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a b s t r a c t

We formulate a new micromechanical damage model for anisotropic rocks. This model accounts not only

for the coupling between material initial anisotropy and the damage-induced one, but also for the

opening/closure status (the so-called unilateral effects) of evolving microcracks. A closed-form expres-

sion of the overall free energy of the microcracked medium is implemented in an appropriate

thermodynamics framework to derive a complete damage model for initially anisotropic rocks. The

salient features of this model are fully illustrated. Then, its capabilities are demonstrated through an

application to a Taiwan argillite subjected to direct tensile loading (including off-axis ones) for which the

damage model well captures experimental data (mechanical response, growing damage rocks strength).

Finally, the response of the studied rock along a tensile loading followed by an unloading and a reloading

in compression is provided in order to illustrate the so-called unilateral damage effects due to

microcracks closure.

1. Introduction

The complex inelastic behavior of brittle rock-like materials under

mechanical loading generally results from damage phenomena due to

evolving microcracks. For the non-linear mechanical response of

microcracked materials, Continuum Damage Mechanics (CDM, see,

for instance, the textbooks of [1] and [2]) offers an appropriate theo-

retical framework. Since several decades, both phenomenological and

micromechanical approaches of damage have been proposed. For

continuum micromechanics, mention has to be made of several con-

tributions dealing with effects of microcracking on materials proper-

ties (see, for instance, [3–6]). Formulation of isotropic or anisotropic

damage by microcracks growth in rocks or concrete materials has

been provided in several studies (see, for instance, [7–19]).

Despite their interest, the above cited models concern only mate-

rials which are initially isotropic (in their undamaged state). The

purely macroscopic formulation of constitutive models coupling

explicitly initial anisotropy and damage-induced one has been only

investigated in few recent studies mainly devoted to brittle matrix

composites; we refer here to Halm et al. [20] (see also [18] and [21]).

Mention has also to be made of the purely macroscopic model for an

initially anisotropic rock by Chen et al. [22]. Concerning micro–macro

models, Baste et al. [23] and recently Monchiet et al. [24] proposed

appropriate damage models which couple structural anisotropy and

damage by microcracking. Yet, this class of models are limited to

damage processes generated by open microcracks growth and need to

be completed in order to properly account for microcracks closure.1 To

this end, Goidescu et al. [25] recently established closed-form expres-

sions of the overall free energy of orthotropic materials weakened by

microcracks, either open or closed. The present study takes advantage

of these very recent results in order to formulate a complete model

which fully couples initially anisotropy and evolving unilateral damage

due to 2D systems of open or closed microcracks under frictionless

conditions.

The paper is organized as follows. We briefly recall the closed-form

expression of the macroscopic free energy which will play in the

present study the role of a thermodynamics potential for the damaged

material. The state laws derived from this potential provide the macro-

scopic stress as well as the damage energy release rate (thermody-

namic forces conjugated to damage) as a function of the macroscopic

strain and the damage variables. By adopting a discrete damage

representation defined by the microcracks density parameter, we then

propose a damage yield function based on the damage energy release

n Corresponding author.
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1 The corresponding unilateral effects are of paramount importance and

necessary for quasi brittle geomaterials usually subjected to tensile loadings as

well as compressive ones.



rate associated to each microcracks family. The corresponding damage

surface is illustrated for various configurations of the microdefects

system. Finally, we provide the damage evolution law by assuming

normality rule and following classical thermodynamics-based proce-

dure. This allows us to establish the complete rate formulation of the

fully anisotropic constitutive damage law with account of microcracks

closure. After a simple calibration step, the proposed model is assessed

by comparing its prediction under tensile loading to available data on

an argillite studied by Liao et al. [26]. Finally, the ability of the model to

also account for microcracks closure effects is fully demonstrated in

several cases.

Notations: Standard tensorial notations will be used throughout

the paper. Lower underlined case letters will describe vectors, while

bold script capital letters will be associated to second-order tensors

and mathematical double-struck capital letters to fourth-order ten-

sors. The following vector and tensor products are exemplified:

ðA ! bÞi ¼ Aijbj, ðA ! BÞij ¼ AikBkj, ðA : BÞij ¼ AijklBkl, ðA : BÞijkl ¼ Aijpq

Bpqkl, ðA $ BÞijkl ¼ AijBkl and ðA$ BÞijkl ¼
1
2 AikBjlþAilBjk

 !

. Einstein

summation convention applied for the repeated indices and Cartesian

coordinates are used. As usual, in the context of continuum micro-

mechanics, small (respectively large) characters refer to microscopic

(resp. macroscopic) quantities. I and I are, respectively, the second and

fourth order identity tensors, the components of the former are

represented by the Kronecker symbol (δij) while for the latter one

has Iijkl ¼ ð1=2ÞðδikδjlþδilδjkÞ.

2. Overall free energy of a 2D anisotropic medium weakened

by an arbitrarily oriented system of microcracks

2.1. Representative volume element (r.v.e.)

Micromechanical formulation of a brittle damage model

requires first the determination of the effective properties of the

microcracked material by using an homogenization procedure.

Let us consider a representative volume element r.v.e. Ω of the

material (see Fig. 1(a)); this is constituted of an elastic orthotropic solid

matrix s (with stiffness tensor Cs and occupying a domainΩs) and an

arbitrarily oriented system of flat microcracks families (denoted r and

occupying a domain Ωr). The latter are assumed open or frictionless

closed, non-interacting and in dilute concentration. This assumption

allows us to fully develop a proper representation of the anisotropic

multilinear response of weakened materials and provides basic solu-

tions for future developments related to more complex configurations

(including for instance interactions between microcracks2). Micro-

cracks of the rth family are characterized by their normal nr and

tangent t r unit vectors, mean length 2lr (the corresponding crack

density is defined as dr ¼N
r
ðlrÞ2 in which N

r is the number of

microcracks of this family per unit surface, see [3]).

This r.v.e. can be subjected either to uniform strain or uniform

stress boundary conditions; the latter can take the form:

σðzÞ ! vðzÞ ¼Σ ! vðzÞ; 8zA∂Ω ð1Þ

in which σ denotes the microscopic stress field, Σ the macroscopic

stress, v the outward unit normal to ∂Ω and z the vector position.

Let us recall that the present study deals with orthotropic

materials weakened by arbitrarily oriented microcracks. The sym-

metry axes of the matrix correspond to an orthonormal basis

ðe
1
; e

2
Þ (see Fig. 1) and its stiffness is given by

C
s ¼ a1I $ Iþa2I$ Iþa3A $ Aþa4ðA $ IþI $ AÞ ð2Þ

in which A ¼ e
1

$ e
1
denotes the structural fabric tensor and

where

a1 ¼C
s
2222'2Cs

1212; a2 ¼ 2Cs
1212

a3 ¼C
s
1111þC

s
2222'2Cs

1122'4Cs
1212;

a4 ¼C
s
1122'C

s
2222þ2Cs

1212 ð3Þ

and

C
s
1111 ¼

E1
1'ν12ν21

; C
s
2222 ¼

E2
1'ν12ν21

;

C
s
1212 ¼ G12; C

s
1122 ¼C

s
2211 ¼

ν21E1
1'ν12ν21

ð4Þ

E1 and E2 are the Young moduli in the symmetry axes of the

material (respectively to e
1
and e

2
), G12 is the shear modulus and

ν12 and ν21 are Poisson ratios related to ðe
1
; e

2
Þ (Poisson ratios

verify the relation: E1=ν12 ¼ E2=ν21). Equivalently, the compliance

S
s ¼ C

s
 !'1

of the matrix is defined as follows in the principal

basis ðe
1
; e

2
Þ according to the Voigt notation:

S
s ¼

1
E1

'ν21E2
0

'ν12
E1

1
E2

0

0 0 1
G12

0

B

B

B

@

1

C

C

C

A

ðe
1
;e

2
Þ

: ð5Þ

2.2. Thermodynamics potential of the anisotropic medium weakened

by an arbitrarily oriented distribution of microcracks

The main homogenization procedure has been carried out by

Goidescu et al. [25] who performed a direct microfractures mechanics-

based analysis of the anisotropic damaged materials, in the spirit of

the studies done in the context of isotropic matrix by [4,6,7,15–17] and

others. The macroscopic thermodynamic potential of the anisotropic

medium weakened by an arbitrarily oriented distribution of micro-

cracks is then obtained as a function of themacroscopic strain tensor E

(the observable state variable) and of the set of damage variables dr

(the internal state variables of the problem), noted d, and associated to

all microcracks family r ranging from 1 to N ¼NoþNc . Assuming a

dilute concentration of microcracks, the solution of the homogeniza-

tion problem comes to sum up the contributions of each family of

parallel microcracks, namely

Ψ ðE;dÞ ¼
1

2
E : C

s
: E

'
X

No

r ¼ 1

dr Hr
nnðN

r
: EÞ2þ2Hr

ntðN
r
: EÞðTr

: EÞþHr
ttðT

r
: EÞ2

n o

þ
X

Nc

r ¼ 1

dr

Hr
nnH

r
tt 'Hr2

nt

Hr
nnH

r2

ntðN
r
: EÞ2þ2Hr3

ntðN
r
: EÞðTr

: EÞ

þHr
ttð2H

r2

nt 'Hr
nnH

r
ttÞðT

r
: EÞ2

8

<

:

9

=

;

ð6Þ

where No represents the number of open microcracks family and

Nc the number of closed cracks. One has Nr ¼C
s
: ðnr $ nrÞ and

Fig. 1. (a) Representative volume element in 2D case; (b) crack coordinates system.

2 This could be done for instance by considering a Mori–Tanaka like homo-

genization scheme.



Tr ¼ 1
2C

s
: ðnr " t rþt r " nrÞ two second order symmetric tensors,

Hnn
r , Hnt

r and Htt
r are scalar parameters that depend on the matrix

properties and on the crack orientation ϕ
r
¼ ðe

1
;nrÞ (see Fig. 1)

defined by

Hr
nn ¼ Cð1%D cos 2ϕ

r
Þ; Hr

nt ¼ CD sin 2ϕ
r
; Hr

tt ¼ Cð1þD cos 2ϕ
r
Þ

ð7Þ

with scalars C and D being related to the initial stiffness components:

C ¼
π

4

ffiffiffiffiffiffiffiffiffiffiffiffi

C
s
1111

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

C
s
2222

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
s
1111C

s
2222%ðC

s
1122Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

C
s
1212

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
s
1111C

s
2222

p

%C
s
1122

C
s
1111C

s
2222%ðC

s
1122Þ

2

s

D¼

ffiffiffiffiffiffiffiffiffiffiffiffi

C
s
1111

p

%
ffiffiffiffiffiffiffiffiffiffiffiffi

C
s
2222

p

ffiffiffiffiffiffiffiffiffiffiffiffi

C
s
1111

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

C
s
2222

p ð8Þ

The transition between open and closed cracks is described by the

criterion function g (see [25]):

gðE;nrÞ ¼Hr
nnN

r
: EþHr

ntT
r
: E ð9Þ

If gðE;nrÞ40 microcracks are open, while they are closed if not.

Note that the above formulation (6) can also be written in the

following form:

Ψ ðE; dÞ ¼ 1
2 E : C

hom
: E ð10Þ

with

C
hom ¼C

s%
X

N

r ¼ 1

2drBr ð11Þ

and

B
r ¼ C

r
1N

r " NrþC
r
2½N

r " TrþTr " Nr'þC
r
3T

r " Tr ð12Þ

Scalar Cr1, C
r
2 and C

r
3 are defined in case of open cracks (index o) as

C
r
1o
¼Hr

nn; C
r
2o
¼Hr

nt ; C
r
3o
¼Hr

tt ð13Þ

while for closed cracks (index c) one has

C
r
1c
¼ %

Hr
nnH

r2

nt

Hr
nnH

r
tt%Hr2

nt

; C
r
2c
¼ %

Hr3

nt

Hr
nnH

r
tt%Hr2

nt

;

C
r
3c
¼ %

Hr
ttð2H

r2

nt%Hr
nnH

r
ttÞ

Hr
nnH

r
tt%Hr2

nt

ð14Þ

From Eq. (10), the first state law which gives the macroscopic

stress tensor Σ can be obtained by derivation:

Σ¼
∂Ψ

∂E
¼C

hom
: E ð15Þ

With B
r being defined by (12), the second state law provides

the expression of the damage energy release rate Fd
r

(derivative of

Ψ with respect to dr):

Fd
r

¼ %
∂Ψ

∂dr
¼ E : B

r
: E ð16Þ

Note that the homogenized stiffness tensor Chom and the damage

energy release rate Fd
r

are both affected by the anisotropic properties

of the solid matrix and also depend on the orientation of the

considered microcracks family and on its opening-closure state. This

is at the origin of the complex behavior which results from the

coupling between initial anisotropy, damage-induced one and uni-

lateral behavior as already discussed in Goidescu et al. [25].

2.3. Damage yield function and its illustration

We aim now at formulating the damage evolution laws. To this

end, based on the classical thermodynamics arguments, we introduce

the following form for the damage criterion associated to each family

of microcracks:

f rðFd
r

; drÞ ¼ Fd
r

%RðdrÞ ¼ 0 ð17Þ

The scalar function RðdrÞ represents the resistance to the damage

evolution by microcracks growth. A classical choice for brittle damage

in the context of an isotropic matrix (see, for instance, [27]), adopted

in the present study, consists in (see, for instance, [28])

RðdrÞ ¼Kþξdr ð18Þ

Following then an idea used for geomaterials by Pietruszczak et al.

[29] who introduce a dependency of failure criterionwith off-axis, it is

proposed to adopt a dependence of the initial threshold with loading

orientation ψ:

K¼K0 expðωψ Þ ð19Þ

K0,ω and ξ are material parameters relative to initial threshold and its

evolution with damage; ψ corresponds to the angle between ortho-

tropy axis e
1
and macroscopic stress principal direction. The expo-

nential term allows us to shift the yield surface from K0 according to

the load direction. From (16), it is seen that the damage yield function

for each microcracks family r, f rðFd
r

; drÞ ¼ 0, is strongly sensitive to

matrix anisotropy, microcrack orientation and their opening-closure

state. Once the yield surface is reached, the microcracks density

parameter dr will increase as described in (2.4).

To illustrate the overall shape of criterion (17), Figs. 2–5 show

for different microcracks orientation ϕr the initial yield surface

(virgin state, dr0 ¼ 0) in the macroscopic strain spaces ðE22; E11Þ,

ðE11; E12Þ and ðE22; E12Þ associated to the axes of orthotropy

(E¼ E11e1 " e
1
þE12ðe1 " e

2
þe

2
" e

1
ÞþE22e2 " e

2
); for simpli-

city, only the source term of K is considered (ω¼ 0;

K¼K0 ¼ 1:2 kJ=m2). Moduli and Poisson ratio are similar to the

one given in Table 1, no initial damage is considered. Various

applications of the complete damage model to an anisotropic rock

will be presented in Section 3.

Regarding these results, several general comments can be done.

First, from the mathematical point of view, the thermodynamics

potential Ψ is of class C1 on restricted strain space domains

related respectively to open and closed microcracks (that is for

states E such that gðE;nrÞ40 and gðE;nrÞo0 respectively) and of

class C1 on the global strain space (see analyses of [30] and [25]);

this allows the definition of a different stiffness C
hom according to

the microcracks status, while preserving the continuity of the

macroscopic stress Σ and force Fd
r

at the transition between open

and closed states; similar features can then be noted in Figs. 2–5

for the initial damage yield surface. Due to the dependence of Fd
r

,

the yield surface is always hyperbolic despite that it is affected by

the state of microcracks; in particular, we note that the damage

criterion f ðFd
r

; drÞ ¼ 0 systematically exhibits a finite frontier in the

open configuration of microcracks, contrary to the closed case; this

shows the strong incidence of unilateral effects in the material

response that will differ under tensile or compression loading

regime, and also the more damaging capabilities of open micro-

cracks configurations. Initial yield surface are represented in the

strain spaces associated to the axes of orthotropy. In that case, the

differences that can be observed between Figs. 2–5 come from the

orientation of the microcracks with respect to the matrix

anisotropy. In the particular case of a microcracks orientation of

ϕ
r
¼ 451, the difference between Fig. 4(b) and (c) clearly illustrates

that this contribution on the yield surface is entirely induced by

the amplitude of the matrix anisotropy. A similar remark can be

done between Fig. 2(b) and (c) (and also between Fig. 5(b) and (c))

that are not completely symmetric due to the orthotropic elastic

properties.



2.4. Damage evolution law and rate form of the constitutive model

The damage evolution law is derived by using normality rule

for a given family r of microcracks:

_d
r
¼ _Λ

r ∂f r

∂Fd
r ¼

_Λ
r

ð20Þ

where the damage multiplier _Λ
r
is deduced from the consistency

condition:

_f
r
¼

∂f r

∂E
: _Eþ

∂f r

∂dr
_d
r
¼ 0 ð21Þ

It follows the damage evolution in the form:

_d
r
¼
1

ξ
_F
dr

¼
2

ξ
E : B

r
: _E: ð22Þ

with the tensor Br being defined by (12). Finally, by differentiating the

macroscopic stress–strain relation given by (15), the macroscopic

stress increment is expressed as

_Σ ¼
∂Σ

∂E
_Eþ

X

N

r ¼ 1

∂Σ

∂dr
_d
r
¼C

hom
t : _E ð23Þ

with the tangent operator

C
hom
t ¼C

hom$
1

c1
E :

X

N

r ¼ 1

B
r % B

r

 !

: E ð24Þ

2.5. Integration in a finite element code of the micromechanical

model

Even the applications shown in the present study do not necessa-

rily require finite element computations, for further numerical simula-

tions, the micromechanical damage model has been implemented in

the (finite element) code LAGAMINE developed by the University of

Liège since the 1980s (with [31,32]). The algorithm of local integration

is based on an incremental procedure associated with the rate form of

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

-0.010 -0.005 0.000 0.005 0.010

E22 (%)

E11 (%)

open crack

closed crack

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

-0.02 -0.01 0.00 0.01 0.02

E11 (%)

E12 (%)

open crack

closed crack

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

-0.02 -0.01 0.00 0.01 0.02

E22 (%)

E12 (%)

open crack

closed crack

Fig. 2. Initial damage yield surface (virgin state, d
r
0 ¼ 0) in the (E22, E11), (E11, E12)
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stress–strain relation and the strain discretization of the loading path.

The scheme for the step j to jþ1 begins with the initialization of strain

tensor and state variables by applying a strain increment ΔEjþ1:

Ejþ1 ¼ EjþΔEjþ1

drjþ1 ¼ drj ; 8r ¼ 1;…;N

(

Then, for r ¼ 1;…;N, the opening-closure condition is examined:

gðE;nrÞ ¼Hr
nnN

r
: EþHr

ntT
r
: E ð25Þ

For r¼ 1;…;N, damage criterion f ðFd
r
j ; drj Þ from Eq. (17) has to be

evaluated with appropriate C
r
1, C

r
2 and C

r
3 constants defined by (13) for

open microcracks (gðE;nrÞ40) and (14) for closed microcracks

(gðE;nrÞr0): if f ðFd
r
j ; drj Þo0 then drjþ1 ¼ drj ; if f ðFd

r
j ;drj ÞZ0 then

one has to calculate Δdrjþ1 using Eq. (22) and to update

drjþ1 ¼ drj þΔdrjþ1. Finally, the macroscopic stress tensor Σjþ1 is

updated from Eqs. (11) and (15), so as the tangent operator

ðChom
t Þjþ1 with Eq. (24).

3. Applications and validation

As a support for the validation of the new proposed damage

model, we consider the anisotropic Taiwan argillite studied by Liao

et al. [26]. This class of materials is commonly considered for under-

ground excavation projects. The Taiwan argillite was formed from

slight metamorphism of shale or silty shale. It is composed of about

45% of quartz and 55% clay minerals (illite, chloride for instance), its

dry unit weight is about 27 kN/m3 with a very low porosity of about

0.014–0.018. Clear foliation planes are well-developed by recrystalliza-

tion of clay minerals.
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and (E22,E12) strain spaces for a microcrack orientation ϕr ¼ 451 (dashed lines

denote the hypersurface separating the open and closed microcracks domains).
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Table 1

Model parameters for the Taiwan argillite.

E1 E2 ν12 G12 K0 ω ξ

60 GPa 27 GPa 0.22 13 GPa 0:2 kJ=m2 0.043 10 kJ=m2



3.1. Identification of the model

Liao et al. [26] investigated the tensile response of such argillite

under axis and off-axis loads by employing a servocontrolled material

testing machine (model MTS 810) with tensile grip, which is a

computer controlled machine with 250 kN load capacity. Denoting

ðx; yÞ the orthonormal basis corresponding to the testing device frame,

several uniaxial tests along y-axis have been performed for different

loading orientations ψ ¼ ðx; e
1
Þ ¼ ðy; e

2
Þ with ðe

1
; e

2
Þ being the prin-

cipal axes of this transversely isotropic rock (see Fig. 6). For each test,

displacements have been measured by LVDT, strain by extensometer.

A plane strain approach is adopted for the modeling of the studied

rock. Owing to symmetry considerations, only one quarter of the

sample is considered. Vertical displacements are locked on the bottom

(y¼0) and horizontal displacements are locked on the left side (x¼0).

The tensile loading Σyy is applied on the top of the sample (Fig. 6). All

simulations are made by using for the damage representation a

discretization of N¼60 families of microcracks with uniform distribu-

tion of unit normals nr , that is ϕ
r
¼ ðe

1
;nrÞ ¼ πðr#1Þ=N; 8r ¼ 1;60.

The four elastic constants can be determined from the linear

part of the laboratory tests. E1 is directly estimated from (Σyy,Eyy)

curve for the test at ψ ¼ 901; E2 is directly estimated from (Σyy,Eyy)

curve for the test at ψ ¼ 01; G12 and ν12 are calibrated to reproduce

in average (Σyy, Exx) and (Σyy, Eyy) curves for all the tests.

The experimental results clearly put also in evidence the depen-

dence of the damage evolution with the orientation of foliation planes

(Fig. 7). Especially, we note that stress–strain curves exhibit non-

linearity before failure for low inclination ψ, whereas the responses

are quite linear for high inclination ψ. Considering an initial isotropic

damage distribution (initial state such that dr0 ¼ 0:01; 8r ¼ 1;60), the

two remaining model parameters have then been identified from the

variation of the initial damage threshold with loading orientation that

follows the exponential relation (19) with K0 ¼ 0:2 kJ=m2 and

ω¼ 0:043 (Fig. 8). The same evolution of damage is assumed for all

the tests through the definition of the ξ parameter of Eq. (18). Table 1

summarizes the results of the calibration procedure for the Taiwan

argillite.

3.2. Simulation of uniaxial tensile test on Taiwan argillite

The results of the above model calibration are shown in

Figs. 9 and 10. In addition to the overall response, the orientational

average damage d ¼ ð1=NÞ
PN

r ¼ 1 d
r , induced by the load, is also

depicted. It is observed that the stress–strain curves Σyy–Eyy and

tensile strengths are well captured by the model (except maybe for

the case ψ ¼ 301 for which experimental data seems less accurate); on

the other hand, the predicted evolutions of the damage seem realistic.

Especially, the model is able to capture the experimental trends that

can be related to some transition with the change of the loading angle

ψ. For the tensile loads, microcracks develop mainly along the normal

direction to loading, so along x-axis in our example; in other words,

the orientation of the microcracks family with the highest density is

ϕ
r
¼ 901 when ψ ¼ 01. The theoretical approach provides a different

interaction between initial anisotropy and damage induced one: for

load with low inclination ψ, damage appears earlier and grow

gradually causing a more pronounced non-linear behavior of argillite;

on the contrary for high inclination, damage occurs later and its

propagation is rather sudden. Numerically, the latter case leads rapidlyFig. 6. Uniaxial tensile test and anisotropy orientation.
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to the non-convergence of the model due to the strong damage levels

reached.

By analogy to stress paths in elasto-plasticity theory, a “damage

path” can be drawn in the strain space associated to orthotropy axes

(Fig. 11). Two loading orientations ψ have been considered; initial and

final damage yield surfaces are also depicted as a reference, consider-

ing in each case one family of microcracks corresponding to the

preferential orientation (maximum density) obtained under tensile

loading (that is ϕ
r
¼ 901 for ψ ¼ 01 and ϕ

r
¼ 451 for ψ ¼ 451). Even

for elastic behavior, Fig. 11 clearly puts in evidence the differences

between axis and off-axis loads induced in the initial principal strain

space. It is also observed that microcracks remain in their open status

for both tests. Also, once strain state reaches damage criterion in one

direction, the damage criterion varies linearly with damage both in

open and closed crack domains and similarly in all directions due to

scalar resistance considered in Eq. (18). Consequently, the final

damage surface is homothetic to the initial one.

Damage coupling with matrix anisotropy affects also the overall

compliance tensor Shom ¼ C
hom

 !!1
. Variations of the components of
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this tensor in the material basis ðe
1
; e

2
Þ of anisotropy and in the basis

ðx; yÞ (Eq. (5)) associated to the loading are shown in Fig. 12 for two

loading cases:

S
hom ¼

Shom1111 Shom1122 Shom1211

Shom1122 Shom2222 Shom1222

Shom1211 Shom1222 Shom1212

0

B

B

@

1

C

C

A

ðe1 ;e2Þ

¼

Shomxxxx Shomxxyy Shomxyxx

Shomxxyy Shomyyyy Shomxyyy

Shomxyxx Shomxyyy Shomxyxy

0

B

B

B

@

1

C

C

C

A

ðx ;yÞ

ð26Þ

This figure shows that when ψ ¼ 01, microcracks evolve along

bedding plane affecting mainly S2222
hom (or Syyyy

hom) component of Shom

tensor. When ψ ¼ 451, microcracks still evolve along x-axis which

is now different from the bedding plane. As a result, the evolution

of S2222
hom (or Syyyy

hom) component is quite similar for both loading

orientations, whereas effects on S1111
hom and S1212

hom are more signifi-

cant when ψ ¼ 451. However, in the basis ðx; yÞ, the evolution of

Syyyy
hom is more pronounced than the evolution of Sxxxx

hom due to a

strong coupling between matrix anisotropy and damage induced

anisotropy (see Appendix). Note also that in case ψ ¼ 451, earlier

non-convergence of the model is caused by an intense damage

that occurs more suddenly (as already observed in Figs. 9 and 10).

To be more illustrative, let us examine the effective Young modulus

Eeff ðvÞ defined for any direction of unit vector v by [33]:

Eeff ðvÞ ¼ v # v : S
hom

: v # v
h i$1

ð27Þ

Fig. 13 presents the distribution of such modulus normalized by its

initial orthotropic value EsðvÞ (respectively derived for compliance

tensor S
s) for the two studied loading cases; the initial values

correspond to unit circles. When damage occurs, moduli are deg-

raded. However, because of a strong coupling between matrix anis-

otropy and damage induced anisotropy, these degradations differ

from one direction to the others. In case of ψ ¼ 01, loading direction

corresponds to an initial principal axis; then, structural and induced

anisotropies remain collinear. In case of ψ ¼ 451, loading direction

does not correspond to the anisotropy axis, so we can observe the

competition between initial anisotropy (with axes ðe
1
; e

2
Þ) and ind-

uced anisotropy (with axes ðx; yÞ) since microcracks mainly develop

along axis x.

3.3. Microcracks closure effect: tension–compression loading

In order to investigate microcracks closure effects on the macro-

scopic behavior, we consider that one has to perform the unilateral

effect through the modeling of tensile loading followed by an

unloading and then reloading in compression. The objective is to

evaluate how progressive closure of open microcracks (initially

generated during the tension loading step) affects the material

response during the compression phase. Note that the response under

tension loading is the same as described above.

Fig. 14 presents the axial stress–strain curveΣyy–Eyy corresponding

to the above tension-compression loading path for the axis case

ψ ¼ 01. In the same figure, is provided the evolution of the average

damage d with axial strain Eyy. The obtained stress–strain curve shows

continuous response at the tension-compression transition (when

axial stress is equal to zero corresponding to the opening/closure

transition) despite the discontinuity of the macroscopic elastic proper-

ties at this transition.
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It has been noted that depending of the loading regime (tension or

compression phase), microcracks do not grow in the same directions.

Indeed, as indicated before, the preferential microcrack orientation

during the first tensile phase is along axis x (the family of cracks with

orientation ϕ
r
¼ 901 exhibits the maximum density). On the contrary,

during compression reloading phase, the most evolved microcracks

are oriented at about ϕ
r
¼ 451 (see [28]). Furthermore, the status of

these families differs according to the load (open during the ten-

sile phase, closed during compression). Representation of the tension-

compression loading path in strain space with related preferential

damage yield surfaces allows us to explain the different stages of

damage (see Figs. 14 and 15). Naturally, as long as tensile loading does

not reach damage criterion for the family of microcracks with

ϕ
r
¼ 901, damage is constant to initial isotropic value d0¼0.01 and

stress–strain relation is linear; microcracks are all open in this case.

After this yield surface is reached, damage evolves and generates the

non-linearity of stress–strain curve due to the degradation of stiffness

tensor. Moreover, the evolving damage induces growth of damage

surface for the main microcracks family (ϕ
r
¼ 901). During unloading

phase, the strain path comes into the elastic convex domain with a

constant damage level. When compression load is applied, most of

microcracks get closed (only few families with normal close to x

remain open, see [28]); this modification of the defects status induces

a non-linearity (change of the overall elasticity) but without damage

evolution as shown in Fig. 16 which displays the distributions of the

normalized effective Young modulus and of the normalized damage

dr=dr0 after tensile loading and compression reloading. Damage evo-

lves again when the path reaches the yield surface of the microcracks

with orientationϕ
r
¼ 451 that are in the closed state. Note that similar

results are obtained whatever the anisotropy orientation ψ. Even if

such test has not been performed for now on the studied argil-

lite, it should be underlined that predictions of the model stand in
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agreement with experimental tendencies obtained for a sandstone

[34] or for concrete materials [35].

4. Conclusions

Taking advantage of the recent study by Goidescu et al. [25], a full

2D anisotropic micromechanical damage model has been formulated

for initially anisotropic rocks. The originality of the formulation mainly

lies in accounting for the coupling between the damage-induced

anisotropy and the orthotropy of the solid matrix and in the

characterization of unilateral effects of evolving microcracks. Applied

to argillite, the model predicts that the initial anisotropy of the rock

strongly affects the damage initiation and growth and subsequently

the macroscopic response of the material through the stiffness de-

gradation. Furthermore, depending of the orientation of the load with

respect to the material symmetry axis, damage can occur gra-

dually or suddenly, leading either to non-linear or to quasi-linear be-

havior of the studied argillite, as observed during experiments.

Microcracks opening/closure effects are also illustrated through the

material response under a tension-compression test. Moreover, the

systematic analysis of the damage criterion in strain space provides an

appropriate description of damage evolution process and the various

coupling effects which accompanied it.

Further investigations need now to be conducted to complete the

validation, especially regarding the comparison with experimental

data for complex loads including a change in the microcracks status

(for instance tension followed by compression). Moreover, the repre-

sentation should be improved by the introduction of inelastic strain of

the material induced by friction sliding still in micromechanical fram-

ework. Again, it will be interesting to account by this way of the inte-

ractions between closure effects, initial anisotropy and friction sliding

and provide an enriched representation of the behavior of microcrac-

ked materials.
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Appendix A. Formulation of homogenized stiffness tensor

C
hom

According to Goidescu et al. [25], the homogenized stiffness

tensor can be written as a function of the fabric tensor A and crack

orientation nr as follows:

C
hom ¼C

sþ
X

N

r ¼ 1

dr

2χr
1I " Iþ2χr

2A " Aþχr
3ðI " AþA " IÞ

þ2χr
4n

r " nr " nr " nr

þχr
5ðI " nr " nrþnr " nr " IÞ

þχr
6ðI" nr " nrþnr " nr" IÞ

þ
χr
7

2 ½ðn
r " nr & AþA & nr " nrÞ " I

þI " ðnr " nr & AþA & nr " nrÞ'

þχr
8ðn

r " nr " AþA " nr " nrÞ

þ
χr
9

2 ½ðn
r " nr & AþA & nr " nrÞ " A

þA " ðnr " nr & AþA & nr " nrÞ'

þ
χr
10

2 ½ðn
r " nr & AþA & nr " nrÞ " nr " nr

þnr " nr " ðnr " nr & AþA & nr " nrÞ'

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ðA:1Þ

in which the coefficients χr
pðC

s;nr ;AÞp ¼ 1;10 are given by Goidescu

et al. [25] according to microcrack status (open or closed). From this

formulation, interactions between anisotropies can be explicitly

defined through combinations of E, A and nr " nr . Then, one could

distinguish three kinds of coupling between the initial anisotropy and

the microcracks induced one: (i) isotropic-like coupling thanks to

terms of coefficients χr
1, χ

r
2 and χr

3 that preserve the initial orthotropy

of the material; (ii) weak anisotropic coupling thanks to terms of

coefficients χr
4, χr

5 and χr
6 that account for the loss of material

orthotropy through tensorial terms identical to isotropy; primary

anisotropy is only taken into account in constant χr
4, χ

r
5 and χr

6

definitions; (iii) strong anisotropic coupling thanks to all other terms

that introduce complex anisotropy through combinations of orienta-

tional effects of nr , A and E.
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