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Minimal-energy perturbations rapidly
approaching the edge state in Couette flow

S. Cherubini1,† and P. De Palma2

1DynFluid, Arts et Metiers ParisTech, 151, Boulevard de l’Hopital, 75013 Paris, France
2DMMM and CEMeC, Politecnico di Bari, via Re David 200, 70125 Bari, Italy

Transition to turbulence in shear flows is often subcritical, thus the dynamics of
the flow strongly depends on the shape and amplitude of the perturbation of the
laminar state. In the state space, initial perturbations which directly relaminarize are
separated from those that go through a chaotic trajectory by a hypersurface having
a very small number of unstable dimensions, known as the edge of chaos. Even
for the simple case of plane Couette flow in a small domain, the edge of chaos
is characterized by a fractal, folded structure. Thus, the problem of determining
the threshold energy to trigger subcritical transition consists in finding the states
on this complex hypersurface with minimal distance (in the energy norm) from the
laminar state. In this work we have investigated the minimal-energy regions of the
edge of chaos, by developing a minimization method looking for the minimal-energy
perturbations capable of approaching the edge state (within a prescribed tolerance) in
a finite target time T . For sufficiently small target times, the value of the minimal
energy has been found to vary with T following a power law, whose best fit is given
by Emin ∝ T−1.75. For large values of T , the minimal energy achieves a constant value
which corresponds to the energy of the minimal seed, namely the perturbation of
minimal energy asymptotically approaching the edge state (Rabin et al., J. Fluid
Mech., vol. 738, 2012, R1). For T > 40, all of the symmetries of the edge state
are broken and the minimal perturbation appears to be localized in space with a
basic structure composed of scattered patches of streamwise velocity with inclined
streamwise vortices on their flanks. Finally, we have found that minimal perturbations
originate in a small low-energy zone of the state space and follow very fast similar
trajectories towards the edge state. Such trajectories are very different from those of
linear optimal disturbances, which need much higher initial amplitudes to approach
the edge state. The time evolution of these minimal perturbations represents the most
efficient path to subcritical transition for Couette flow.

Key words: nonlinear dynamical systems, nonlinear instability, transition to turbulence

1. Introduction
Despite 130 years of research efforts since the seminal work of Reynolds (1883),

a thorough comprehension of the mechanism of transition from ordered to chaotic
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behaviour in shear flows has not yet been achieved. Indeed, even very simple shear
flows, such as flow in a pipe or flow driven by two parallel moving flat plates (plane
Couette flow, or pCf), show very complex behaviours (Eckhardt et al. 2007). As a
result of the analysis of perturbation lifetimes (see Schmiegel & Eckhardt 1997; Hof
et al. 2006; Schneider et al. 2010), it has been observed that sustained turbulence
does not exist for sufficiently small flow domains. In fact, turbulence has been shown
to be transient, and lifetimes of turbulent trajectories are distributed exponentially
with the Reynolds number (Dauchot & Daviaud 1995; Bottin & Chaté 1998; Bottin
et al. 1998). Moreover, recent analysis of experimental data (Hof et al. 2006) and
numerical simulations (Schneider et al. 2010) have shown that lifetimes increase
with the Reynolds number without diverging. Therefore, a critical Reynolds number,
above which a persistent turbulent state could be achieved, would not exist. On the
other hand, in large domains a critical Reynolds number for sustained turbulence may
appear. In fact, as shown by Avila et al. (2011) for pipe flow, persistent turbulence
can be achieved by the spatial coupling of transiently chaotic flow regions rather than
by an increase in temporal complexity.

In both cases, whether turbulence is sustained or not, for values of the Reynolds
number above a certain threshold (moreover, only approximately known), finite-energy
perturbations of a certain shape can trigger transition to a chaotic dynamics. How
these critical parameters for transition depend on each other is very intriguing and
difficult to determine accurately.

For the case of plane Couette flow, of interest here, Romanov (1973) is credited
with demonstrating that laminar flow is linearly stable, and therefore the onset of
a chaotic state cannot be connected to the linear amplification of an infinitesimal
perturbation of the laminar velocity profile. For most values of the Reynolds number
and of the size of the domain, the laminar state (LS) is the only stable fixed point in
the state space. In the present work, a small domain has been considered, for which
a saddle node bifurcation appears at a given Reynolds number (Kreilos & Eckhardt
2012). At the bifurcation point, the upper branch (UB) state is stable and the lower
branch (LB) has only one unstable direction (Nagata 1990; Waleffe 2003; Wang,
Gibson & Waleffe 2007). Increasing the Reynolds number beyond a certain threshold
ReUB, the UB experiences secondary bifurcations leading to a disordered trajectory in
the state space, whereas the LB maintains a single unstable direction only (Schneider
et al. 2008).

Studying the time evolution of the perturbations of the LS at Reynolds numbers
larger than ReUB, it has been found that (almost) all trajectories in the state space end
up at the stable fixed point: some of them relax smoothly, whereas others follow a
fairly long (i.e. long lifetime) disordered route and may eventually escape towards the
laminar attractor. In the state space spanned by the instantaneous three-dimensional
velocity field, these two types of perturbations are separated by a codimension-one
hypersurface, known as the edge of chaos (Ott 2002; Schneider & Eckhardt 2006;
Skufca, Yorke & Eckhardt 2006). This hypersurface generalizes the basin boundary
of the LS to the case of non-persistent turbulence (Vollmer, Schneider & Eckhardt
2009), since it separates the LS from a chaotic saddle with a constant probability
of decay (Schneider et al. 2010). The trajectories evolving on the edge of chaos
are attracted towards one or more relative attractors (Itano & Toh 2001), known
as edge states, which are invariant solutions of the Navier–Stokes equations with
a single unstable direction. At moderate Reynolds numbers, the stable manifold of
the LB state coincides with the edge of chaos and the LB state is the edge state
itself (Wang et al. 2007; Schneider et al. 2008). Thus, the stable manifold of the LB
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state divides the state space into two regions: initial conditions from one side decay
smoothly to the laminar profile; initial conditions on the other side flow through a
disordered dynamics and eventually decay towards the laminar state. However, it is
still not clear how the latter trajectories pass from the chaotic to the laminar side
when the decay occurs, since they cannot intersect the invariant manifold representing
the edge. Recently, the study of the decaying trajectories from the chaotic saddle
to the LS has led to the conjecture that the edge is wrapped around the chaotic
saddle, allowing the ‘unfolding’ of the chaotic trajectories back to the LS (Lebovitz
& Mariotti 2013; Chantry & Schneider 2014). This feature of the edge of chaos for
plane Couette flow has an important consequence for the dynamics of perturbations
lying close to the folds of the edge of chaos: in fact, slightly increasing the amplitude
of a given perturbation triggering turbulence may lead to relaminarization, or, in the
same way, decreasing the amplitude of a relaminarizing perturbation may lead to a
chaotic dynamics (Chantry & Schneider 2014). Thanks to very accurate control of the
perturbations, somewhat similar behaviour has been found by Tasaka, Schneider &
Mullin (2010) for pipe flow, although the geometry of the state space is different. In
particular, the authors showed that, close to a ‘critical’ perturbation amplitude, folds
are present in the laminar–turbulent boundary of such a flow. Thus, for these types
of shear flows, the problem of determining the threshold energy to trigger subcritical
transition consists in finding the states on this complex hypersurface with minimal
distance (in the energy norm) from the laminar state.

Investigating the threshold amplitude or energy for inducing subcritical transition
in shear flows has been the object of many studies: the first attempt of Reddy
et al. (1998), who provided a neutral curve for streak instability using linear stability
analysis; the study of the lower bounds for transition performed by Cossu (2005) using
the low-dimensional model based on the Galerkin projection of Waleffe (1997); the
investigation of minimal-energy perturbations inducing transition using a combination
of a finite number of linear optimal modes by Duguet, Brandt & Larsson (2010).
Very recently, more thorough attempts have been made to search for the perturbations
of minimal energy triggering transition for pipe (Pringle & Kerswell 2010; Pringle,
Willis & Kerswell 2012), boundary layer (Cherubini et al. 2010a, 2011) and Couette
flow (Monokrousos et al. 2011; Rabin, Caulfield & Kerswell 2012; Cherubini &
De Palma 2013; Duguet et al. 2013). To determine the initial condition of minimal
energy leading eventually to transition, these authors optimize at a large target
time a functional linked to the turbulent dynamics, the perturbation kinetic energy
(see Pringle & Kerswell 2010, Cherubini et al. 2011, Pringle et al. 2012, Rabin
et al. 2012, Cherubini & De Palma 2013, Duguet et al. 2013) or the time-averaged
dissipation (see Monokrousos et al. 2011). They then bisect the initial energy of
such a ‘nonlinear optimal perturbation’ (NLOP) until it approaches the edge of chaos.
Using this approach, one can find the perturbation of minimal energy Ec, which
brings the flow asymptotically close to the edge state. Such a perturbation has been
called a ‘minimal seed’ by Pringle & Kerswell (2010). The time evolution of the
energy of this perturbation is represented in figure 1 by the solid black line. The
initial perturbation, having initial energy Ec, evolves asymptotically towards the
edge state (assumed here to be steady and thus characterized by a constant energy),
whereas a perturbation having the same shape and an infinitesimally higher energy
Ec + ε, whose time evolution is represented by the dashed line, leads to chaotic
behaviour in a long time, namely, it will be a ‘turbulent seed’. Since convergence
of the optimization to a turbulent state cannot be achieved (Rabin et al. 2012), the
minimal seed can be found by computing the NLOP for a long target time and an
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initial energy lower than Ec, and then bisecting this initial energy until it reaches the
vicinity of the edge state (within a tolerance ε). The dot-dashed and dot-dot-dashed
lines in figure 1 show the energy evolution of two NLOPs, computed for an initial
energy slightly lower than Ec, for a short (TNLOP1) and a large (TNLOP2) target time,
respectively. The sketch in figure 1 shows that, even if the former reaches a larger
energy gain at the target time, only the latter approaches the minimal seed and gets
close to the edge state. In fact, as explained by Rabin et al. (2012), different solution
branches obtained by the optimization (nonlinear or quasi-linear branches) may ‘mask’
the minimal seed, unless sufficiently long optimization intervals, and initial energies
sufficiently close to the critical energy, are chosen. Rabin et al. (2012) have shown
that perturbations achieving an optimal energy gain at a short/intermediate target time
may eventually decay to the laminar state. In fact, optimizing the energy for small
target times does not allow nonlinear effects to kick in, since they may not have
the time to be triggered if the initial perturbation has an initial energy close to the
threshold Ec. As a result, the optimization algorithm will probably converge to a
quasi-linear or weakly nonlinear optimal; these perturbations are able to achieve a
very large and rapid energy growth through linear transient growth mechanisms, but
they will not lead in the vicinity of the edge state, which needs nonlinear effects
to be sustained. Thus, the algorithm used in previous studies to find the minimal
seed does not allow one to compute perturbations of minimal energy approaching
the edge state in a ‘short’ time (within a prescribed distance dT). These perturbations
will thereafter be called minimal perturbations (MP1 and MP2), and they represent
the focus of this work. The solid red and dotted magenta lines in figure 1 sketch
the time evolution of the energy of two minimal perturbations approaching the edge
state at two different short target times (T1 and T2) with minimal initial energy. The
inset shows the distance dT 1 and dT 2 reached at the target time from the edge state.
Since the laminar–turbulent boundary appears to be fractal (Lebovitz 2009; Vollmer
et al. 2009; Lai & Tél 2011), folded and probably wrapped around the chaotic saddle
(Lebovitz & Mariotti 2013; Chantry & Schneider 2014), it is possible that many
local energy minima populate the folds of the edge of chaos. In fact, it has been
observed that two initial perturbations having a slightly different initial energy may
result in very different outcomes in terms of transition probabilities (Tasaka et al.
2010; Chantry & Schneider 2014). Therefore, the analysis of the structure of the
edge of chaos and its local minimal-energy states is interesting when deepening our
understanding of the subcritical transition process at least for the simple case of
plane Couette flow, for which the edge state is steady (equilibrium point). This can
be done by determining the minimal perturbations approaching the edge state in a
short time, having an initial energy (larger but) comparable to that of the ‘asymptotic’
minimal seed. One of these perturbations is represented by the blue dot in figure 2,
where two different views of the edge of chaos are sketched, namely, a local view
of a fold (figure 2a) and a global view of the edge of chaos wrapped around the
chaotic saddle (figure 2b). In both sketches, the black circle is the laminar fixed point,
and the white dot denotes the relative attractor on the edge of chaos, whereas the
scattered trajectory represents the chaotic saddle. The stable and unstable manifolds
of the edge state are indicated by the solid and dashed lines, respectively. In the
former, one can determine the states of minimal distance from the laminar state (blue
circle in the left-hand part of the figure), approaching the edge state at a given target
time (blue circle in the right-hand part). Some states of even lower energy could exist
on the stable manifold (green circle in the left-hand part, representing the minimal
seed), but they would approach the relative attractor in a larger time interval (green
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FIGURE 1. (Colour online) Sketch of the time evolution of the energy for different initial
perturbations of the laminar state. The dot-dashed and dot-dot-dashed lines represent the
evolution of two NLOPs, optimizing the energy gain at a small and a large target time,
TNLOP1 and TNLOP2 , respectively, both computed for an initial energy Ec − ε. The first
one induces a larger energy gain than the second one, but only the latter approaches the
minimal seed as ε→ 0. The turbulent seed for TNLOP2 and initial energy Ec+ ε is plotted
by the dashed line, whereas the evolution of the minimal seed with initial energy Ec
towards the edge state is provided by the solid thick black line. The solid red and dotted
magenta lines represent the minimal perturbations (MP1, MP2) approaching the edge at a
finite time, for two different (small) target times T1 and T2. The inset shows the distance
dT from the edge (in the energy norm) at the target time, for the two different minimal
perturbations.

circle in the right-hand part). It is noteworthy that minimal perturbations approaching
the edge state in a small time can be responsible for a sudden transition of the flow
from the laminar state to turbulence and could be the key to a shear-flow control
strategy based on the stabilization of unstable states with low dissipation rate, such as
the edge state, exploiting the sensitivity of the system to small disturbances (Pyragas
1992). An example of how it is possible to increase the threshold energy Ec by using
a variational approach has recently been provided by Rabin, Caulfield & Kerswell
(2014).

In conclusion, the aim of this work is to find local minimal-energy states lying close
to the laminar–turbulent boundary, requiring a given time to approach the edge state
within a tolerance level. For this purpose, we use a Lagrange multiplier method to
minimize the initial energy of the perturbations while limiting to a small value the
distance from the edge state at a given target time. We find that by increasing the
target time, the minimal initial energy decreases following a power law. Finally, for
large target times, it reaches a constant value close to the energy of the minimal seed
computed using the technique of Rabin et al. (2012).

The structure of the paper is as follows. The problem set-up and the numerical
technique are described in § 2. The results of the minimization procedure are presented
in § 3, where the energy, shape, and dynamics of the minimal perturbations are
analysed. The main conclusions are given in § 4.

2. Problem set-up

We consider the case of incompressible flow between two counter-sliding plates,
known as plane Couette flow (pCf). Non-dimensional variables are chosen such that
half the distance between the plates is h= 1 and the velocity of the plates is Uw=±1.
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FIGURE 2. (Colour online) Sketch of the problem on an energy-normed projection of
the state space, considering two different views of the edge of chaos: a local view of
a fold (a) and a global view of the edge of chaos wrapped around the chaotic saddle (b).
The black circle is the laminar fixed point; the white dot denotes the relative attractor
on the edge of chaos; the scattered trajectory on the top represents the chaotic saddle.
The stable and unstable manifolds of the edge state are indicated by the solid and dashed
lines, respectively. On the former, one can determine the states of minimal distance from
the laminar state, approaching the edge state at a given target time (blue circle). Some
states of even lower energy could exist on the stable manifold, but they would approach
the relative attractor at a larger time (green circle).

The dynamics of such a flow is described by the following Navier–Stokes equations:

∂U
∂t
+ (U · ∇)U =−∇P+ 1

Re
∇2U, (2.1)

∇ ·U = 0, (2.2)

where U is the velocity vector, P is the pressure term, and Re is the Reynolds number.
The laminar flow in the (sliding) x direction between the plates has a linear profile,

U(y)= y, (2.3)

where y is the wall-normal direction, whereas the spanwise direction will be referred
to as z. A small computational box with dimensions Lx × Ly × Lz = 4π × 2 × 2π
is considered, which is the same as that used by Schneider et al. (2008) for the
computation of the edge state, and by Monokrousos et al. (2011) for the computation
of the minimal seed. The Navier–Stokes equations are discretized employing a 201×
100× 61 grid and solved using a finite-difference fractional-step method with second-
order accuracy in space and time (Verzicco & Orlandi 1996). At the walls, a no-
slip boundary condition is prescribed (U(y = ±1) = ±1), whereas in the spanwise
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and streamwise direction periodicity is imposed for the three velocity components
and the pressure. The code has been validated by computing, via an edge-tracking
procedure, the steady LB state of Schneider et al. (2008), at Re=400. This solution is
characterized by a bent streaky structure flanked by streamwise vortices, with a finite-
translation symmetry in the spanwise direction, and a shift-reflection symmetry in the
streamwise direction (solution type EQ1 in Gibson, Halcrow & Cvitanović 2009).

2.1. Minimization method
In this work we aim to find the perturbations of minimal energy placed very close to
the edge of chaos and approaching its relative attractor in a given (small) time. Such
perturbations must be confined in the neighbourhood of the stable manifold of the
edge state, which, in the case under consideration, is the steady LB state of Schneider
et al. (2008), a version of the first invariant exact solution identified by Nagata
(1990) in plane Couette flow. Notice that the problem considered is a two-time-level
optimization: in fact we require the solution to satisfy at the target time a constraint
on the distance of the perturbation from the edge state, while minimizing the energy
at the initial time. We propose a possible procedure to achieve this goal, based on
a particular choice of the objective function and imposing an upper-bound value for
the distance dT at the target time, as explained in the following.

Let us consider a perturbation (u, p) to the laminar state, where u= (u, v,w)T is the
perturbation velocity vector and p is the pressure perturbation. We define the scalar
product as

〈u, v〉 = 1
V

∫
V

u · vdV, (2.4)

where V indicates the volume of the computational domain. The perturbation energy
at initial time t= 0 is thus computed as

E0 = 1
2 〈u0, u0〉, (2.5)

where u0 is the initial perturbation of the laminar state. This initial perturbation would
evolve in time achieving, at an assigned target time T , a distance from the edge state
uES, which we want to keep small. The distance is defined as

dT = 〈(u(T)− uES), (u(T)− uES)〉
〈uES, uES〉 , (2.6)

where also the edge state has been expressed as a perturbation of the laminar state, the
term at the denominator being a normalization with respect to the edge-state energy.

In order to minimize the initial perturbation energy and to limit to a small value the
distance from the edge at a time T , we define the objective function for the Lagrange
minimization procedure as

== dTE0. (2.7)
It is necessary to include the distance dT in the objective function; otherwise,
during the minimization procedure of E0, the algorithm would immediately lead
the perturbation far from the edge of chaos. Thus, to limit the value of dT we choose
to include it in the objective function, and constrain its value under a given threshold.
As discussed below, since the distance tends to a constant value at convergence (its
gradient becoming very small), and since the gradient of the objective function is
equivalent to

∇u0== dT∇u0E0 + E0∇u0dT, (2.8)
the algorithm will indeed converge to a minimum value of E0. It is noteworthy that
different choices of the function =(E0, T) could have been used, leading to different
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expressions of the gradient. For instance, we have also tested the objective function
==E0+ γ dT . However, for this particular form of = we have found the convergence
very sensitive to the choice of the cost parameter γ . Thus, only the objective function
provided in (2.7) has been considered for our minimizations. Finally, note that the
distance metric (2.6) assumes a specific phase for the edge; nevertheless, the results
of the optimization are not affected by this choice. In fact, we have verified that
the minimal perturbation computed with a given phase satisfies the minimum energy
condition for an arbitrary variation of the phase.

The chosen objective function is minimized over all of the perturbations verifying
the incompressible Navier–Stokes (NS) equations. These equations are imposed as
constraints by means of the Lagrange multipliers (u†, p†), so the functional to be
minimized is

L ==−
∫ T

0
{〈u†,NS(u, p)〉 + 〈p†,∇ · u〉}dt. (2.9)

In order to find the minimum of the functional, its first variation with respect to all
of the variables must be set to zero. In particular, zeroing the first variation of the
functional with respect to the direct and adjoint variables (the Lagrange multipliers)
provides the adjoint and the direct equations, respectively, as well as the compatibility
conditions which provide a relation between direct and adjoint variables at t= T . The
gradient ∇u0L , having the form

∂L

∂u0
=−2u0dT + u†(0),

∂L

∂v0
=−2v0dT + v†(0),

∂L

∂w0
=−2w0dT +w†(0),


(2.10)

is iteratively minimized by using a conjugate gradient procedure based on the forward
and backward time integration of the direct and adjoint systems (Cherubini et al.
2010a). At the first iteration, the initial state is updated in the steepest descent
direction with an adjustable step length α, so that u(n+1)

0 = un
0 − αn∇u0L

n. After the
first iteration, the successive steps are taken along a conjugate direction, Λu0, which
is computed on the basis of the gradient at two consecutive iterations according to
Λu(n+1)

0 =∇u0L
(n+1) + β(n+1)Λun

0.
Moreover, since we want to minimize E0 while limiting the distance from the edge

state at the target time to a given value εT , we add a constraint to the procedure: we
start the minimization procedure from the edge state itself and require that dT 6 εT ,
with εT = 10−5, which represents the maximum level of tolerance for the final
convergence. When such a threshold is overtaken, the iterations are repeated keeping
the initial energy fixed to the value of the previous iteration, but employing smaller
steps in the direction opposed to the conjugate gradient until dT decreases to a value
smaller than εT . Figure 3(a,b) shows the convergence histories of E0 and dT for two
minimizations performed for T = 5 and T = 60, respectively. Both figures show that
in the initial phase of the procedure, the algorithm tends to minimize dT (maintaining
E0 constant) to bring its value below the chosen threshold εT . When dT <εT , E0 starts
decreasing, until the threshold is overtaken once again, and dT is again decreased
below the chosen threshold. The convergence histories provided in figure 3 show that
this procedure is substantially equivalent to a sequential minimization of E0 and dT .
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FIGURE 3. (Colour online) Minimal initial energy E0 and distance from the edge versus
number of iterations for the minimization at T = 5 (a) and T = 60 (b).

In fact, this procedure always leads, at the end of the minimization procedure,
to a value of dT which is constant and smaller than εT . Therefore, since towards
convergence ∇u0dT ≈ 0, the gradient of the objective function defined in (2.8) almost
coincides with the gradient of E0, which is indeed minimized. This can be explained
by considering that the edge state is a relative attractor for the perturbations lying
on the edge of chaos; therefore, if we limit the distance of the perturbation from the
edge state at target time, we constrain it to remain close to the edge of chaos at the
initial time within a given level of accuracy.

The minimization procedure for a chosen target time T can be thus summarized as
follows.

(i) The initial guess for the solution at t= 0, u0, is provided.
(ii) The Navier–Stokes equations (direct problem) are solved up to t= T .

(iii) The distance from the edge, dT , is evaluated at time T .
(a) If dT < εT , the procedure continues from step (iv).
(b) If dT > εT , u0 is updated in the opposite direction to the conjugate gradient

(computed at the previous iteration) with halved step length α/2 and fixed
initial energy E0. The procedure continues from step (ii).

(iv) The adjoint variables, (u†(T), p†(T)), are computed using the compatibility
conditions.

(v) The adjoint problem is integrated backward in time from t= T to t= 0.
(vi) The gradient ∇u0L is evaluated at t= 0.

(a) If ∇u0L is smaller than the chosen threshold, the loop is stopped.
(b) If ∇u0L is larger than the threshold, u0 is updated in the opposite direction

to the conjugate gradient with step length α. The procedure continues from
step (ii).



Minimal-energy perturbations rapidly approaching the edge state

1
0

–1
6

4
2

0 12
10

8
6

4
2

0

X

Y

Z

1
0

–1
6

4
2

0 12
10

8
6

4
2

0

X

Y

Z

(a) (b)

FIGURE 4. (Colour online) Isosurfaces of the streamwise velocity perturbation (u=±0.3,
light blue and yellow for the negative and positive value, respectively) of the minimal
perturbation obtained for T = 5 and for a distance from the edge limited to (a) εT = 10−5

and (b) εT = 10−8.

We have verified that for εT < 10−5 the shape of the minimal perturbations is only
slightly dependent on the value of dT achieved at convergence. This is expected since,
due to the sensitivity of the problem to initial conditions, when the target time is finite,
a variation of order εT of the value of dT would result from a variation of the initial
energy value of a lower order of magnitude, resulting in negligible modifications of
the initial perturbation. For example, figure 4 shows that even at the lowest target time
considered here, T = 5, changing the value of εT from 10−5 to 10−8 affects the shape
of the perturbation only in a negligible way. It is also worth noticing that particular
care is needed in the choice of the initial guess. In fact, even though the distance
from the edge is included in the functional to be minimized, small changes of the
initial perturbation can drive the trajectory far from the edge of chaos. Thus, to keep
the perturbation on the laminar–turbulent boundary, we usually take the edge state
itself as the initial guess for the minimizations. Starting from this initial guess, the
initial perturbation is updated by a very small amount at each iteration, so that up to
40 000 iterations are needed to achieve convergence at a given target time, making the
problem very computationally expensive.

3. Results
3.1. Minimal perturbations approaching the edge

Minimal perturbations approaching the edge state at Re = 400 have been computed
for seven target times, T = 5, 20, 40, 60, 80, 100, 200. Figure 5 shows the value
of the minimal energy Emin versus the target time T in the range 5 6 T 6 400. The
values of Emin in the range 5 6 T 6 200 have been computed by the minimization
method described above (black triangles); for TNLOP = 200, 300, 400 (white triangles),
the bisection method of Rabin et al. (2012), with only two-digit accuracy, has been
employed to extend the analysis towards the asymptotic minimal seed. It is worth
observing that different values of TNLOP < 200 have been tested too, but the computed
optimal perturbations did not directly approach the edge state, since they induced
bursting phenomena characterized by large kinetic energy growth (see the discussion
in § 1 about the ‘masking’ of the minimal seed by different optimal branches at
small target time). Plotting the values of Emin on a double logarithmic scale, a linear
slope is recovered for T 6 200. Thus, it appears that, for small target times, Emin
varies with T following a power law whose best fit is given by Emin ∝ T−1.75. It is
worth noticing that the NLOP obtained by the bisection method for TNLOP = 200
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FIGURE 5. Minimal perturbation energy versus target time in a double logarithmic
scale. The black triangles are the results of the minimization procedure; the white ones
correspond to the NLOPs with bisected initial energy. The solid line represents the most
accurate power fit; the dashed line indicates the minimal seed energy (Rabin et al. 2012;
Duguet et al. 2013).

is very close to the minimal perturbation obtained for the same target time by the
minimization method, further validating these results. Nonetheless, a small difference
(of order 10−6) can be observed in the minimal energy obtained using these two
different methods. This difference very likely depends on the different distance
from the edge state that is reached at target time by the two disturbances. In fact,
the minimal perturbation reaches the proximity of the edge state within a distance
smaller than εT = 10−5, whereas the NLOP has been computed with only two-digit
accuracy, allowing perturbations of slightly lower energy to approach the edge state
within this larger tolerance. Despite this small difference, both perturbations fall very
close to the power law curve. On the other hand, for TNLOP > 200 the value of the
minimal energy deviates from the power law and appears to reach a constant value
approximating the energy of the minimal seed Ec within a small tolerance. In fact,
since the flow is linearly stable, it can be anticipated that the power law achieved
for small target times cannot hold at large ones, since for T→∞ there should exist
a finite minimum value of the energy to trigger transition. This value corresponds to
the energy of the minimal seed, which, in the present case, appears to be close to
Ec= 1.701× 10−5. This critical value matches pretty well with the value extrapolated
from the results obtained by Duguet et al. (2013), who have found that the critical
energy Ec in a Couette flow varies with the Reynolds number as Re−2.7. The minimal
energy values Emin, together with the power law holding for 5 6 T 6 200, allow one
to establish a threshold for the initial energy needed to approach the edge state at
a given target time in plane Couette flow. Thus, the present results guarantee that
perturbations of energy E<Emin cannot reach chaos at a time t< T (with the limiting
case for T→∞, where Emin = Ec).

The edge state is shown in figure 6(a), and the structures of the minimal
perturbations are given in figure 6(b–f ), for T = 5, 20, 60, 80, 100, respectively;
furthermore, the NLOPs for TNLOP= 200, 300 are shown in figure 6(g,h), respectively.
For the smallest target time, T = 5, the minimal perturbation is very close to the
edge state, preserving the symmetries that characterize the LB state. For T = 20,
the shift-reflection symmetry is broken, but the perturbation is still invariant with
respect to a finite translation in the spanwise direction. Moreover, the streamwise
perturbation velocity (blue and yellow for negative and positive values) begins to
be more localized in the streamwise direction, showing alternated patches instead
of streaky structures. For T > 40, the spanwise translation symmetry is also broken,
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FIGURE 6. (Colour online) Structure of the edge state (a) and of the minimal
perturbations approaching it at target time (b) T = 5, (c) T = 20, (d) T = 60,
(e) T = 80, and ( f ) T = 100. The NLOPs obtained by energy optimization and
bisection with target time T = 200, 300 are shown in (g,h), respectively. The white
and black surfaces represent the positive and negative streamwise component of the
vorticity perturbation: (a–h) ωx = ±(1.7, 1.7, 0.9, 0.4, 0.37, 0.18, 0.17, 0.17). Yellow
and blue represent the positive and negative streamwise velocity component: (a–h) u =
±(0.3, 0.3, 0.08, 0.045, 0.035, 0.17, 0.2, 0.2).

and the perturbation begins to localize in the streamwise direction too. In particular,
a repeated basic structure can be identified, which is characterized by scattered
patches of streamwise velocity with inclined streamwise vortices (black and white)
on their flanks. Further increasing the target time, a stronger localization in both the
streamwise and spanwise directions is observed, as shown in figure 6( f ) for T = 100.
It is interesting that the shape of the minimal perturbation remains characterized by a
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similar basic structure, which strongly recalls the minimal seed of turbulent transition
found by Monokrousos et al. (2011), Rabin et al. (2012) and Cherubini & De Palma
(2013) for plane Couette flow. In fact, comparing the lower frames of figure 6, one
can verify that the shape of the minimal perturbation at T = 100 tends to resemble
the shape of the NLOP found at large target times for an initial energy close to
Ec. This indicates that, for sufficiently large target times, the minimal perturbations
on the edge of chaos approach the minimal seed, but they largely differ from it at
short times. In particular, it seems that minimal perturbations need at least a time of
the order of 100 for unpacking from a localized structure and approaching the edge
state. When a smaller time is given to the perturbation for approaching the edge
(20 < T < 100), the disturbance cannot localize too much while at the same time
keeping the initial energy at a minimum. Thus, the perturbation unpacks in several
patches having a structure similar to that of the minimal seed, which is the most
efficient for inducing transition in terms of energy.

It is also noteworthy that, for all of the values of T , the minimal perturbations
are characterized by vortical structures inclined in the opposite direction with respect
to that of the base flow. This is clearly observed in figure 7, where the streamwise
vorticity perturbations are shown on a z = π plane, for the minimal perturbations
computed with T = 20, 60, 100 (figure 7a–c) and the minimal seed at TNLOP = 300
(figure 7d). The results indicate that a similar streamwise tilting characterizes all of the
perturbations. In fact, it is known that perturbations inclined in the opposite direction
with respect to the base flow allow a large growth of the energy at small times due
to the tilting of the initial spanwise vorticity into the direction of the shear. Such a
mechanism is called the Orr mechanism (Orr 1907), and it is typical of most of the
optimal perturbations found for shear flows (e.g. Farrell 1988; Ehrenstein & Gallaire
2005; Cherubini, Robinet & De Palma 2010c), in a linear and nonlinear framework. In
our case, even if the minimal perturbations are not supposed to grow optimally, they
should approach the edge in a very short time starting with a low energy; thus, they
should exploit all of the energy production mechanisms in order to trigger nonlinear
effects as fast as possible.

Figure 7 also shows that the perturbation structure is rather disordered at small
target times, presenting many streamwise and spanwise vortices (see the vectors in
figure 7a,b) with some oscillations probably linked to the sinuous instability of the
streaks, which is a key process of the self-sustained mechanism of the LB state (see
Waleffe 1997). For large target times, the vortices are localized and smoother, meaning
that the sinuous instability has not yet been triggered. The progressive modification
of the minimal perturbation with the target time towards a localized structure
recalling the minimal seed can be better observed in figure 8, providing the velocity
perturbation in the plane x = 4.5 for the minimal perturbations obtained for T = 5,
T=20, T=60, and T=100. The bent streaks characterizing the minimal perturbations
at very small target times (see figure 8a) become more scattered as the target time
increases (see figure 8b for T = 20). For a further increase of T , the regions of large
streamwise perturbation become much narrower in the spanwise direction, showing an
alternating pattern in the spanwise and wall-normal directions. Finally, for T=100, the
streamwise component of the perturbation strongly localizes in the spanwise direction
(figure 8d), being characterized by two alternating patches of streamwise disturbance
flanked by two asymmetrical vortices, resembling the shape of the minimal seed for
plane Couette flow (Monokrousos et al. 2011; Rabin et al. 2012; Cherubini & De
Palma 2013). It is also worth observing that, for small values of T , the perturbation
is characterized by very large values of the streamwise velocity component, which
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FIGURE 7. (Colour online) Vectors and contours of the minimal perturbations obtained
for (a) T = 20, (b) T = 60, (c) T = 100, and (d) of the NLOP for T = 300 in the plane
z=π. The shaded contours represent the positive and negative streamwise component of
the vorticity, whereas the vectors represent the streamwise and wall-normal components
of the velocity perturbation. For the vectors, one in every three points is shown.

progressively decrease with the target time, whereas the crossflow velocity components
are initially small, then increase with T , and finally decrease again. This is clearly
shown in figure 9, where the root mean square (r.m.s.) values of the streamwise,
wall-normal, and spanwise components of the velocity are provided for all of the
target times considered, the black symbols representing the minimal perturbations and
the white ones the NLOPs. For 20 6 T 6 200, it appears that the r.m.s. values of the
velocity perturbation also follow a power law, which is close to the one found for the
energy (although the decrease of wrms appears to be slightly less steep), whose slope is
indicated by the solid line. As expected, at large target times, such values saturate to
some threshold values, having wrms > urms > vrms, whereas at smaller target times urms
is the largest component. Also, notice that for T = 5 the r.m.s. values of the velocity
have a very different relative magnitude, being characterized by a very large value
of urms and a much lower value of vrms, wrms. In fact, being very close to the edge
state, the perturbation does not have enough time to create streamwise perturbation
by the lift-up mechanism (Landahl 1980), so it should already be characterized by
large values of urms to be able to quickly approach the edge.

3.2. The minimal-energy route towards the edge state
Direct numerical simulations (DNS) have been performed to analyse the evolution of
the minimal perturbations towards the edge state for small to moderate target times,
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FIGURE 9. (Colour online) Root mean square values of the streamwise, wall-normal, and
spanwise components of velocity (squares, urms; diamonds, vrms; circles, wrms) versus target
time, for the minimal perturbations computed for T 6 100 and for two NLOPs. The solid
line is the T−1.75 line passing through 1 at T = 5.

T 6 100. The early phases of the evolution of the minimal perturbation computed for
T = 80 (called umin

T=80 hereafter) are shown in figure 10, which provides the streamwise
vorticity on the z= 2π plane at three different time instants, t= 0, 5, 10. The vortices
are tilted in the streamwise direction very quickly, already leading to a positive
inclination at t = 5, and inducing an energy growth by the Orr mechanism. This
energy-growth mechanism, being essentially two-dimensional, acts on the spanwise
vorticity, increasing the streamwise and wall-normal components of the velocity
perturbation, until a positive inclination is reached (Orr 1907).

Figure 11 shows four snapshots of the isosurfaces of the streamwise velocity (pink
and blue) and vorticity (black and white) extracted from a DNS initialized by umin

T=100.
Figure 11(a) shows the unpacking of the initially localized perturbation into several
similar structures composed by opposite inclined vortices and patches of streamwise
perturbation. It is noteworthy that this snapshot, extracted at t = 10 for umin

T=100,
is similar to the initial minimal perturbation obtained for T = 80 (see figure 6d),
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FIGURE 10. Snapshots of the perturbation at (a) t = 0, (b) t = 5, (c) t = 10, in the
plane z= 2π for a DNS initialized by the minimal perturbation for T = 80. The contours
represent the positive and negative streamwise vorticity perturbation.

indicating that the minimal perturbations computed for different target times may
share some important features in their route towards the edge state. Figure 11(b)
shows that at t= 30 the vortices are stretched in the streamwise direction and begin
to produce, by means of the lift-up mechanism, elongated patches of streamwise
perturbation, which are already strongly inclined and modulated in the streamwise and
spanwise direction. At t = 50 (figure 11c), these patches of streamwise perturbations
begin to merge to create bent streaks, having weak streamwise vortices on their
flanks. Finally, the perturbation appears to slowly relax onto the edge, as shown in
figure 11(d) for t= 70.

In order to check the convergence of the minimal perturbations on the lower-branch
solution, we have computed the correlation with the LB state during the time evolution
of these perturbations. The correlation defined by Kerswell & Tutty (2007) has been
used to define the passage of the perturbation uDNS in the close vicinity of the edge
state uES, such as

C=max
x,z

[ 〈uDNS, uES〉√〈uDNS, uDNS〉〈uES, uES〉
]
. (3.1)

Figure 12(a) shows the correlation value C versus the time to the target, defined as
tT = t − T . One can clearly observe that the correlation value remains close to one
for a long time while approaching the edge state, and that when increasing the target
time the perturbation stays longer in the vicinity of the edge. Moreover, the minimal
perturbations computed for T > 40 show a very similar shape of the correlation curves:
they all approach the edge state in a relatively short time, since they reach C >
0.9 in approximately t < T/2, and stay close to it for a time interval that is longer
for greater T . To further verify the similarity of the trajectories, we have scaled the
time with respect to the target time. Figure 12(b) shows the correlation versus the
scaled time to the target, tT/T . One can observe that the correlation curves associated
with the minimal perturbations umin

T=40,60,80,100 are almost superposed, whereas those for
umin

T=5,20 have a different shape (in particular, for T= 5 the perturbations stay very close
to the edge during the whole time evolution).

To verify that the main energy growth mechanisms followed by umin
T=100 are shared

by the other minimal perturbations obtained for T > 40, we have compared the flow
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FIGURE 11. (Colour online) Snapshots of the perturbation at (a) t = 10, (b) 30, (c) 50,
and (d) 70, for a DNS initialized by the minimal perturbation umin

T=100. The white and
black surfaces represent the positive and negative spanwise velocity components: (a–d)
w = ±(0.6, 0.4, 0.2, 0.17). Blue and pink represent the negative and positive streamwise
velocity components: (a) u=±0.17, (b–d) u=±0.32. The right frames show the contours
of the streamwise velocity component at x= 1 (lower) and x= 4 (upper), extracted from
the DNS for each of the times considered.

structures extracted at different instants of time during the evolution of the minimal
perturbations umin

T=40,80 towards the edge state. To take into account the fact that the
larger the target time, the slower the evolution towards the edge, we have compared
the snapshots taken at the same normalized time. Figure 13 shows the snapshots
of both perturbations at t/T = 1/4, 3/8, namely t = 10, 15 for umin

T=40 and t = 20, 30
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FIGURE 13. (Colour online) Snapshots of the perturbation for two direct numerical
simulations initialized by the minimal perturbations at T = 40 (a,c) and T = 80 (b,d),
extracted at (a,b) t/T = 1/4, (c,d) t/T = 3/8. The pink and blue surfaces represent the
positive and negative streamwise component of the velocity perturbation: u=±0.25. Black
represents the wall-normal velocity component: (a,b) v =−0.06, (c,d) v =−0.035.

for umin
T=80. One can observe that the streamwise perturbations (pink and blue) are

rather similar (although not identical) at different target times, whereas the spanwise
and wall-normal velocity components (black) are very different. In particular, these
components have different amplitudes for different umin

T , and these amplitudes are
found to be larger for smaller target times.

These differences in the growth of the velocity components can be further analysed
by looking at the time evolution of the r.m.s. values of the streamwise, wall-normal
and spanwise components of the velocity which represent the streaks, the streamwise
vortices and the sinuous mode inducing the streaks bending, respectively. In fact,
it is known that the LB state is self-sustained by a process based on the mutual
generation of streaks and vortices (Wang et al. 2007). Thus, the evolution of the
energy associated with streaky and vortical structures may provide some clues as
to the efficient development of such a self-sustained process (in terms of both time
and energy). Figure 14(a) shows the growth of the r.m.s. value of the streamwise
velocity components versus the time to the target tT . The slope of the urms growth
curve is large at small times, and decreases in time towards a final saturation. One
can observe that the saturation phase is much longer for large target times (reaching
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FIGURE 14. (Colour online) Root mean square values of the streamwise, wall-normal, and
spanwise components of velocity (a–c urms, vrms,wrms) versus the time to the target tT , for
the minimal perturbations computed for T = 5, 20, 40, 60, 80, 100.

40 time units for the minimal perturbation obtained for T = 100), whereas it is
much shorter for smaller target times. On the other hand, the vrms and wrms behave
differently (see figure 14b,c, respectively), since they peak at small times and then
decrease towards the low value characterizing the LB state. In particular, for T > 40
the vrms curve has a double peak, whereas wrms has only one peak, which is placed in
correspondence with the vrms local minimum. Moreover, the initial values of vrms and
wrms are similar, but the latter grows more than the former. All of the r.m.s. curves
for T > 40 are similar in shape, even though the growth phase is shifted in time,
stretched or compressed depending on the target time, and different in amplitude.
In particular, the first peak of vrms occurs at t ≈ 5 for all of the curves considered,
which is very close to the time at which the initial vortices are straightened by the
base flow up to an angle close to π/2 with respect to the streamwise direction (see
figure 10b at t = 5). In fact, when such vortices are straightened up starting from
an initial inclination opposed to the mean flow, the growth of the spanwise vorticity
is induced by the Orr mechanism, leading to the increase of both urms and vrms
(Orr 1907). At larger times, the urms continues to grow due to the modified lift-up
mechanism, linked to the transport of the base-flow shear by the localized modulated
vortices (see Cherubini et al. 2011), whereas vrms starts to decrease before increasing
again due to nonlinear interactions (see the discussion of the Waleffe low-dimensional
model below). All of the r.m.s. curves for T > 40 show similar behaviour, but it is
noteworthy that for smaller target times the maximum amplitude for the vrms, wrms
curves is found to increase. On the other hand, the r.m.s. curves for T < 40 show a
rather different shape, probably because the perturbation does not have time to exploit
all of the growth mechanisms. In fact, vrms has an initial value larger than wrms and
shows only one peak, which does not correspond to a local minimum of vrms.

Figure 14 indicates that the minimal perturbations computed for different target
times do not follow the same trajectory; however, the r.m.s. curves associated with the



Minimal-energy perturbations rapidly approaching the edge state

0.03

0.02

0.01

0 0.25 0.50 0.75 1.00 1.25 0

0.05

0.10

0.15

0.20

0.25 0.50 0.75 1.00 1.25

0.03

0.02

0.01

0 0.2 0.4 0.6 0.8 1.0 0

0.02

0.01

0.03

0.04

0.05

0.2 0.4 0.6 0.8 1.0

80
60

40
20
5

100
(a) (b)

(c) (d)

FIGURE 15. (Colour online) (a) Perturbation energy and (b–d) r.m.s. values of the
streamwise, wall-normal, and spanwise components of velocity versus the normalized time
t/T for the minimal perturbations computed for T = 5, 20, 40, 60, 80, 100.

minimal perturbations for T > 40 appear to share the main features of the perturbation
dynamics on different time scales. In order to better visualize these similarities, we
have plotted the r.m.s. values of the velocity perturbations, as well as the perturbation
energy, versus the normalized time t/T , as shown in figure 15. Figure 15(a,b) shows
that the energy and urms curves are very close to each other for T > 40, whereas they
have a much lower slope for T = 20 and T = 5 (especially for the latter case in which
the perturbation appears to be already in the saturation phase). On the other hand,
figure 15(c,d) shows that, for T > 40, the vrms and wrms curves are similar in shape,
peaking at approximately the same time, but different in amplitude. In particular, the
smaller the target time, the larger the vrms, wrms maximum amplitude. This can be
explained by considering the self-sustained process leading to the edge state, using
the Waleffe (1997) low-dimensional model,

dũ/dt=−(k2
u/R)ũ− σww̃2 + σumṽ,

dṽ/dt=−(k2
v/R)ṽ + σvw̃2,

dw̃/dt=−(k2
w/R)w̃+ (σwũ− σmm− σvṽ)w̃,

dm/dt=−(k2
m/R)m− σuũṽ + σmw̃2 + k2

m/R,

 (3.2)

where ũ, ṽ, w̃ model the amplitudes of the streamwise streaks, the streamwise vortices,
and the sinuous perturbations of the streaks, respectively and m is the mean shear
induced by these perturbations at the Reynolds number R. This model describes how
the streaks are fed by the vortices, which are sustained in turn by the secondary
sinuous modes. In order to lead the perturbation very rapidly on the edge state, ũ, ṽ, w̃
must quickly grow in time. To let ũ grow, since the shear grows on a slow time
scale, ṽ must be large to compensate the dissipative term as well as the negative term
−σww̃2. At the same time, to keep ṽ growing and generate streaks, a large growth of
w̃2 is needed. By analogy, this explains the peak values of vrms,wrms, which must be
larger to induce a quicker streak growth and trigger the cycle sustaining the LB state.
On the other hand, when a larger target time is available to approach the edge state,
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FIGURE 16. (Colour online) Snapshots of the evolution of the minimal perturbation
obtained for T= 20, at times (a) t= 5 and (b) t= 15 (from top to bottom). The isosurfaces
on the left represent the positive and negative streamwise velocity (pink and blue for a,b
u = ±(0.17, 0.3)) and vorticity components (black and white for a,b ωx = ±(0.5, 0.28)).
The shaded contours on the right represent the streamwise velocity perturbation on the
planes x= 4 (upper) and x= 9 (lower) at each of the times considered.

the vortices can grow more slowly and up to lower values since they have more time
to feed and bend the streaks.

Moreover, the curves of the r.m.s. velocity components in figure 15 indicate that the
minimal perturbations approaching the edge state in a very short time (T 6 20) follow
a different route. This is confirmed by looking, in figure 16, at the flow structures
induced during the evolution of the minimal perturbation obtained for T = 20. At
t = 5 the alternated patches of streamwise perturbation forming the large part of
the minimal perturbation have already merged, creating a rather complex pattern of
fingered alternated streaks (see the top frames). Then these fingered streaks begin
to be stretched into a strongly bent structure, which at t = 15 relaxes towards the
weakly bent streaky structure characterizing the edge state (see the bottom frames
for t = 15). From the results described here it appears that minimal perturbations
for T 6 20 have to maintain at least one of the edge state symmetries to be able to
approach it in a very short time. Therefore, they cannot be localized in space and
they are characterized by larger values of the velocity components, as discussed in the
previous section. On the other hand, minimal perturbations for T >40 can be localized
in space and characterized by much lower values of the velocity components, relying
on effective energy growth mechanisms to achieve the edge state. The fact that the
overall dynamics of these minimal perturbations is very similar but the trajectories
to the edge state are different might be linked to the fact that the edge of chaos
is folded and probably wrapped around the chaotic saddle. In fact, in the folds of
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FIGURE 17. (Colour online) Projected trajectories on the urms–wrms plane corresponding
to the minimal perturbations (MP) computed for 20 6 T 6 100, and to the linear optimal
streaky perturbations (SP) of amplitude A, perturbed using a sinuous mode and rescaled
by bisection until the edge state is approached.

the edge of chaos there may exist many local energy minima which are the origins
of (different but) similar trajectories towards the edge, approaching it in a larger or
shorter time depending on the initial energy (see figure 2).

These trajectories towards the edge state can be traced by projecting the state space
onto the urms–wrms plane (see Cossu et al. 2011), as provided in figure 17. The thin
lines in the figure show that all of the minimal-perturbation trajectories start very
close to the LS, represented by the origin of the axis (see the rectangular box in
the figure) and approach the edge state (represented by the white dot) by rapidly
increasing both wrms and urms, and finally decreasing wrms towards the edge. In
particular, the starting points of these trajectories may be viewed as (a projection of)
the locus of the local energy-minima of the basin boundary separating the LS from
the chaotic saddle. As observed before, the trajectories are very similar and close
to each other, but not superposed, indicating once again that the laminar–turbulent
boundary has a very complex structure. Moreover, such trajectories are very different
from the ones leading other optimal perturbations towards the edge. For example, the
thick lines in figure 17 represent the trajectories followed by three saturated linear
optimal perturbations, characterized by streamwise streaks of different amplitude A,
on which a sinuous mode has been superposed and rescaled by bisection until it
approaches the edge state (see Cossu et al. (2011) for a more detailed description of
this procedure). Figure 17 shows that these streaky perturbations (SP) approach the
edge by following a very different route, starting in the top or in the right part of the
urms–wrms plane, where the amplitude of the perturbation is even larger than the one
on the edge state, and then decay in an oscillating fashion towards the edge state.
Although the starting points of these trajectories are indeed on the laminar–turbulent
boundary, these perturbations are very far from the local energy minima on the
bottom left part (the rectangular box in figure 17) of the wrms–urms plane, indicating
the inefficiency (in terms of initial amplitude) of these linear optimal perturbations
at inducing transition. On the other hand, the minimal perturbations computed here
need a very small initial energy to approach the edge state in a finite time horizon,
and could thus be very useful in developing effective control systems aiming to drive
perturbations towards the lower branch state.

4. Concluding remarks
Transition to turbulence in shear flows is often subcritical, thus the dynamics of the

flow strongly depends on the shape and amplitude of the perturbation of the laminar
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state. The sequence of flow states composing the transition process defines a trajectory
in the state space. In such a space, initial perturbations which directly relaminarize
are separated from those that go through a chaotic trajectory by a hypersurface having
a very small number of unstable dimensions, known as the edge of chaos. Previous
studies have established that the edge of chaos for plane Couette flow is characterized
by a fractal (Lebovitz 2009; Vollmer et al. 2009; Lai & Tél 2011), folded structure,
probably wrapped around the chaotic saddle (Lebovitz & Mariotti 2013; Chantry
& Schneider 2014). Thus, the problem of determining a threshold energy to trigger
subcritical transition consists in finding the states on this complex hypersurface with
minimal distance (in the energy norm) from the laminar state. For this reason, in
this work we have investigated the minimal-energy regions of the edge of chaos,
by developing a minimization method aiming to determine the minimal-energy
perturbations capable of approaching the edge state (within a prescribed tolerance)
in a finite time. Previous studies have determined the ‘minimal seed’ for transition,
namely the perturbation of minimal energy asymptotically approaching the edge
state (Rabin et al. 2012), by using an optimization of a functional linked to the
turbulence, coupled with a bisection of the initial energy. However, this technique
cannot be generalized to obtain perturbations approaching the edge state at small
target times, since other optimal branches appearing at small target times may mask
the minimal seed (Rabin et al. 2012). Thus, we have developed a different approach,
namely a minimization based on the Lagrange multiplier technique, including in the
minimization functional both the distance from the edge at a target time T and the
initial energy. For the sake of simplicity, we have considered plane Couette flow in a
small domain, at Reynolds number equal to 400, for which a steady edge state exists
(Schneider et al. 2008).

For sufficiently small target times (40 6 T 6 200), the value of the minimal energy
has been found to vary with T following a power law, whose best fit is given by
Emin ∝ T−1.75. For large values of T , the minimal energy achieves a constant value
which corresponds to the energy of the minimal seed. This power law allows one to
determine the threshold values of the initial energy required to approach the edge state
in a given time interval. We have thus established that, for the case of plane Couette
flow, even if the structure of the edge of chaos is very complex, the threshold energy
for transition not to occur at a given time can be expressed by a very simple law.

The local energy minima on the edge of chaos have been further analysed by
looking at the structure of the minimal perturbations approaching the edge state
at time T . In particular, we have found that, for small values of the target time
(T < 40), the minimal perturbations keep the spanwise translation symmetry of the
edge state, whereas for T > 40, all of the symmetries of the edge state are broken
and the perturbation appears to be localized in space. These localized minimal
perturbations are characterized by a repeated basic structure composed of scattered
patches of streamwise velocity with inclined streamwise vortices on their flanks
which strongly recall the NLOPs found by Cherubini & De Palma (2013) for plane
Couette flow. For sufficiently large target times, the minimal perturbations become
very similar to the minimal seed, which is strongly localized in space and optimally
growing in time, although they largely differ from it at short times. Furthermore,
we have found that, to keep the initial energy at a minimum, the perturbations are
initially characterized by low values of the three components of velocity, but they
induce peaks of the wall-normal and spanwise velocities, indicating the presence of
vortices and streak bending, respectively. Although minimal perturbations obtained
for different target times do not follow exactly the same trajectory towards the edge,
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their routes are characterized by very similar mechanisms as long as T > 40. The
time evolution of the r.m.s. values of the streamwise, wall-normal and spanwise
velocity components appears to follow the same trend for different target times (for
T > 40). In particular, the streamwise perturbation velocity curves are found to be
almost identical when scaled in time with respect to T , whereas the wall-normal and
spanwise velocity components present different peak values, whilst being very similar
in shape. Moreover, the larger the target time, the lower the wall-normal and spanwise
velocity peak values, since the streaks have more time to be generated. This indicates
that, for a large enough target time, a very robust mechanism of energy growth exists,
able to rapidly bring the perturbations towards the edge state with minimal energy.
On the other hand, for T 6 20 the dynamics of the minimal perturbation appears to
be different, since the perturbations do not have enough time to exploit the energy
growth mechanisms allowing small localized disturbances to unpack and approach
the edge.

Finally, we have found that minimal perturbations originate in a small low-energy
zone of the state space, and follow similar trajectories approaching the edge state.
Such trajectories are very different from those of linear optimal disturbances, which
need very high initial amplitudes and follow inefficient routes towards the edge.
The fact that the trajectories of the minimal perturbations, as well as the main
mechanisms leading them to transition, are very similar but not identical for different
target times, further indicates that the edge of chaos has a complex structure and is
thus characterized by many local energy minima, probably located in different folds
(or layers) of the laminar–turbulent boundary.

Outlook
Since the edge of chaos is in general characterized by a very small number of
unstable dimensions (whereas the dynamics in the turbulent regime is highly unstable),
investigating the structure of this hypersurface represents an opportunity to unravel
the dynamics of self-sustaining coherent structures recurring in turbulent flows. In
particular, finding the minimum energy states on this hypersurface, which are the
‘closest’ ones to the laminar state, may give important indications as to the most
efficient path to transition. In this paper we have provided some contributions to this
issue. By fixing the time to approach the edge state, we have been able to determine
threshold values of both the initial energy and the time for transition. This allowed us
to determine the minimum time required by perturbations having a certain ‘distance’
(in the energy norm) from the laminar state to approach the edge state. The fact that
the energy of the minimal perturbations scales following a power law, Emin ∝ T−1.75,
guarantees that perturbations having energy lower than this threshold cannot reach
chaos at a time t < T . This result may have important outcomes in the setting of
the noise level in experimental or numerical set-ups for staying close to the laminar
attractor for long enough, or, vice versa, to reach turbulence in a given short time.
Moreover, the structure of the minimal perturbations and their evolution towards the
edge state provide a description of the topology of the edge of chaos through its
local energy minimum. The fact that minimal perturbations computed for different
target times do not follow the same trajectory, confirms that the edge of chaos has
a complex structure in its minimal-energy region too, with local energy minima
probably located in different folds (or layers) of the laminar–turbulent boundary.
However, these trajectories share many features, giving important indications as to
the type of perturbations that can rapidly approach the edge state with minimal energy.
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The knowledge of the shape of the minimal perturbations approaching the edge state
might be useful in setting up shear-flow control strategies aiming to target the edge
state in order to move from the turbulent side of the edge to the laminar one, as
suggested recently by several authors.

At the moment, the results we have found concerning the structure of the edge
of chaos are only valuable for the case of plane Couette flow in small domains,
whereas in larger domains a more complex picture appears, the edge of chaos being
populated by more than one relative attractor. However, the minimization technique
presented here can be very easily extended to the case of multiple edge states, once
these solutions have been obtained numerically. In fact, the minimization proposed
in this work can be performed for each of the computed edge states without any
modification of the algorithm (simply by changing the velocity field uES) and the
values of the minimal energy for each of these edge states could be compared
afterwards. Future work will aim to extend the results presented in this paper to
different Reynolds numbers or domain lengths, as well as to cases in which the
edge state is time-dependent. In particular, the case of periodic orbits may be easily
treated by performing minimizations in different Poincaré sections of the state space,
finally selecting the section providing the minimal initial energy. A similar procedure
may be used to take into account chaotic edge states, although the analysis must be
restrained to a very limited number of phase points.
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