysed signal. Specifically,
the estimator proposed by Rife is based on the analytic signal
whereas our estimator uses the positive sequence component.

B. Estimation for N � 1

For N � 1, it can be shown that

Pu,v(ω) ≈
3Nδ(u− v)

2
I2 (11)

where δ(u) corresponds to the Kronecker delta. Using (11) in
(5), we obtain

GT (ω)G(ω) ≈ 3N

2
I2L (12)

Using this approximation in (4) and the definition of G(ω),
the cost function can be simplified as

C(ω) ≈ 2

3N

L∑
l=1

∣∣∣∣∣
N−1∑
n=0

yl[n]e
−jlωn

∣∣∣∣∣
2

(13)

where yl[n] ,
[
1 e2jπl/3 e4jπl/3

]
x[n]. The components yl[n]

have a particular structure since yl+3[n] = yl[n]. To simplify
the cost function, we make use of the Fortescue transform,
which is defined asy0[n]y1[n]

y2[n]

 ,

1 1 1
1 e2jπ/3 e4jπ/3

1 e−2jπ/3 e−4jπ/3

x0[n]x1[n]
x2[n]

 (14)

where y0[n], y1[n] and y2[n] are called the zero, positive and
negative sequence components, respectively. This transform
has been introduced by Fortescue in 1918 to simplify the
analysis of unbalanced polyphase systems [27], [28]. Using
(14) in (13), we obtain the following theorem.

Theorem 2: For N � 1, the MLE of the fundamental
frequency is obtained by maximizing

S(ω) =

L∑
l=1

 1

N

∣∣∣∣∣
N−1∑
n=0

ylmod(3)[n]e
−jlωn

∣∣∣∣∣
2
 (15)

where mod(.) is the modulo operator.
Theorem 2 shows that the cost function corresponds to a

cumulated periodogram involving the periodogram of y0[n],
y1[n] and y2[n]. It is interesting to note that the Fortescue
transform separates the harmonic content of the three-phase
signals. Indeed, for a particular harmonic order, only one
sequence component contributes to the cost function. Specif-
ically, information about the harmonics of order l = 3q,
l = 3q+1 and l = 3q+2 (q ∈ N) are respectively carried by
the zero, positive and negative sequence components.

IV. CRAMER RAO BOUND

A natural criterion to assess the performance of an estimator
is the mean square error (MSE). The MSE of ω̂ is defined as
MSE[ω̂] = bias2(ω̂)+var(ω̂), where bias(ω̂) and var(ω̂) cor-
respond to the bias and variance of the estimator. The variance
of any unbiased estimator of the fundamental frequency, ω̂, is
bounded by [25]

var (ω̂) ≥ CRB(ω̂) (16)

where CRB(ω̂) corresponds to the Cramer Rao Bound of ω̂.
Let us define θ , [a1, ϕ1, · · · , aL, ϕL, ω]T the 2L+ 1 vector
containing the unknown parameters. The CRB of ω is given
by

CRB(ω̂) =
[
F(θ)−1

]
2L+1,2L+1

(17)

where F(θ)−1 is the inverse of the Fisher information matrix
and [.]ij corresponds to the element located at the ith row and
the jth column. As b[n] ∼ N (0, σ2I3N ), the ijth element of
the Fisher Information Matrix is given by [25]

[F(θ)]ij ,
1

σ2

(
∂G(ω)s
∂θi

)T (
∂G(ω)s
∂θi

)
(18)

Using the definitions of G(ω) and s, we obtain

∂G(ω)s
∂al

=

 G0(l, ω)
G1(l, ω)
G2(l, ω)

[ cos(ϕl)
sin(ϕl)

]
(19)

∂G(ω)s
∂ϕl

=

 G0(l, ω)
G1(l, ω)
G2(l, ω)

[ −al sin(ϕl)
al cos(ϕl)

]
(20)

∂G(ω)s
∂ω

=

 H0(1, ω) · · · H0(L, ω)
H1(1, ω) · · · H1(L, ω)
H2(1, ω) · · · H2(L, ω)

 s (21)

where Hm(u, ω) , −u
[
=m[DaTm(u, ω)] <e[DaTm(u, ω)]

]
and D = diag ([0, 1, 2, · · · , (N − 1)). In the general case, the
inverse of the Fisher Information Matrix is difficult to obtain
analytically. However, we show in the next subsections that
analytical forms can be derived when L = 1 and N → ∞.
For the sake of comparison, the Signal to Noise Ratio (SNR)
is defined in the next subsections as

ρ ,
1

2σ2

L∑
l=1

a2l . (22)

A. Closed form expression for L = 1

For L = 1, the Fisher Information Matrix can be expressed
as

F(θ) =
3

σ2



N
2 0 0

0
a21N
2

a21
2

N−1∑
n=0

n

0
a21
2

N−1∑
n=0

n
a21
2

N−1∑
n=0

n2

 (23)



The CRB of ω is derived from the inverse of F(θ). After
some manipulations, the CRB for sinusoidal signals, denoted
CRB1(ω̂), reduces to

CRB1(ω̂) =
4

N(N2 − 1)ρ
. (24)

Equation (24) shows that the CRB depends on the sample
length, N , and Signal to Noise Ratio, ρ. Specifically, the
CRB decreases as ρ or N increases. Furthermore it shows that
the CRB is highly sensitive to N since this bound decreases
as 1/(N3). It is interesting to compare this CRB with that
obtained for single-phase systems [25, Example 3.14]. First,
we note that the CRB expression in (24) is exact for all N
while the expression provided in [25] holds asymptotically.
Next, we observe that the CRB of ω for three-phase systems
is three times smaller than that obtained for single-phase
systems. This result can be generalized to M -phase system
and demonstrates the benefit of using the multidimensional
nature of electrical signals for frequency estimation.

B. Asymptotic expression for N � 1

For N � 1, the Fisher Information matrix can be decom-
posed as follows

F(θ) =
1

σ2



K11(ω) 0 · · · 0 f1(ω)

0 K22(ω)
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 KLL(ω) fL(ω)

fT1 (ω) fT2 (ω) · · · fTL(ω) t(ω)


(25)

where

Kuu(ω) =
3N

2

[
1 0
0 a2u

]
(26a)

fu(ω) =
3ua2uN

2

4

[
0
1

]
(26b)

t(ω) =
N3

2

L∑
l=1

l2a2l (26c)

Using the result on the inverse of a partitioned matrix, the
asymptotic CRB, denoted CRB∞[ω̂], can be expressed as

CRB∞(ω̂) =
4β

N3ρ
(27)

where β ≤ 1 is defined as

β ,

∑L
l=1 a

2
l∑L

l=1 l
2a2l

. (28)

From (27), we observe that the CRB depends on the signal
length, SNR and parameter β. Comparing the asymptotic
bound in (27) with that derived in [29], we observe that the
CRB for three-phase systems is three times smaller than that
obtained for single-phase systems. Comparing the asymptotic
bound with that obtained for sinusoidal signals, we observe
that CRB∞(ω̂) ≈ βCRB1(ω̂). As β ≤ 1, it follows that the

CRB for harmonic signals is 1/β times smaller than that ob-
tained for sinusoidal signals. This statement demonstrates the
utility of using the harmonic content for frequency estimation.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed frequency estimators. Specifically, we focus on three
estimators, namely the exact MLE in (4), the sinusoidal MLE
in (10), and the approximated MLE in (15). For sake of brevity,
we refer to these technique as MLE, MLE1, and MLE∞,
respectively. These estimators are compared with the single-
phase MLE [10] and with the Cramer Rao Bounds reported in
Section IV. For each estimator, the maximisation step is per-
formed using the Nelder-Mead simplex algorithm [30]. This
algorithm is initialized at the nominal fundamental frequency,
i.e. ŵ = 2π × 50/Fs rad/s, and the termination tolerance
is set to 10−8. The frequency estimators are tested using
signals modeled by (1) under different signal length, N . The
performance are evaluated in terms of Mean Square Error
(MSE). The MSE is estimated using K = 1000 Monte Carlo
Trials by

MSE ≈ 1

K

K−1∑
k=0

(ω0 − ω̂)2 (29)

where ω0 is the (true) fundamental frequency and ω̂ cor-
responds to the frequency estimate. In each simulation, the
sampling frequency and the fundamental frequency are set to
Fs = 1kHz and ω0 = 2π × (51.5)/Fs rad/s, respectively.

A. Estimation for L = 1

In this subsection, we evaluate the performance for sinu-
soidal signals. In each simulation, parameters are fixed to
L = 1, a1 = 1, ϕ = 0.3 and SNR = 10dB. Figure 1 presents
the performance of the three-phase and single-phase MLE. We
note that the three-phase MLE achieves the CRB. Further-
more, we observe that the three-phase estimator outperforms
the single-phase estimator, whatever the number of samples.
Specifically, the former decreases the MSE by a factor of three,
which is consistent with the conclusions of subsection IV-A.

B. Estimation for L ≥ 1

In this subsection, we present the performance of MLE,
MLE1 and MLE∞ for harmonic signals with L = 4. Simula-
tion parameters are given in Table I. Figure 2 displays the MSE
versus the data-length at SNR = 10 dB. We observe that the
exact and asymptotic CRBs have similar values whatever the
signal length. Furthermore, among the considered estimators,
we note that the exact MLE is the only one that achieves the
CRB at high SNRs. As compared to single-phase and MLE1

estimators, the exact MLE significantly decreases the MSE.
Concerning the approximated MLE, MLE∞, we see that the
performances highly depend on the signal length N . Indeed,
the performances tend to those of the exact MLE for N →∞.
In addition, we observe that the MSEs are broadly similar for
N ≈ 2kπ/ω (k ∈ N). This behaviour comes from the fact that
the equality in (11) is attained for these particular values of
N .
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Fig. 1: MSE versus signal length for sinusoidal signals (L = 1,
SNR = 10dB).

TABLE I: Simulation parameters (L = 4).

Parameter a1 a2 a3 a4 ϕ1 ϕ2 ϕ3 ϕ4

Value 1 0.1 0.105 0.366 0.052 0.1 0.4 0.5
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Fig. 2: MSE versus signal length, N , for harmonic signals
(L = 4, β = 0.5, SNR = 10dB).

C. Experimental signals

In this subsection, the frequency estimator MLE is applied
to experimental data. Experimental signals come from the
DOE/EPRI National Database of Power System Events. The
sampling frequency is equal to Fe = 15360 Hz. The analysed
signals are presented in Figures 3 and 4. These signals
correspond to the events 3127 and 3163. The fundamental
frequency is estimated using the exact three-phase MLE es-
timator with L = 3. Frequency estimates obtained with the
single phase MLE (L = 3) and root MUSIC are also shown
for comparison.

Figure 3 displays the estimated fundamental frequencies
versus N for the event 3127. We observe that the three estima-
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(b) Frequency estimation versus the number of samples N .

Fig. 3: Event 3127: Estimation of the fundamental frequency.

tors converge to the same value, f̂0 = 59.9Hz, when N > 500.
However, we see that the exact MLE converges more rapidly
than the single-phase MLE and root MUSIC. In particular,
the exact MLE is the only estimator that provides accurate
results even for a small number of samples. Specifically, this
estimator converges roughly after 275 samples (≈ 1 cycle).

As shown in Figure 4, the event 3163 introduces a moder-
ate amount of three-phase unbalance in the voltage signal.
Although the proposed estimator is designed for balanced
systems, we note that the single-phase and proposed estimator
lead to the same frequency estimate for N > 500 samples (≈
2 cycles). Nevertheless, the three-phase MLE exhibits extra
oscillations due to the unbalanced conditions. We can note
that these oscillations significantly increase the estimator’s
settling time. Under unbalanced conditions, it is clear that
better estimates could be obtained by treating the unbalance
parameters as nuisance parameters.

VI. CONCLUSIONS

In this paper, we have focused on the Maximum Like-
lihood estimation of the fundamental frequency in three-
phase balanced systems. A new estimator that jointly uses the
multidimensional and harmonic structure of electrical signals
has been proposed. For sinusoidal signals, this estimator
is obtained by maximizing the periodogram of the positive
sequence component. For harmonic signals, the estimator is
obtained by maximizing a cumulated periodogram of the zero,
positive and negative components. The analysis of the Cramer
Rao Bound has clearly demonstrated the benefit of using
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Fig. 4: Event 3163: Estimation of the fundamental frequency.

the multidimensional and harmonic structure for frequency
estimation. Indeed, the use of the multidimensional nature of
electrical signals allows to decreases the CRB by of a factor
of 3, and the use of the harmonic structure by a factor of 1/β.
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