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Abstract

The effect of a constant homogeneous suction on the non-linear transient growth of localized finite

amplitude perturbations in a boundary-layer flow is investigated. Using a variational technique, non

linear optimal disturbances are computed for the asymptotic suction boundary layer (ASBL) flow,

defined as those finite amplitude disturbances yielding the largest energy growth at a given target

time T . It is found that a strong enough wall suction remarkably reduces the optimal energy gain

in the non linear case, and breaks the spanwise symmetry of the non-linear optimal perturbation

found in the Blasius boundary-layer case. However, it appears that a value of the Reynolds number

exists between 5000 and 10000 for which the non linear optimal perturbation changes from a non

symmetric shape to a symmetric one. Direct numerical simulations show that the different structure

of the base flow leads to a different evolution of the symmetric or non symmetric initial perturbation,

due to the transport and tilting of the vortices by the mean flow. By bisecting the initial energy

of the non linear optimal perturbations, minimal energy thresholds for subcritical transition to

turbulence have been obtained. These energy thresholds are found to be 1 to 4 order of magnitude

lower than the ones found by Levin et al. (2005) for other transition scenarios. For low to moderate

Reynolds numbers, these thresholds are found to scale as Re−2, suggesting a new scaling law for

transition in the ASBL.
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I. INTRODUCTION

Drag reduction in external and internal flow is a fundamental topic in fluid mechanics

since it is a key issue for improving the performance of engineering systems, increasing

energy saving, and reducing environmental impact. Flow suction through the wall was

among the first techniques applied to control the structure of the boundary layer in order

to reduce drag. The idea, already employed by Prandtl and described in his first paper

in 1904 [44], was born together with the concept of boundary layer itself, described for

the first time in 1904 by Prandtl during the Third International Mathematics Congress at

Heidelberg [1]. About thirty years later, such a technique was employed to delay transition

over aircraft wings by reducing the boundary layer thickness and inducing a fuller velocity

profile close to the wall [44]. The influence of suction on the stability of the boundary layer

was studied by analytical methods considering uniform suction at wall. In particular, a very

simple exponential solution for the velocity was derived by Meredith and Griffith (1938) [44]

which would be valid at a sufficiently high distance from the leading edge of a flat plate.

This solution of the Navier-Stokes equation is known as the asymptotic suction boundary

layer (ASBL) [44] and is considered a suitable model to study boundary layers subject to

active control by suction and to investigate the transition mechanism. Hocking (1975) [23]

demonstrated that the critical Reynolds number is about two orders of magnitude higher

than that of the Blasius boundary layer (BBL). In fact, the normal velocity term in the Orr-

Sommerfeld and Squires equations stabilizes the Tollmien-Schlichting (TS) waves, producing

an effective way of damping their asymptotic growth. This effect has been widely employed

in different forms in the design of aircraft wing (see, for example, Joslin (1998) [26]).

More recently, the development of the optimal transient growth analysis has renewed

the interest in the study of the ASBL. In fact, it is well known that for a sufficiently

high level of free-stream turbulence (FST), a bypass route to transition may occur in the

boundary layer which corresponds to the growth of linear optimal perturbations (LOP) [19,

37]. This mechanism is based on the development of streamwise-aligned structures composed

by alternating low and high velocity streaks observed for the first time by Klebanoff [30]. The

algebraic growth of the streaks due to the lift-up effect [32] leads eventually to secondary

instability and break-up to turbulence [3, 4, 24]. From a numerical point of view, LOP

were computed for several shear flows [2, 5, 15, 35, 43]. In all of these works, optimal
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perturbations are defined as those initial flow states yielding the largest amplification of

the disturbance energy over a time/space interval and can be computed using a variational

optimization approach [18, 36]. For the case of the boundary layer at low Reynolds number,

such optimal structures consists of pairs of streamwise aligned counter-rotating vortices

producing streamwise streaks by the lift-up effect, in perfect agreement with the above

experimental findings. The same mechanisms have been studied in the ASBL. Fransson and

Alfredsson (2003) [20] performed an experimental analysis about the development of forced

TS waves and about the algebraic growth of disturbances induced by free-stream turbulence.

They confirmed the damping of TS waves due to suction and were able to suppress transition

in both cases. Using a local approach, Fransson and Corbett (2003) [21] computed LOP

for the ASBL and compared their results with experiments. They observed a significant

transient growth, although smaller than in the case of the BBL. This indicates that the

strong effect of the damping of the energy growth of TS waves obtained by suction is not

achieved in the case of the algebraic growth. Bystrom et al. (2007) [6] computed LOP for

the semi-suction boundary layer in order to take into account the presence of a small region

free of suction close to the leading edge of the flat plate. With this approach, they could

improve the agreement of the results with experimental data, demonstrating that the optimal

energy growth is indeed obtained in the upstream region without suction. Finally, Levin

et al. (2005) [33] studied the energy thresholds for transition to turbulence in the ASBL,

for Re = 500, 800, 1200, with perturbations having the form of oblique waves, streamwise

vortices, or random noise; whereas, Levin et al. (2007) [34] analyzed the energy threshold

for the same Reynolds numbers, in the case of localized disturbances, and investigated the

formation and evolution of turbulent spots.

The ASBL has been also considered for testing and validating the recent dynamical sys-

tem theory of turbulence, which analyze the fundamental role of non linearities in transition

to and sustainment of turbulence for shear flows. Such a theory relies on: 1) the observation

of the existence of exact coherent states, which can be unstable fixed points, periodic orbits

or chaotic solutions of the Navier-Stokes equations, having a few unstable directions (see Ref.

[17, 25, 39, 50, 52, 53]); 2) the idea that such states constitute the skeleton of transition and

regeneration processes of turbulence and can be used to understand its nature. In particu-

lar, for analyzing the transition process, it is interesting to study those flow perturbations

confined on the boundary between the laminar and the turbulent states, called the edge of
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chaos [9, 16, 45, 48]. Those perturbations can be very dangerous, being the closest ones to

the laminar state capable of triggering transition. On the edge of chaos, one or more relative

attractors may live, called edge states [48], which can be fixed points [46], periodic orbits

[31] or chaotic states [17]. Concerning the ASBL, Kreilos et al. (2013) [31] investigated the

structure of the edge-states for turbulence transition, identifying a periodic orbit embedded

in the laminar-turbulent boundary. Such a solution shows the same basic mechanisms of

transient growth interactions between streamwise-aligned vortices and streaks which char-

acterize many shear flows. Furthermore, it captures also the bursting phenomenon typical

of the BBL. Khapko et al. [28, 29] have investigated the dynamics restricted to the laminar-

turbulent boundary, describing the complex spatio-temporal dynamics of different localized

edge states for several streamwise wavelength. They found that all these states have the

same structure, consisting of a localised pair of low- and high-speed streaks flanked with

streamwise vortices. Investigating the structure of the relative attractors embedded in the

edge of chaos allows to identify the typical shape and dynamics of the coherent structures

consituting the skeleton of turbulence. However, for unraveling the main features of the

most effective (in terms of both time and energy) path to transition, the minimal-energy

states on the laminar-turbulent boundary should be analyzed [7, 42].

Very recently, the problem of finding the minimal energy perturbation on the edge of tur-

bulence has been investigated by solving the non linear optimal growth problem for finite-

amplitude initial perturbations (see [27] for a review). Those perturbations which optimize

at a given (target) time the growth of a functional linked to transition (the kinetic energy or

the dissipation for instance), called non linear optimal perturbations (NLOPs), have been

found for a pipe flow [40, 41]; a boundary layer flow [8, 10]; and a Couette flow [12, 16, 38, 42].

By optimizing the energy at large target times and bisecting the initial energy to bring the

perturbation close to the laminar-turbulent boundary, the perturbation of minimal energy

capable of bringing the flow to the edge state and then to transition, called the minimal

seed of turbulent transition can be found [42]. When small target times are considered, a

different procedure should be used for finding minimal-energy perturbations on the edge of

chaos, directly targeting the neighbourhood of the edge state in a finite time [7].

In all cases, the NLOPs are characterized by a very different structure with respect to the

linear optimal ones and largely outgrow them in energy due to non linear mechanisms [10, 41].

For the boundary-layer and the Couette flow, the NLOPs are characterized by a similar
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fundamental structure, composed of a localized array of vortices and low-momentum regions

of typical length scale, capable of maximizing the energy growth most rapidly. Cherubini

et al. (2011) [10, 11] have discussed the contribution of non linear effects in such a strong

energy growth, showing that non linearity is crucial to sustain the growth of such optimal

perturbations. The knowledge of these non-linear mechanisms may allow one to design

effective control strategies to delay transition by using wall suction [14]. The aim of the

present paper is to extend the analysis of the NLOP to the case of the ASBL, following the

approach that the authors have employed for the BBL, discussing similarities and differences

between these two cases, and highlighting the role of the suction velocity.

The paper is organized as follows. In the second section we define the problem and

describe the non linear optimization method. In the third section, divided into three parts,

a thorough discussion of the results of the non linear optimization analysis is provided. In

particular, in the first part, the focus is on the characterization of the NLOP with respect to

the LOP, also by comparing with the results already obtained for the BBL and Couette flows.

The second part provides an analysis varying the Reynolds number, achieving supercritical

values; whereas, the third part deals with the optimal route to turbulence, computed by the

DNS. Finally, concluding remarks are provided.

II. PROBLEM FORMULATION

A. Governing equations and numerical method

The behaviour of an incompressible flow is governed by the Navier–Stokes (NS) equations:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u,

∇ · u = 0,

(1)

where u = (u, v, w) is the velocity vector and p indicates the pressure term. Dimensionless

variables are defined with respect to the inflow boundary-layer displacement thickness δ∗

and the freestream velocity, U∞, so that the Reynolds number is Re = U∞δ∗/ν, ν being

the kinematic viscosity. A Cartesian coordinate system is considered, x, y and z being

the streamwise, wall-normal and spanwise directions, respectively. The asymptotic suction

boundary-layer flow is defined as the flow over a flat plate with a uniform wall-normal suction
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velocity VS = 1/Re applied along the wall. Therefore, imposing no-slip conditions for the

streamwise and spanwise components of the velocity at the wall, one obtains from equations

(1) the following solution [22]:

U = ((1− e−y),−VS, 0)
T . (2)

The numerical simulations are performed by integrating the NS equations with the following

boundary conditions: at the bottom boundary, no-slip conditions for the x and z compo-

nents of the velocity and homogeneous suction for the y component, v = −VS; at the upper

boundary, the z component of the velocity and of the vorticity are set to zero and homo-

geneous injection is imposed for the y component of the velocity; in the streamwise and

spanwise directions, periodicity is imposed for the three velocity components.

The analysis has been performed using five values of the Reynolds number (see table I),

obtained varying the suction velocity VS. The NS equations are discretized by a finite-

difference fractional-step method using a staggered grid [49]. A second-order-accurate cen-

tered space discretization is used. Performing a grid-convergence analysis, a mesh made up

by 451×100×61 points has been selected for the reference domain at Re = 610 with dimen-

sions Lx = 100, Ly = 20 and Lz = 10.5. The spanwise dimension has been chosen very close

to the one used in [33] for determining transition thresholds, whereas the streamwise length

is much longer to avoid interaction of the flow structures with its own tail for long target

times. Since the NLOP has been found to localize more and more with increasing Reynolds

number, the domain length has been reduced accordingly, in order to reduce the compu-

tational cost. Table I summarizes the domain lengths and the corresponding grid points

selected for different Reynolds numbers after validations with respect to larger domains.

B. Non linear optimization

The non linear behavior of a perturbation q = (u′, v′, w′, p′)T evolving in the laminar

asymptotic suction boundary-layer flow is analyzed by solving the NS equations written in

perturbative formulation with respect to the steady state solution, Q = (U, P )T , with U

given by equation (2). A zero perturbation boundary condition is imposed for the three

velocity components at the y−constant boundaries, whereas periodicity of the perturbation

is forced in the spanwise and streamwise directions.
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Figure 1: Sketch of the ASBL flow with a superposed localized disturbance.

Re Lx × Ly × Lz Nx ×Ny ×Nz T

610 100× 20× 10.5 451 × 101 × 61 50, 100, 150, 200, 250

1200 50 × 15 × 7 451 × 101 × 61 50, 100, 150

2500 40 × 15 × 5 451 × 101 × 61 50, 100, 150

5000 40× 7.5× 4 451 × 101 × 91 50, 100, 150

10000 30× 7.5× 2 601 × 101 × 91 50, 100

Table I: Domain lengths, grid points and target times chosen for the optimizations at different

Reynolds numbers

The goal is to find the perturbation at t = 0 providing the largest disturbance growth at a

given target time, T . At this purpose, a Lagrange multiplier technique is used [8, 36, 40, 55]

to perform a constrained optimization of the perturbation energy. The disturbance energy
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density is defined as

E(t) =
1

2V

∫

V

[

u′2(t) + v′
2
(t) + w′2(t)

]

dV =
1

2V
〈u′(t) · u′(t)〉 , (3)

where V is the volume of the computational domain. Given an initial energy E(0) = E0, we

aim at finding the shape and amplitude of an initial perturbation q0 which induces at target

time T the largest energy gain E(T )/E0; threfore, the objective function of the optimization

procedure is ℑ = E(T )/E(0). The Lagrange multiplier technique consists in searching for

extrema of an augmented functional, L, with respect to every independent variable, the

three-dimensional incompressible NS equations and the value of the initial energy being

imposed as constraints. The augmented functional reads:

L =
E(T )

E(0)
−

∫ T

0

〈

u
† ·

{

∂u′

∂t
− u′ · ∇U+U · ∇u′ + u · ∇u′ −∇p′ −

∇2
u
′

Re

}〉

dt

−

∫ T

0

〈

p† · ∇u′
〉

dt− λ

(

E0

E(0)
− 1

)

.

(4)

where (u†, p†, λ) are the Lagrange multipliers, e.g. the adjoint variables. Integrating by

parts and setting to zero the first variation of L with respect to (u′, p′) leads to the adjoint

equations plus the compatibility condition (which are provided in Ref. [10]). The adjoint

equations are linked to the direct ones by the presence of the direct variables in the advection

terms, so that the whole flow field needs to be stored at each time step, requiring a remarkable

storage capacity. The gradient of the augmented functional with respect to the initial

perturbation q0 is forced to vanish by means of a conjugate gradient algorithm as detailed

in Ref. [10]. A coupled iterative approach similar to that used in [55] and [40] is used to

solve the problem, relying on the forward and backward solution of the direct and adjoint

NS equations, respectively, and on the update of the initial perturbation in the conjugate

gradient direction at each iteration, until convergence is reached. A detailed description of

the optimization technique and of its convergence properties is provided in Ref. [10] for the

case of the BBL flow and in Ref. [12] for the Couette flow.

III. RESULTS

A. Non linear optimal perturbations at Re = 610

The non linear optimization has been performed at Reynolds number Re = 610. This

rather low Reynolds number (compared to the critical one for the ASBL) has been chosen

8



T

E
(T

)/
E

(0
)

50 100 150 200 2500

500

1000

1500

2000

NL
LIN

Figure 2: (Color online) Optimal energy gain versus target time T for Re = 610, E0 = 3.0× 10−7.

The dashed line with triangles indicates the results of the linear optimization; the solid line with

squares (red online) indicates the results of the non linear optimization.

for comparison purpose with the BBL case of ref. [8]. Figure 2 shows the value of the

optimal energy gain versus the target time for an initial energy E0 = 3.0×10−7. The dashed

line refers to the results of a linear optimization, whereas the solid line represent the non

linear optimization. As also observed for the BBL flow [8], the non linear optimal energy

gain is remarkably larger than the corresponding linear one for T > 50. The influence of the

parameter E0 on the value of the optimal energy is shown in Figure 3, for three values of

the target time. It appears that a non linearity threshold value of the initial energy exists

from which strong differences are observed in the non linear optimal energy with respect to

the linear one (compare the solid lines with the dashed ones). Such a threshold decreases

when the target time increases, as one can observe by comparing the solid lines in Figure

3, converging towards a value, E0 = 1.2 × 10−7, which might be close to the energy of

the minimal seed for this Reynolds number (i.e., the perturbation of minimal energy on

the laminar-turbulent boundary). Table II provides a comparison between the energy gains

obtained for the BBL and the ASBL at T = 75 (the behavior is similar for different target

times) for three optimizations: a linear optimization and two non linear optimizations with

E0 = 1.2 × 10−7 and E0 = 3.0 × 10−7, respectively. The results indicate that a significant

reduction of the optimal energy growth is obtained in the linear case; however, wall suction
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Figure 3: (Color online) Optimal energy for Re = 610 at target time T = 50 (black), T = 100

(red), and T = 200 (green) versus the initial energy E(0), using the non linear optimization (solid

lines with symbols) and the linear optimization (dashed lines).

Test case Linear E0 = 1.2 × 10−7 E0 = 3.0 × 10−7

BBL 275.10 801.98 1104.1

ASBL 125.16 125.15 158.37

Table II: Comparison between energy gains at T = 75 for the BBL and the ASBL.

is much more effective in damping the growth of non linear optimal perturbations.

Crossing the non linearity threshold also yields large modifications in the shape of the

optimal perturbations. This can be observed in Figure 4, which provides the optimal initial

perturbations obtained for the ASBL at Re = 610 and T = 75, for two values of the

initial energy, E0. For the lowest one, E0 = 1.2 × 10−7 (top frame), the perturbation is

similar to that obtained by the linear optimization in a BBL flow [13], being characterized

by alternated vortices elongated in the streamwise direction (black and white surfaces),

localized in two different positions along the flat plate. Due to weak non linear effects,

which are non-negligible for such values of the initial energy, some spanwise modulations are

present on the streamwise perturbation (green surfaces). Concerning the amplitudes, the

largest perturbation velocity component is the spanwise one (|wmax| = 0.0027), followed by

the wall-normal (|vmax| = 0.0025) and the streamwise one (|umax| = 0.0003). One can notice
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that the streamwise perturbation is one order of magnitude lower than the others, meaning

that for this value of the initial energy the mechanism of growth is still very close to the

linear optimal one, based on the lift-up of the streamwise base flow velocity by the vortices

given by the wall-normal and spanwise perturbation. However, as one can observe in figure

4, the shape of the optimal perturbation changes remarkably between E0 = 1.2× 10−7 and

E0 = 3.0×10−7. The most striking difference is the strong localization of the disturbance in

both the streamwise and spanwise direction. In fact, for initial energies larger than the non

linearity threshold, a strong localization of the initial perturbation leads to larger amplitudes

(for the same initial energy), triggering non linear effects that induce a remarkable increase

of the energy gain at target time. In fact, for an increase of the initial energy of a factor

2.5, we observe at t = 0 an increase of the velocity magnitudes of a factor of about 12 for

v and w, whereas a factor 80 is obtained for u. These values of the perturbation velocity

components, together with the particular shape of the disturbance, are able to trigger non

linear effects which allow a much larger energy growth than in the linear case.

This strong localization appears to be a typical feature of NLOP in shear flows, since it has

been also observed for the pipe [40, 41], the BBL [10], and the Couette flow [12, 38, 42].

Furthermore, not only the extension, but also the structure of the perturbation changes

remarkably. For E0 = 3.0×10−7, the optimal perturbation is composed by three streamwise-

alternated vortices showing a finite inclination with respect to the streamwise direction (black

and white surfaces), whereas in the quasi-linear case at E0 = 1.2 × 10−7 the vortices are

streamwise-aligned. On both flanks of such inclined vortices, localized patches of finite-

amplitude streamwise disturbance are observed (green surfaces). Concerning the relative

magnitude of the velocity perturbations, the largest perturbation velocity component is the

spanwise one (|wmax| = 0.033), followed by the streamwise (|umax| = 0.03) and the wall-

normal one (|vmax| = 0.024). These values are similar to those found for the Couette flow

[12], whereas, for the BBL flow at the same Re, the largest component has been found to

be the streamwise one, whose value is about half of the maximum value found here for the

ASBL, for an initial energy just above the non linearity threshold, see [10]. It is worth

noticing that, for all of these flows, in the linear case the streamwise velocity component

at initial time is from one to two orders of magnitude lower than the spanwise and the

streamwise ones, whereas in the non linear case all of the components are of the same order,

meaning that different mechanisms are responsible for the growth of the perturbation energy.
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Figure 4: (Color online) Initial perturbations obtained by the non linear optimization for the

asymptotic suction boundary-layer at Re = 610 and target time T = 75: iso-surfaces of the optimal

perturbations (grey, green online, for the negative streamwise component; dark and light gray for

negative and positive streamwise vorticity, respectively) with initial energy E0 = 1.2 × 10−7 (top

frame, surfaces for u′ = −0.00017, ω′
x = ±0.01) and E0 = 3.0 × 10−7 (middle frame, u′ = −0.015,

ω′
x = ±0.1). Initial perturbations obtained by the non linear optimization for the Blasius boundary

layer flow at Re = 610, target time T = 75, with initial energy E0 = 1.2 × 10−7 (bottom frame,

u′ = −0.01, ω′
x = ±0.06). Axes are not in the same scale.

The structure of the NLOP found here shows some similarities with that found for the

Couette flow (compare with Figure 5 of Ref. [12]) and with that obtained for the BBL

flow (see Figure 4, bottom). For all of these shear flows, the NLOP is characterized by

streamwise-inclined vortical structures and finite-amplitude patches of streamwise distur-

bance. However, while for the Couette and the ASBL flow (at least at low Reynolds number)

the optimal disturbance does not show any particular symmetry, for the BBL it is symmet-

rical with respect to a z = const axis. In fact, one can see in Figure 4 (bottom frame), that

the NLOP for the Blasius flow at E0 = 1.2× 10−7 is composed by a basic structure similar

to that of the ASBL, but the disturbance is symmetric with respect to a z−aligned axis.

The flow structures can be better analyzed by taking x−constant slices of the NLOP, as
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Figure 5: (Color online) Contours and vectors of the velocity components of the NLOP at initial time

obtained with Re = 610, T = 75 for the asymptotic suction boundary layer with E0 = 3.0×10−7, on

the planes x = 211 (a), and x = 215 (b); for the Blasius boundary layer with E0 = 1.2×10−7, on the

planes x = 228 (c), and x = 232 (d). Shaded contours indicate the streamwise disturbance velocity

(dark, red online, for positive values; light, green online, for negative ones); vectors represent the

wall-normal and the spanwise disturbance velocity components.

provided in the top frames of figure 5. One can observe that the inclined alternated vortices

are strictly localized in a narrow zone in the spanwise direction (2 < z < 5), surrounded

by patches of negative (light gray) and positive (dark gray) streamwise perturbation which

are alternated in the spanwise and wall-normal direction, at the flanks of the vortices. The

differences with respect to the BBL can be analyzed by comparing the top frames (ASBL)
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with the bottom frames (BBL) of figure 5. Concerning the latter, the vortices are localized in

two distinct regions in the spanwise direction, connected by alternated patches of streamwise

disturbance showing a symmetry in the spanwise direction. This discrepancy is reflected also

at target time, as one can notice comparing Figures 6 (a)-(b), for the ASBL, with (c)-(d),

for the BBL. For the ASBL, one can observe in figure 6 (a)-(b) the presence of bent streaks

along the streamwise vortices, showing strong oscillations in the streamwise and spanwise

directions. Whereas, in figures 6 (c)-(d) one can notice that, for the BBL, the perturbations

remain spanwise-symmetric, and the vortices as well as the streaks along them are strongly

lifted in the wall-normal direction, showing the typical signature of an incipient hairpin

vortex.

As proposed in Ref. [40], the disturbance of minimum amplitude capable of triggering

turbulence is defined as the minimal seed for a given Reynolds number. Bisecting the value

of the initial energy at T = 200, and checking whether the obtained NLOP is able to induce

transition, we have found the energy level of the minimal seed to be about 1.277 × 10−7

for Re = 610. The corresponding maximum amplitudes of the velocity components are

|u|max = 0.029, |v|max = 0.031, |w|max = 0.031, very close to the values found at lower

target time (even if the wall-normal component is now slightly larger than the streamwise

one). The minimal seed is sandwiched between the NLOPs shown in figure 7 (a) and (b),

for E0 = 1.2 × 10−7 and E0 = 1.35 × 10−7, both showing the basic structure provided in

figure 4 (middle frame). It is worth to notice that the NLOP keeps the same structure of

the minimal seed also for values of the initial energy slightly lower than the minimal seed

energy. For larger values of the initial energy, local maxima can be found, as in the case of the

Couette flow [12]. Furthermore, for energies larger than the minimal seed one, convergence

on the optimum is not assured (see [42]), since transition might be observed at target time.

However, since for T = 200 transition is still not observed for initial energies not much

higher than the minimal seed one, we have been able to perform two optimizations with two

different initial conditions, in order to check the existence of such local maxima. Thus, we

have chosen E0 = 2.7× 10−7 (almost double than the energy of the minimal seed), with two

different initializations, namely, i) the minimal seed structure, and ii) a symmetrical initial

disturbance constructed by mirroring in the spanwise direction the minimal seed structure

with respect to the streamwise axis. The energy gain for the first optimization is E(T )/E0 =

1641, and the optimal shape is shown in figure 7 (c); whereas, for a symmetrical initial guess,
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Figure 6: (Color online) Contours and vectors of the velocity components of the NLOP at target time

obtained with Re = 610, T = 75 for the asymptotic suction boundary layer with E0 = 3.0×10−7 on

the planes x = 249 (a), and x = 253 (b); for the Blasius boundary layer with E0 = 1.2×10−7 on the

planes x = 267 (c), and x = 273 (d). Shaded contours indicate the streamwise disturbance velocity

(dark, red online, for positive values; light, green online, for negative ones); vectors represent the

wall-normal and the spanwise disturbance velocity components.

the suboptimal structure shown in figure 7 (d) has been found, with energy gain E(T )/E0 =

254 (even if the optimization eventually converges to the non symmetrycal solution if the

convergence process is continued to lower values of the residual). The comparison between

the optimal in figure 7 (c) and the suboptimal in figure 7 (d) proves that replication and

spatial spreading of the basic structures is observed for large initial energies, as in the Couette
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(a) (b)

(c) (d)

Figure 7: (Color online) Isosurfaces of the initial perturbations obtained by the non linear opti-

mization for the ASBL at Re = 610 and target time T = 200, with initial energies E0 = 1.2× 10−7

(a), E0 = 1.35 × 10−7 (b), E0 = 2.7 × 10−7 (c) and a suboptimal for E0 = 2.7 × 10−7 initialized

with a symmetric initial perturbation (d). Green and red, for the negative and positive streamwise

velocity component; dark and light, for negative and positive streamwise vorticity, respectively,

with values u′ = −0.005, ω′
x = ±0.05 (a-b), u′ = −0.01, ω′

x = ±0.08 (c), u′ = −0.005, ω′
x = ±0.05

(d).

flow, but this does not lead to a symmetrisation of the optimal (at least for Re = 610).

The results discussed above show that NLOPs obtained for different shear flows share

a similar structure, characterized by inclined vortices along a patch of finite streamwise

velocity perturbation (although with a different symmetry). The persistence of this basic

structure at different values of the initial energy, target times and for different kind of flows

indicates that such a structure, which maximizes the disturbance energy over a finite time,

has an intrinsic fundamental importance for shear flows. However, a crucial difference has

been found between the basic structure of NLOP found for the ASBL flow (similar to that of

the Couette flow) and the BBL flows, namely, the spanwise symmetry of the perturbation.

This important difference has motivated the analysis of the structure of the NLOP for several

Reynolds numbers provided in the next subsection.

16



Re

E

1000 2000 3000 4000 500010-9
10-8
10-7
10-6
10-5
10-4
10-3

m
in

OW
SV

NOISE

LD

MS
0.38*Re

-2

Figure 8: Minimal energy for turbulent transition for the asymptotic suction boundary layer at

different Reynolds numbers (solid line). The dashed lines show the minimal energy for different

transition scenarios, namely noise (NOISE), streamwise vortices (SV), oblique waves (OW), and

localized disturbances (LD), extrapolated from data in [34].

Figure 9: (Color online) Minimal seeds for the asymptotic suction boundary layer for Re = 1200

(left, with E0 = 2.08 × 10−8) and Re = 2500 (right, with E0 = 4.16 × 10−9) with target time

T = 150: iso-surfaces of the negative streamwise component, u′ = −0.0025 (green) and of the

negative and positive streamwise vorticity, ω′
x = −0.045 (black and white, respectively)

B. Reynolds number analysis

The laminar profile of the ASBL given by equation (2) is linearly stable for Re < 54382

[23], which is about 100 times the critical Reynolds for a Blasius boundary layer [44]. Thus,

the value of Re = 610 employed in the previous analysis is largely subcritical for the ASBL.

Therefore, to generalize our results, we have extended the analysis to larger Reynolds num-

bers, namely, Re = 1200, 2500, 5000, 10000. For each value of the Reynolds number but

the latter, the value of the initial energy has been bisected in order to approximate the
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Figure 10: (Color online) Non linear optimal perturbations for the asymptotic suction boundary

layer at Re = 5000 for E0 = 2.12 × 10−9 (left) and E0 = 4.24 × 10−9 (right) with target time

T = 100: iso-surfaces of the negative streamwise component, u′ = −0.001 (green) and of the

negative and positive streamwise vorticity, ω′
x = ±0.045 (black and white, respectively)

minimal seed with a two-digit accuracy. The solid line in Figure 8 shows the energy of the

minimal seed, Emin, versus the Reynolds number, for Re = 610, 1200, 2500, 5000. Whereas,

the dashed lines in the figure reproduce the results of Ref. [33, 34], for four different initial

perturbation structures: i) random three-dimensional noise (NOISE); ii) streamwise vor-

tices (SV), obtained by a local spatial optimization; iii) spatially extended oblique waves

(OW), obtained by a local spatial optimization; iv) localized disturbances (LD) consisting

of two alternated counter-rotating pairs of streamwise vortices. One can notice that the

transition threshold provided by the minimal seed energy is amost two orders of magni-

tude lower than the energy thresholds found for spatially extended disturbances such as

the streamwise vortices and the oblique waves. Moreover, Emin is one order of magnitude

lower than the minimal energy found for the localized perturbations selected in Ref. [34].

We can also observe in figure 8 that Emin varies with Re roughly following a power law

Re−2, whereas Levin et al. [33] found a −2.1 exponent for the SV and NOISE perturbations

and a −2.8 exponent for the OW one. It is worth to notice that in Ref. [16], computing

minimal seeds, a power law Re−2.7 has been found for a Couette flow in a small domain

(whereas the OW scenario was characterized by a −2 exponent for the same configuration).

Concerning the velocity amplitudes, for Re = 1200 the minimal seed is characterized by

|u|max = 0.014, |v|max = 0.015, |w|max = 0.017. Whereas the minimal LD triggering transi-

tion in Ref. [34] was characterized by |v|max = 0.0124, very close to the minimal amplitudes

found here, but |u|max = 0.0. Thus, the large difference in the transition thresholds can
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Figure 11: (Color online) Non linear optimal perturbations for the asymptotic suction boundary

layer at Re = 10000 with E0 = 2.5 × 10−9 (top), and with E0 = 1.25 × 10−8 (bottom) with target

time T = 50: iso-surfaces of the negative streamwise component, u′ = −0.002 (green) and of the

negative and positive streamwise vorticity, ω′
x = ±0.045 (black and white, respectively)

be linked on the complete absence of streamwise velocity disturbances in Ref. [34], which

appears to be a crucial feature for inducing a rapid transition to turbulence using low-energy

perturbations. Two other crucial elements which might explain the difference between the

energy thresholds for the LD and the minimal seed are: i) the larger spatial extension of

the LDs, which makes them more energetic than the minimal seed for similar associated

amplitudes; ii) the fact that the vortices are perfectly aligned with the streamwise axis, and

spanwise-symmetric with respect to this axis, whereas the perturbations inducing the largest

growth by non linear mechanisms appear to be characterized by a finite inclination with re-

spect to the streamwise axis, and do not show any spanwise symmetry. Thus, it appears

that a non linear optimization is crucial to determine the order of magnitude of the minimal

thresholds for transition to turbulence, and for accurately determining the shape and typical

length scales of the minimal perturbation capable of inducing transition to turbulence.

As shown in Figure 9, the shapes of the minimal seed for Re = 1200 and Re = 2500 are

very similar to the ones described in the previous section for Re = 610. They are composed

19



Re = 610 1200 2500 5000 10000

lx = 18.2 8.6 4.1 2.9 1.7

lz = 8.6 4.4 2.7 1.94 1.3

Table III: Streamwise and spanwise dimensions, lx, lz of the minimal seed for the considered

Reynolds numbers, measured as the largest spanwise and streamwise lengths of the flow regions

where |u′| > 0.001

by streamwise alternated positive and negative vortices with a finite inclination with respect

to the streamwise and wall-normal axis. It is worth to notice that, even if the basic struc-

ture is the same, the minimal seed is much more localized for higher values of the Reynolds

number, as shown in table III. In particular, the streamwise and spanwise lengths appear

to be almost halved for an increase of Re of a factor two.

For a fluid with a given kinematic viscosity, the dependence on Re of the typical length

scales of the wall-structures, such as the streaks, is more complex for the ASBL than for the

BBL. For the ASBL the Reynolds number can be varied either by changing the freestream

velocity U∞ (keeping the suction velocity fixed), or by changing the suction velocity, thus

modifying the displacement thickness δ∗ (but keeping U∞ fixed). Yoshioka et al. [54] have

experimentally measured the typical length scales of wall structures induced by free stream-

turbulence in the ASBL, concluding that: i) if VS and δ∗ are kept constant, the spanwise

spacing of the streaks varies with U−1

∞ ; ii) if U∞ is kept constant and δ∗ is changed, the

dimensional spacing of the streaks remains constant. In the present work, we change the

Reynolds number by keeping U∞ constant, modifying the suction velocity VS; therefore,

we are increasing the reference length, δ∗, when the Reynolds number increases. Thus, a

decrease of a factor 2 of the minimal seed size corresponding to a twofold increase of the

reference length δ∗ is consistent with the results in Ref. [54], since the dimensional typical

length scales of the streaks will not change with Re when U∞ is kept constant. We can thus

conclude that, at least for Reynolds numbers in the range [610, 10000], the typical length

scales of the NLOPs change accordingly to the streaks spacing measured in Ref. [54]. This

explains why we have chosen to use smaller domain lengths for larger Re.

Another important feature of the minimal seed shown in figure 9 for Re = 1200 and 2500

is that, as for Re = 610, it does not present any symmetry in the spanwise direction. How-
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ever, when the Reynolds number is increased to Re = 5000, two types of non linear optimal

solutions have been found. Figure 10 shows the result of the non linear optimization for

two initial energies, E0 = 2 × 10−9 and E0 = 4 × 10−9, for T = 100. One can observe that

the latter is almost symmetrical, roughly corresponding to a mirroring of the former with

respect to the streamwise axis. The minimal seed for this Reynolds number is sandwhiched

between these two solutions with different symmetries. Further bisections between these

two values indicate that the minimal seed is not symmetrical. However, the presence of a

symmetrical non linear optimal is an indication of the change in the optimal dynamics that

is observed at larger Reynolds numbers. In fact, for Re = 10000, only symmetrical optimal

disturbances have been obtained. Figure 11 shows two of them for two energy levels and a

short target time T = 50. This result has been verified by performing optimizations at a

larger, supercritical Reynolds number, Re = 65000, for which a symmetrical minimal seed

has been found as well, preserving the same structure. This indicates that a value of the

Reynolds exists between 5000 and 10000 for which the NLOP changes from a nonsymmetric

shape to a symmetric one. Therefore, for sufficiently high Reynolds numbers, the structure

of the minimal seed becomes similar to the one of the BBL. This behavior can be explained

considering that we are changing the Reynolds number Re = U∞/VS by modifying the suc-

tion velocity Vs; therefore, for high values of Re, the influence of VS tends to become smaller

and the velocity profile tends to be closer to that of the BBL flow. At some "critical"

Reynolds number, the modification of the ASBL profile towards a profile closer to the BBL

one induces a change in the symmetry of the NLOP.

In the next section we will compare the route to turbulence at low Reynolds number for the

ASBL and the BBL, in order to understand which differences in the base flow profile can

induce different symmetries on the non linear optimal solutions, and link these results to

the change of symmetry observed at high Reynolds numbers in the ASBL

C. The route of the non linear optimal perturbations to turbulence

In this section, we analyze by DNS the evolution towards turbulence of the NLOP ob-

tained for the ASBL with Re = 610 and T = 75, providing a comparison with the NLOP of

the BBL for the same conditions [10]. In order to achieve transition, the two perturbations

have different energy, namely, E0 = 3.0 × 10−7 for the ASBL and E0 = 1.2 × 10−7 for the
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Figure 12: (Color online) Snapshots of the evolution in time of the selected NLOP for the ASBL:

iso-surfaces of the streamwise velocity and vorticity perturbations (yellow and blue, for u′ = ±0.15,

respectively; black and white, ω′
x = ±0.2, respectively) at t = 40, 80, 140, 200, 260 (from top to

bottom).

BBL. In the case of the BBL, being the flow non-parallel, we do not impose periodicity in

the streamwise direction. Thus, we have used a domain two times longer in x than that

used for the ASBL, in order to follow the evolution of the perturbation for a sufficiently long

time before the disturbance leaves the domain. The number of grid points in the streamwise

direction has been doubled as well, in order to maintain the same local grid resolution.
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Figure 13: (Color online) Snapshots of the evolution in time of the selected NLOP for the BBL:

iso-surfaces of the streamwise velocity and vorticity perturbations (yellow and blue, for u′ = ±0.1,

respectively; black and white, ω′
x = ±0.2, respectively) at t = 40, 80, 140 (from top to bottom).

Figure 14: (Color online) Snapshots of the evolution in time of the selected NLOP for the BBL:

isosurfaces of the Q-criterion for t = 80, 100, 160 (from left to right) .

Figure 15: (Color online) Snapshots of the evolution in time of the selected NLOP for the ASBL:

isosurfaces of the Q-criterion for t = 80, 100, 160 (from left to right) .
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A qualitative picture of the transition process initiated by the NLOP for the ASBL is

given in figure 12, showing the streamwise vorticity (black and white surfaces) and velocity

(blue and yellow) perturbations. At t = 40 (first frame), the initial vortices increase

their strength and streamwise inclination. This first phase is similar to that found for

the BBL, and appears to depend on the action of non linear coupling terms linked to the

components of the streamwise vorticity, such as wwz, as explained in detail in Ref. [10].

At the same time, the streamwise velocity perturbation increases its amplitude, due to

a modified lift-up effect [10]. In fact, since the initial vortices are inclined, the generated

streaks are modulated in the streamwise direction, as shown in the second frame for

t = 80. In particular, a main high-speed bent streak (yellow) is created, flanked by two

weaker low-speed ones. On such streaks, localized patches of vorticity are observed (see

the third frame for t = 140), which are originated from the splitting of the initial inclined

vortices. The bent streaks continue to be fed by the streamwise vortices, elongating in the

streamwise direction, as shown in the fourth frame for t = 200. However, in the regions of

larger vorticity, stronger modulations of the streaks are induced, leading the wave packet

to break-up starting from a localized region (x = 250 in the fifth frame for t = 260).

Such a scenario recalls the mechanism of secondary instability of streamwise streaks which

triggers bypass transition in boundary-layer flows [4, 47]. In particular, since the initial

disturbance is not symmetric, the streaks are characterized by sinuous oscillations, which

represent the primary instabilities of streamwise streaks [3, 4]. However, in the non linear

optimal case, this mechanism is much more rapid than the one relying on the linear growth

of streamwise-aligned streaks and successive saturation and secondary instability. In fact,

the initial inclined vortices can create bent streaks in a short time, leading to break-up

without experiencing secondary instability, due to their spanwise modulations [51]. The

whole transition process recalls the first phases of the disturbance evolution on the periodic

orbit recently found by bisection in a small domain (see Ref. [31]). However, since the

NLOP considered here does not lay on the edge of chaos as the mentioned periodic orbit,

transition to turbulence is reached after the bursting phase.

Despite the similarity of the initial optimal disturbances, the non linear route to transition

described here shows important differences with respect to that found in the non-parallel

case. In fact, for the BBL case, the perturbation maintains the initial symmetry of the
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NLOP up to large times (obviously, before turbulence is initiated). As shown in figure 13,

the initial symmetric inclined vortices transport the flow momentum causing an amplification

of the streamwise component of velocity along them and inducing the creation of low- and

high-momentum zones showing a Λ and an X shape, respectively (see the blue and yellow

surfaces in the first frame for t = 40). This Λ structure of the perturbation is maintained at

larger time (see the second frame for t = 80), and the symmetric inclined vortices connect

their fronts to create a Λ−vortex, which eventually turns into a hairpin vortex which leads

the flow to break-up (third frame for t = 140). The formation of the hairpin for the BBL

can be clearly seen in figure 14 at times t = 80 (a), t = 100, (b), and t = 160, where the

green surfaces show the Q-criterion, highlighting the regions of high vorticity. At t = 80, one

can observe that the initial vortices, tilted by the mean flow, are inclined at a small angle

with respect to the streamwise axis (≈ 7◦). However, at larger times, the vortices in the

heart of the wave packet increase their inclination, reaching angles of about 35◦. This phase

coincides with the formation of the hairpin vortex (two of them are visible in the second

frame at t = 100) which grows in size and splits into smaller hairpin vortices, leading very

quickly to a turbulent spot (see the third frame at t = 160). On the other hand, for the

ASBL, although the initial vortices show a similar wall-normal inclination with respect to

the streamwise direction, as shown in the first and second frame of figure 15, the head of the

hairpin vortex cannot be created due to the lack of symmetry of the perturbation. Thus,

the vorticity does not spread in space as in the BBL case, but remains localized in a narrow

region in the streamwise direction (see the third frame at t = 160).

The differences between the transition paths in the ASBL and BBL case can be analyzed

by extracting the rms values of the three components of the velocity perturbation, as shown

in figure 16, the thick lines referring to the ASBL, the thin ones to the BBL. In the BBL

flow, the three components of velocity grow more rapidly and achieve larger rms values

than in the ASBL case (see figure 16 (a)). Concerning the vorticity perturbation, shown in

figure 16 (b), in the BBL case all of the three components grow more rapidly; the largest

differences between the two flows are recovered for the wall-normal and spanwise vorticity,

which attains values almost one order of magnitude larger than in the ASBL case. This can

be explained by observing that the vorticity components ω′
z and ω′

y have large values at

the head and legs of the hairpin which characterize the BBL route to transition. In fact,

plotting the ω′
z and ω′

y surfaces for the parallel and non-parallel flow cases at t = 100, as
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Figure 16: (Color online) Evolution in time of the rms values of the three components of velocity

(solid lines for u′, dashed for v′, dashed-dotted for w′) (a) and vorticity (solid lines for ω′
z, dashed

for ω′
y, dashed-dotted for ω′

x) (b) for a DNS initialized by the selected NLOP for the ASBL (thick

lines) and the BBL (thin lines).

Figure 17: (Color online) Snapshots of the evolution in time of the selected NLOP for the ASBL (left

frame) and the BBL (right frame): spanwise and wall-normal vorticity (blue surfaces for ω′
z = 0.8,

red ones for ω′
y = 0.65.

provided in figure 17 (a) and (b), respectively, one can observe that these two components of

the vorticity perturbations are much more extended in space, and larger in magnitude in the

non-parallel case than in the parallel one (both components are about 30%). In particular,

the vorticity surfaces are localized at the head and legs of the hairpin vortices, explaining

the larger growth of such terms with respect to the streamwise vorticity.

In order to better understand the differences between the two optimal transition paths, it

is worth to analyze the evolution of the symmetric optimal perturbation superposed to the
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Figure 18: (Color online) Snapshots of the evolution in time of the selected NLOP obtained for the

BBL, injected in the ASBL flow: iso-surfaces of the streamwise velocity and vorticity perturbations

(yellow and blue, for u′ = ±0.1, respectively; black and white, ω′
x = ±0.2, respectively) at t =

80, 140 (from top to bottom).

Figure 19: (Color online) Snapshots of the evolution in time of the selected NLOP obtained for

the BBL, injected in the ASBL flow: isosurfaces of the Q-criterion for t = 80, 100, 160 (from left to

right).

ASBL base flow at low Reynolds number. Thus, we inject the selected NLOP obtained for the

BBL in the ASBL flow, and analyze its evolution in time. Figure 18 shows the streamwise

vorticity (black and white) and velocity (yellow and blue) perturbations at t = 80 and

t = 140. Comparing with figures 13 (b) and (c), one can observe that the vortices as well

as the low- and high-momentum regions are straighten up and lose part of their inclination.

As a result, at t = 140 one can observe three alternated streaks with weak vortices on their

flanks. In particular, even if the initial perturbation is symmetric with respect to a z = const

axis, the hairpin vortex is not formed at t = 100. This is clearly shown in figure 19, providing

the Q-criterion isosurfaces. One can see that at t = 80 (a) and at t = 100 (b) the inclination

of the vortices is weak and begins to grow only at t = 160, turning eventually in a hairpin
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structure at t ≈ 200. This can be also inferred by analyzing in figure 20 the time evolution of

the rms value of the three velocity and vorticity components, and comparing them with the

BBL case. As provided by the thick lines in figure 20 (a), the initial growth of the velocity

components of the NLOP injected into the ASBL is initially similar to the one characterizing

the BBL. However, at t ≈ 40, the spanwise velocity component begins to decrease, and the

wall-normal and the streamwise ones strongly decrease their growth rate. Concerning the

vorticity components, at approximately the same time they all begin to decrease, the ω′
z

and the ω′
y with a larger rate than the ω′

x. This decrease is due to the absence of the

hairpin vortex at t ≈ 100; in fact, it begins to grow only at t ≈ 200, when the growth of all

of the vorticity components is observed. Thus, we can say that the mechanism of formation

of the hairpin, which is responsible for the strong growth of all of the vorticity components

in the BBL case, is delayed for the ASBL, making a "sinuous" instability mechanism more

effective in inducing rapidly transition, like in the case of the Couette flow [12]. Thus,

in the case of the ASBL a symmetrical optimal perturbation is less effective in inducing

transition than a non-symmetrical one. As observed in figure 15, such a delay appears to

be due to the lower wall-normal inclination of the vortices with respect to the streamwise

axis. This can be linked to a simple mechanism of transport of the perturbation by the

mean flow. In fact, injecting the same initial vortical structure in the ASBL and the BBL

flows, in the latter case the highest part of the vortex will experience a lower streamwise

base velocity as it is advected downstream, so it will decelerate with respect to its lowest

part. This will induce an increase of the inclination of the initial vortex in the wall-normal

direction, leading to a connection of the fronts of the two vortices, finally creating an hairpin

structure. This is clearly shown in figure 21, providing the base flow vectors at Re = 610

for the ASBL (left frame) and the BBL (right frame) and the effect they have on the same

vortical structure evolving in time up to t = 100. For the ASBL flow, the profile is fuller

than the BBL one, so the mechanism of inclination by the mean flow is weaker, delaying

the formation of the hairpin vortex from an initial symmetric perturbation. Therefore, the

zones of strong velocity deficit (in blue in the figure) remain closer to the wall, delaying

the formation of inflection points in the mean flow profile, and the consequent transition to

turbulence. Moreover, we have verified that this effect is not due to the parallelism of the

ASBL flow. In fact, a non-linear optimization performed for a parallel flow having the same

Blasius profile with Re = 610 at all abscissae, gives a symmetric NLOP.

28



t

V
el

o
ci

ty

100 200 300 40010-3

10-2

10-1

100

101

102

103

ASBL: u
ASBL: v
ASBL: w
BBL: u
BBL: v
BBL: w

(a)

t

V
o

rt
ic

ity

0 100 200 300 400101

102

103

104

105

106

107

108

ASBL:
ASBL:
ASBL:
BBL:
BBL:
BBL:

ω
ω

ω
x
y
z

x
y
z

ω
ω
ω

(b)

Figure 20: (Color online) Evolution in time of the rms values of the three components of velocity

(solid lines for u′, dashed for v′, dashed-dotted for w′) (a) and vorticity (solid lines for ω′
z, dashed

for ω′
y, dashed-dotted for ω′

x) (b) for a DNS initialized by the selected NLOP obtained for the

BBL, injected into the ASBL (thick lines) and the BBL (thin lines) flows. .

Figure 21: (Color online) Snapshots of the evolution in time of the selected NLOP obtained for the

BBL at Re = 610, injected in the ASBL (left frame) and the BBL flow (right frame): isosurfaces

of the Q-criterion for t = 100 and vectors of the base flow.

This conjecture can be verified by visualizing the activation of the transport terms of

the spanwise vorticity (characterizing the head of the hairpin) by the mean flow. Figure

22 shows one of these two transport terms, Uv′x, for the BBL (top frames) and the ASBL

(bottom frames) at t = 100 (left frames) and t = 150 (right frames). It appears that, for

the BBL, the terms is activated at the head of the hairpin vortices, spreading in space at

larger time. Whereas, for the ASBL, they are characterized by a lower amplitude (lower

than half the one for the BBL), and they are rapidly damped in time. This confirms that

the transport of the spanwise vorticity by the mean flow is indeed the mechanism which

can explain the large differences in the symmetry of the non linear optimal perturbations.

Such a result shows that it is crucial to take into account the non linearity as well as the

non-parallelism of a flow at the same time, for determining with accuracy the most effective

29



Figure 22: (Color online) Snapshots of the evolution in time of the advection term Uv′x obtained

for the BBL (top frames) and the ASBL (bottom frames) at t = 100 (left frames) and t = 150

(right frames): isosurfaces Uv′x = ±0.13 for the BBL, Uv′x = ±0.06 for the ASBL.

route to transition.

For larger Reynolds numbers, since the suction velocity is much weaker, the velocity profile

tends to be closer to that of the BBL flow. Thus, the transition scenario tends to become

similar to the BBL one, generating an hairpin vortex at small times, for symmetrical initial

perturbations. Figure 23 shows three snapshots of the evolution in time of the NLOP

obtained for Re = 5000 and E0 = 4.25 × 10−9, showing a behaviour very similar to the

one recovered for the BBL in figure 13. In particular, one can observe the formation of

Λ structures for the negative streamwise velocity component and the streamwise vorticity.

Figure 24 shows the generation of a train of hairpin vortices at t = 75 and = 100, as well as

the base flow profiles, which appear much less full than in the previous case. This confirms

that wall suction is a crucial parameter for the stabilisation of a boundary layer flow, since,

when it is strong enough, it can modify the base flow profile and delay the formation of

strongly growing vortical structures such as the hairpin vortices.
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Figure 23: (Color online) Snapshots of the evolution in time of the symmetrical NLOP at Re =

5000, with initial energy E0 = 4.25 × 10−9, extracted at t = 50, 100, 150, from top to bottom.

The isosurfaces represent the streamwise velocity and vorticity perturbations (yellow and blue, for

u′ = ±0.015, 0.03, 0.1, from top to bottom; black and white, ω′
x = ±0.15, 0.1, 0.25, from top to

bottom).

Figure 24: (Color online) Snapshots of the evolution in time of the selected NLOP obtained for the

ASBL at Re = 5000, extracted at t = 75 (left frame) and t = 100 (right frame): isosurfaces of the

Q-criterion (Q = 20) and vectors of the base flow.

IV. SUMMARY

A variational procedure has been employed to find non linear optimal disturbances in the

asymptotic suction boundary layer (ASBL) flow. These perturbations are defined as the ones
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yielding the largest energy growth at a given target time T , for a given Reynolds number Re.

The results have been compared with those obtained using the same approach in the case

of the Blasius boundary layer (BBL) flow [8]. The influence of the different structure of the

ASBL velocity profile with respect to the BBL on the non-linear optimal growth mechanism

has been studied. It has been found that suction remarkably reduces the optimal energy

gain in the non linear case. Moreover, the optimal perturbation obtained in the present

case shares the same basic structure found for different shear flows such as the BBL and

the Couette flows. However, unlike the BBL case, the optimal perturbation for the ASBL

flow for low to moderate Reynolds number is not spanwise-symmetric. In particular, it has

been found that a value of the Reynolds number exists between 5000 and 10000 for which

the non linear optimal perturbation changes from a non symmetric shape to a symmetric

one. Therefore, for sufficiently high Reynolds numbers (low suction velocity), the structure

of the non linear optimal disturbance becomes similar to the one of the BBL. By bisecting

the initial energy of the non linear optimal perturbations, minimal energy thresholds for

subcritical transition to turbulence have been obtained. These energy thresholds are found

to be 1 to 4 order of magnitude lower than the ones found in other transition scenarios such

as secondary instability of elongated streamwise vortices, random noise, oblique waves and

localized streamwise-aligned disturbances [33]. For 610 < Re < 5000, these thresholds are

found to scale as Re−2, suggesting a new scaling law for transition in the ASBL.

Finally, direct numerical simulations show that the different structure of the base flow with

respect to the BBL leads to a different evolution of the initial perturbation. In fact, unlike

the case of the BBL flow, for low to moderate values of the Reynolds number, the formation

of hairpin vortices is not observed in the transition process before break-up to turbulence,

and a sinuous transition scenario is observed. This appears to be due to the lower tilting of

the vortices induced by the fuller velocity profile in the ASBL case, which delay the formation

of hairpin vortices. However, when wall suction is not strong enough (i.e., at large Re, for

a given freestream velocity) the vorticity transport and tilting mechanism giving birth to

the hairpin vortex is observed again. Future work will aim at investigate the existence of a

similar change of symmetry in the non-linear optimal perturbations for different shear flows

such as the plane Poiseuille flow, as well as the influence of the independent parameters of

the optimisation, such as the initial energy and the target time, on the optima perturbation

structure.
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