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AN ALTERNATIVE PROOF FOR THE IDENTIFIABILITY OF
INDEPENDENT VECTOR ANALYSIS USING SECOND ORDER STATISTICS

Dana Lahat, Christian Jutten

GIPSA-Lab, UMR CNRS 5216, Grenoble Campus, 38402 Saint-Martin-d’Hères, France

ABSTRACT
In this paper, we present an alternative proof for characterizing
the (non-) identifiability conditions of independent vector analysis
(IVA). IVA extends blind source separation to several mixtures by
taking into account statistical dependencies between mixtures. We
focus on IVA in the presence of real Gaussian data with temporally
independent and identically distributed samples. This model is al-
ways non-identifiable when each mixture is considered separately.
However, it can be shown to be generically identifiable within the
IVA framework. Our proof differs from previous ones by being
based on direct factorization of a closed-form expression for the
Fisher information matrix. Our analysis is based on a rigorous linear
algebraic formulation, and leads to a new type of factorization of a
structured matrix. Therefore, the proposed approach is of potential
interest for a broader range of problems.

Index Terms— Blind source separation, independent vector
analysis, uniqueness, matrix factorization, data fusion

1. INTRODUCTION

In this theoretical paper, we present an alternative proof for the iden-
tifiability of independent vector analysis (IVA) [1]. By identifiability
we mean the minimal set of constraints such that the source estimates
are subject only to the unavoidable scale and ordering indetermina-
cies. Characterizing the uniqueness and identifiability properties of
a model is necessary in order to achieve interpretability, i.e., attach
physical meaning to its output (e.g., [2, 3]).

The original motivation for IVA was dealing with the arbitrary
ordering of the estimated sources in frequency domain blind source
separation (BSS) of convolutive mixtures. The dependence across
mixtures imposes the estimates of the corresponding sources in all
mixtures to be aligned, i.e., have the same permutation [1]. Recently,
IVA has shown useful for multimodal data analysis [4] and temporal
dynamics [5], among others.

Among the many possible variants of IVA (see, e.g., [6, 7] and
references therein), in this paper, we deal only with the identifia-
bility of instantaneous invertible mixtures of real Gaussian random
variables with temporally independent and identically distributed
(i.i.d.) samples. Our motivation to study this specific setup, proposed
by [8], is that each individual mixture is always non-identifiable
(e.g., [9, 10]). Hence, the identifiability results of this specific IVA
setting reflect only the added value of the multiset diversity, i.e., the
link between datasets [11, 12, 13]. Identifiability in the presence of
additional types of diversity is discussed in Section 5. A motivation
to focus on second-order statistics (SOS) is that non-identifiability
of IVA is associated only with the presence of source samples with
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Gaussian distribution [6, 14]. Furthermore, the relative simplicity
and mathematical tractability of this model allow us to reformulate
our derivations in form of a new type of factorization of a structured
matrix, which may be useful beyond this specific task.

In this paper, ·>, ·−>, ·H denote transpose, inverse transpose,
and Hermitian, respectively. Scalars, vectors and matrices are de-
noted as normal (λ, M ), bold lower (λ, x) or upper case (H, A)
symbols, respectively. The (k, l)th entry of P is denoted p[k,l] and
the kth entry of λ is λ[k]. ~,⊗,�, denote the Hadamard, Kronecker
and column-wise Khatri-Rao products, respectively. diag{λ} is a
matrix whose diagonal is λ, whereas diag{X} is a diagonal matrix
by setting to zero the off-diagonal terms of a square matrix X. IM
and 0M×N denote an identity or all-zero matrix, respectively.

The rest of this paper is organized as follows. The IVA model
and its corresponding notion of identifiability are defined in Sec-
tion 2. In Section 3, we present the principal concepts behind the pre-
vious proofs, and then explain the underlying idea of ours. Section 4
is dedicated to the actual mathematical analysis, and presents our
proof in detail. It is concluded with a short discussion of the mean-
ing of these results. Section 5 concludes our work with a broader
view of uniqueness and identifiability, especially in the context of
data fusion.

2. IVA: PROBLEM STATEMENT

2.1. Model

Consider T observations of K vectors x[k](t), modelled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K , (1)

where A[k] are M × M invertible matrices that may be different
∀k, and x[k](t) and s[k](t) are M × 1 vectors. For a fixed k, each
mixture (1) corresponds to classical BSS. In a basic IVA model, the
elements of the K × 1 vector si(t) = [s

[1]
i (t), . . . , s

[K]
i (t)]>, i =

1, . . . ,M , are statistically dependent whereas the pairs (si(t), sj(t))
are statistically independent for all i 6= j ∈ {1, . . . ,M}. There-
fore, IVA aims at extracting M mutually independent vector ele-
ments (whence its name) si(t), i = 1, . . . ,M , from K sets of mea-
surements x[k](t), k = 1, . . . ,K, by exploiting not only the sta-
tistical independence within each set of measurements but also the
dependence between sets of measurements. In fact, some of these
assumptions can be relaxed while maintaining the identifiability of
the model [6, 14, 15, 16]. In this respect, the goal of this paper is to
re-prove some of these relaxations.

In this paper, we focus on separation by exploiting the statisti-
cal (in)dependencies that are manifested in the SOS. The covariance
between the ith and jth sources in the kth and lth data sets, respec-
tively, can be collected either in the (i, j)th element of the covariance
matrix S[k,l] , E{s[k](t)s[l]H(t)} ∈ CM×M , k, l = 1, . . . ,K,



which is diagonal due to the statistical independence for each i 6= j,
or in the (k, l)th element of Sii , E{si(t)sHi (t)} ∈ CK×K . In
what follows, we assume that Sii are invertible ∀i. The goal of SOS-
based IVA can thus be stated as estimating the sources, given the set
of covariance matrices of the observations X[k,l] = A[k]S[k,l]A[l]>.
As already shown by [6, 14, 15], and will be re-explained in this pa-
per, identifiability of this specific IVA model consists only in char-
acterizing a minimal set of additional constraints on the source co-
variance matrices.

2.2. Uniqueness and Identifiability

Consider now two alternative representations to (1). In the
first one, all observations are collected into one vector x(t) =

[x[1]>(t), . . . ,x[K]>(t)]>. It can readily be verified that x(t) =∑M
i=1(IK � Ai)si(t), where Ai , [a

[1]
i | · · · |a

[K]
i ] is an M × K

matrix, and a
[k]
i is the ith column of A[k]. It follows that the ordering

of the sources is the same in all data sets. In the second representa-
tion, we rewrite each mixture as x[k](t) =

∑M
i=1 a

[k]
i s

[k]
i (t). It is

clear that the pairs (a[k]
i , s

[k]
i (t)) and (α−1a

[k]
i , αs

[k]
i (t)) are indis-

tinguishable ∀α 6= 0. If the model is subject only to these trivial
scale and ordering indeterminacies, we say that it is unique. Since
all A[k] are invertible, uniqueness implies that the entire model is
identifiable. The goal of this paper is to characterize the minimal
conditions on this model such that it is unique and identifiable.

3. BACKGROUND: PREVIOUS PROOFS VS. OUR
APPROACH

A first proof was presented by Vı́a et al. [15], who study SOS-
based IVA in the complex domain. Their proof is based directly
on the definition of identifiability, by characterizing the admissi-
ble set of uniquely-defined solutions of the IVA model, up to the
unavoidable indeterminacies. The derivation is based on the ob-
servation that for normalized sources, i.e., S[k,k] = IM , the triv-
ial indeterminacies boil down to S[k,l] = Q[k]S̃[k,l]Q[l], where
Q[k] ∈ CM×M are unitary matrices, and both S[k,l] and S̃[k,l] are
elements of the admissible set. By reformulating this relationship
as Σ[k,l] = Q[k]Σ̃[k,l]Q[k], where Σ[k,l] , S[k,l](S[k,l])H and
Σ̃[k,l] , S̃[k,l](S̃[k,l])H , the authors show that each column of Q[k]

contains exactly one non-null entry. Eventually, the theorem that
they provide corresponds to Scenario 1 (Section 4.2), generalized to
the complex case, but only with D = K. They mention that addi-
tional identifiability conditions can be found in the case of vanishing
correlation values.

A second proof was proposed by Anderson et al. [6, 14]. Their
identifiability analysis is quite comprehensive, as it admits non-
Gaussian, non-stationary and statistically dependent samples, all
in the real domain. Their approach is to determine the necessary
and sufficient conditions under which the Fisher information ma-
trix (FIM) is positive definite. Their proof is based on a sequence of
statements, starting from the claim that non-positive-definiteness of
the FIM for each pair of sources (i, j), formulated as

Fi,j = Cov

{[
diag{ΨiZ

>
j }

diag{ΨjZ
>
i }

]}
∈ R2K×2K (2)

amounts to non-positive-definiteness of its sample estimate, that is,
if and only if (iff) ∃(µ,ν) 6= (0,0) such that

diag{ΨiZ
>
j }µ− diag{ΨjZ

>
i }ν = 0 (3)

where Zi and Ẑi are K × T matrices whose (k, t)th element is
the source sample s[k]i (t) or its estimate, respectively, and Ψi ,

Ψi(Ẑi) =
∂ log(pi(Ẑi))

∂Ẑi
∈ RK×T is the multivariate score function.

This analysis eventually leads to a general expression for IVA identi-
fiability [6, Theorem 1], from which, as explained in [6, 14], various
special cases can be derived, including all those in Section 4.2, which
correspond to our model.

In this paper, we propose a different approach, which is based
on finding the necessary and sufficient conditions for non-positive-
definiteness of the FIM by direct factorization of the closed-form
expression of the pairwise FIM. In [17], it is shown that the inverse
of the 2K × 2K symmetric matrix

H =

[
Sjj ~ S−1

ii IK
IK S−1

jj ~ Sii

]
(4)

is the key ingredient in the Cramér-Rao lower bound (CRLB) on the
estimation error of the oblique projection matrices, which extract
the sources from their mixtures. Hence, (4) corresponds to the (pair-
wise) FIM. Therefore, the identifiability of the model consists in
characterizing the sufficient and necessary conditions for the invert-
ibility of H. Although this idea may be reminiscent of the approach
of [6, 14], our analytical derivation is in fact more similar to that
in [18, Appendix B]: we factorize the explicit closed-form FIM di-
rectly, using algebraic identities.

We mention that an expression similar to (4), but with sample
estimates of the covariance matrices, appears in [19, Equation (9)].
However, neither [19] nor [15] mention any explicit link of this ma-
trix to the performance of the model or its identifiability. Expres-
sion (4) is a special case of the more general result in [17], in which
the mutually independent elements within each mixture are multi-
variate.

4. IDENTIFIABILITY: ALTERNATIVE PROOF

4.1. Analyzing H

For H to be positive-definite, we require that for any non-zero vector
x ∈ R2K×1, x>Hx > 0. Conversely, for H to be non-positive-
definite, there must exist some non-zero x ∈ R2K×1 such that

0 = x>Hx = x>V>Vx ⇔ Vx = 0 (5)

Based on (5), we look for a meaningful decomposition H = V>V.
The desired factorization

H =

[
(S

1
2
>

jj � S
− 1

2
ii )>

(S
− 1

2
jj � S

1
2
>

ii )>

]
︸ ︷︷ ︸

V>

[
S

1
2
>

jj � S
− 1

2
ii S

− 1
2

jj � S
1
2
>

ii

]
︸ ︷︷ ︸

V∈RK×2K

follows from introducing the square root factorization Sjj =

S
1
2
jjS

1
2
>

jj , and then applying Identity 1 (Appendix 6.1).
Next, we find x 6= 0 such that Vx = 0. Without loss of gener-

ality, we look for x in the general form x ,
[
µ> −ν>

]> where
µ and ν are K × 1 vectors. Vx = 0 implies that

(S
1
2
>

jj � S
− 1

2
ii )µ− (S

− 1
2

jj � S
1
2
>

ii )ν = 0 (6)

for some non-zero µ and/or ν [note the difference between (6)
and (3)]. We now turn to finding these µ and ν. Using Identity 2
(Appendix 6.1), equality (6) rewrites as

vec{S−
1
2

ii diag{µ}S
1
2
jj} = vec{S

1
2
>

ii diag{ν}S−
1
2
>

jj } .



Removing the “vec” notation and using the invertibility of S
1
2
ii and

S
1
2
jj , we obtain

diag{µ}Sjj = Sii diag{ν} . (7)

Hence, non-identifiability exists for non-zero (µ,ν) for which
equality (7) holds.

The identifiability problem (7) can be further simplified into
characterizing all the solutions to

diag{λ}R = P diag{λ} (8)

where λ is an arbitraryK×1 vector (instead of the original problem
with a 2K × 1 vector x). The K × K symmetric positive definite
matrices P and R are normalized versions of Sii and Sjj such that
their diagonals are the identity, p[k,k] = 1 = r[k,k] ∀k. The normal-
ization scheme is

P = ΩiiSiiΩ
>
ii and R = ΩjjSjjΩ

>
jj (9)

where Ωii , diag{(Sii)−
1
2 } ∀i. The proof of (8) is given in Sec-

tion 6.2.
In order to extract further information from (8), we multiply (8)

either on the left or on the right by diag{λ},

diag{λ}Rdiag{λ} = P diag2{λ} (10a)

diag{λ}P diag{λ} = diag2{λ}R (10b)

Since the LHS of (10) is symmetric, so must be the RHS:

diag2{λ}P = P diag2{λ} (11a)

diag2{λ}R = Rdiag2{λ} (11b)

which can be reformulated as the set of equations ∀k, l

(λ2[k] − λ2[l])p[k,l] = 0 (12a)

(λ2[k] − λ2[l])r[k,l] = 0 (12b)

where λ2[k] , (λ[k])2. Note that neither k = l nor λ2[k] = λ2[l]

yields any constraints.

4.2. Necessary and Sufficient Conditions for Identifiability

It remains to characterize the non-identifiability scenarios associated
with λ 6= 0. Non-zero λ is associated with two different types of
non-identifiability, as we now explain (a similar type of analysis is
used, e.g., in [20, Chapter 4.1]).

Scenario 1. The first type is associated with

2 ≤ D ≤ K : λ[1] = . . . = λ[D]︸ ︷︷ ︸
6=0

6= λ[k>D]︸ ︷︷ ︸
whatever

(13)

i.e., the first D ≥ 2 elements of λ are equal, non-zero and different
from the rest. Such λ are associated with non-identifiability where
there exists a pair (i, j) of sources whose covariance matrices have
the structure

Sii =

[
S
[1:D,1:D]
ii 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
ii

]
(14a)

Sjj =

[
S
[1:D,1:D]
jj 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
jj

]
(14b)

and the blocks on the top left are related to each other by

S
[1:D,1:D]
ii = diag{ω}S[1:D,1:D]

jj diag{ω} (14c)

whereω is aD×1 vector with strictly positive values, and S
[1:D,1:D]
ii

is theD×D sub-matrix of Sii with row and column indices running
from 1 to D (similar to Matlab notation). The proof of Scenario 1 is
given in Section 6.3.

Scenario 2. The second type is associated with

1 ≤ D ≤ K : λ[1] 6= . . . 6= λ[D]︸ ︷︷ ︸
one may be zero

6= λ[k>D]︸ ︷︷ ︸
whatever

(15)

i.e., the first D ≥ 1 elements of λ are different from each other and
also from the rest. Such λ are associated with non-identifiability
where there exists a pair (i, j) of sources whose covariance matrices
have the structure

Sii =

[
diag{S[1:D,1:D]

ii } 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
ii

]
(16a)

Sjj =

[
diag{S[1:D,1:D]

jj } 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
jj

]
(16b)

The proof of (16) is given in Section 6.4.

Rigorous examination of all other types of λ that are not character-
ized by (13) or (15) shows that they are either (i) subsumed under
scenarios 1–2 by reordering the source or mixture indices, or (ii) do
not lead to any other non-identifiable scenarios.

One can readily verify that there is one-to-one correspondence
between the identifiability conditions in Scenarios 1–2 and those
in [6, 14, 15], for our model. We have thus completed our (alter-
native) proof.

4.3. Discussion

We conclude this section with a brief discussion of these identi-
fiability results. Most of these interpretations have already been
mentioned in [6, 14, 15], and are revisited here in view of our re-
formulation, as well as for the sake of completeness.

In terms of source separation, Scenario 1 implies that the IVA
model is non-identifiable if in D ≥ 2 mixtures there exist two
sources (i, j) which (i) are not correlated with any of the other
(K−D) mixtures, as imply the zeros on the off-block-diagonal, and
(ii) (14c) holds. Scenario 1 deals with non-identifiability when there
is a specific type of similarity between the covariance and cross-
covariance profiles of two sources, across mixtures. Therefore, it
can be regarded as the multiset analogue of the “spectral diversity”
constraint for BSS, when non-stationarity or colour diversity is con-
cerned; see, e.g., [11]. For D = K, Scenario 1 corresponds to [15,
Theorem 1] and [6, Theorem 3]. For D ≥ 2, this is the case of fac-
torizable probability density function (pdf) in [6, Section VII]. For
K = 2, SOS IVA amounts to generalized eigenvalue decomposi-
tion (GEVD) [21]. One can readily verify that the GEVD is indeed
not unique when Scenario 1 holds.

Scenario 2 implies that the IVA model is non-identifiable if in
each of the mixtures indexed k = 1, . . . , D, there exist two sources
(i, j) that do not have any statistical correlation with any of the
other (K − 1) mixtures, as imply the zeros on the off-diagonal.
The non-identifiability of this scenario finds its counterpart in the
well-known notion that in classical BSS, one cannot separate more



than one Gaussian source (e.g., [22]). Indeed, for K = 1, this non-
identifiable scenario amounts to a single BSS problem with (at least
two) Gaussian sources [6, Theorem 5]. If the structure (16) holds for
all pairs of sources i, j = 1, . . . , N , then this scenario amounts to
the presence of D individual BSS mixtures; scenario 2 validates the
known fact that this setup is not identifiable using SOS alone.

In terms of data fusion, Scenario 1 implies that if a pair of
sources is linked across at least two data sets, then these sources
are generically identifiable. Both scenarios indicate that non-
identifiability is associated with anomalous, or non-generic, be-
haviour that is shared by a pair of sources, across one or more data
sets. This pairwise characteristic is not so surprising, since non-
identifiability essentially means that two (or more) sources cannot
be distinguished. A possible remedy to Scenario 1 is adding data
sets, which may reduce the risk of (14c) to occur. A possible remedy
to both non-identifiability scenarios is to exploit additional types of
diversity, for example non-stationarity or non-flat spectra, at least in
the mixtures that contain problematic pairs of sources.

5. CONCLUSION

In this paper, we presented an alternative proof for the identifiabil-
ity of a special case of IVA. The proposed approach is based on a
rigorous linear algebraic formulation. This type of analysis, as well
as the new matrix factorization associated with it, may turn out use-
ful in a broader range of problems. As a first step in this direction,
we have recently applied this same analytical approach to a gener-
alization of IVA to multidimensional components; the results in this
paper become a special case of those in [16].

In this work, we discussed only SOS-based IVA in which each
individual BSS problem was not identifiable. We mention that anal-
ogous results, which show that an ensemble of certain types of ten-
sor decompositions can have a unique decomposition even if each
tensor cannot be uniquely decomposed individually, can be found
in [23]. As noted, e.g., by [6, 14, 15] (with some concrete mathe-
matical proofs therein), additional types of diversity such as higher-
order statistics (HOS), complex values, and non-stationarity, may
further improve IVA identifiability. Therefore, rigorous analysis of
uniqueness and identifiability of various coupled models, with dif-
ferent types and combinations of diversity, is an ongoing challenge
that is not limited to IVA. For data fusion, there is particular interest
in such results, as a large number of questions regarding the combi-
nation of various modalities and data sets is still largely open; see,
e.g., [13, Section V.E] and references therein.

6. APPENDIX

6.1. Some Algebraic Properties

Identity 1. Consider four matrices A ∈ Rµ×ξ, B ∈ Rν×ξ, C ∈
Rµ×η , D ∈ Rν×η . Then,

A>C ~ B>D = (A�B)>(C�D) . (17)

Proof. Directly, by evaluating the (i, j)th element at each side.

The special case A = C, B = D can be found, e.g., in [24, Chap-
ter 3.2, Equation (12)].

Identity 2. For any matrices A, B and vector x with appropriate
dimensions,

(B�A)x = vec{Adiag{x}B>} (18)

Identity 2 can be found, e.g., in [25, Table III, T3.13].

6.2. Proof of diag{λ}R = P diag{λ}

Applying the normalization scheme (9) to (7) and changing sides,

Ωii diag{µ}Ω−1
jj︸ ︷︷ ︸

,diag{λ}

R = P Ω−>ii diag{ν}Ω>jj︸ ︷︷ ︸
,diag{ϕ}

(19)

Since P and R are normalized, the kth diagonal term of (19) is
λ[k] = ϕ[k] ∀k. Hence, diag{λ} = diag{ϕ}. Applying this in-
sight to (19) concludes our proof.

6.3. Proof of Scenario 1

We begin by the special case D = K which is the simplest. Let
λ = λ1K , λ 6= 0 such that diag{λ} = λIK . Then, (8) reduces to
λIR = PIλ, which implies R = P. Next, it follows from (9) that

Ω−1
jj ΩiiSiiΩiiΩ

−1
jj = Sjj (20)

The latter can be reformulated as

diag{ω}Sii diag{ω} = Sjj (21)

where diag{ω} , Ω−1
jj Ωii such that ω is a K × 1 vector with

arbitrary strictly positive values. We now prove the general case.
When (13) holds, (12) implies that

p[k≤D,l≤D](λ2[k≤D] − λ2[l≤D]︸ ︷︷ ︸
0

) = 0 (22a)

p[k≤D,l>D](λ2[k≤D] − λ2[l>D]︸ ︷︷ ︸
6=0

) = 0 (22b)

p[k>D,l≤D](λ2[k>D] − λ2[l≤D]︸ ︷︷ ︸
6=0

) = 0 (22c)

p[k>D,l>D](λ2[k>D] − λ2[l>D]︸ ︷︷ ︸
depends on λ

) = 0 (22d)

which induces a structure

P =

[
P[1:D,1:D] 0D×(K−D)

0(K−D)×D P[D+1:K,D+1:K]

]
(23)

and similarly for R. That is, a set of equal values within λ induces
a diagonal sub-block of entries in P and R, which are uncorrelated
with the rest. In a second step, within this D × D block, denoting
λ[k≤D] = λ, (8) implies that λIDR[1:D,1:D] = λIDP[1:D,1:D],
which implies R[1:D,1:D] = P[1:D,1:D]. Undoing the normalization
of (23) via (9), similarly to (20), we obtain the desired result.

6.4. Proof of Scenario 2

When (15) holds, using a procedure similar to (22), equations (12)
induce a structure

P =

[
ID 0D×(K−D)

0(K−D)×D P[D+1:K,D+1:K]

]
(24)

i.e., the top left block is the identity, the top right and bottom left
blocks are zero. Only the bottom right block is unaffected; and sim-
ilarly for R. Undoing the normalization of (24) via (9) yields (16),
which concludes our proof.
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