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AN ALTERNATIVE PROOF FOR THE IDENTIFIABILITY OF
INDEPENDENT VECTOR ANALYSIS USING SECOND ORDER STATISTICS

Dana Lahat and Christian Jutten

GIPSA-Lab, UMR CNRS 5216, Grenoble Campus, BP46, 38402 Saint-Martin-d’Hères, France

ABSTRACT

In this paper, we present an alternative proof for character-
izing the (non-) identifiability conditions of independent
vector analysis (IVA). IVA extends blind source separa-
tion (BSS) to several mixtures by taking into account sta-
tistical dependencies across mixtures. We focus on IVA in
the presence of real Gaussian data with temporally inde-
pendent and identically distributed samples. This model is
always non-identifiable when each mixture is considered
separately. However, it can be shown to be generically
identifiable within the IVA framework. Our proof differs
from previous ones by being based on direct factorization
of a closed-form expression for the Fisher information ma-
trix (FIM). Our analysis is based on a rigorous linear alge-
braic formulation, and leads to a new type of factorization
of a structured matrix. Therefore, the proposed approach
is of potential interest for a broader range of problems.

Index Terms— Blind source separation, independent
vector analysis, uniqueness, matrix factorization, data fu-
sion

1. INTRODUCTION

In this theoretical paper, we present an alternative proof for
the identifiability of independent vector analysis (IVA) [1].
By identifiability we mean the minimal set of constraints
such that the source estimates are subject only to the un-
avoidable scale and permutation indeterminacies. Charac-
terizing the uniqueness and identifiability properties of a
model is necessary in order to achieve interpretability, i.e.,
attach physical meaning to its output (e.g.,[2, 3]).

Consider T observations of K vectors x[k](t), mod-
elled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K , (1)

where A[k] are M × M invertible matrices that may be
different ∀k, and x[k](t) and s[k](t) are M × 1 vectors.
For fixed k, each mixture (1) corresponds to classical
blind source separation (BSS). In IVA, the elements of the
K×1 vector si(t) = [s

[1]
i (t), . . . , s

[K]
i (t)]>, i = 1, . . . ,M ,

are statistically dependent whereas the pairs (si(t), sj(t))
are statistically independent for all i 6= j ∈ {1, . . . ,M}.
Therefore, IVA aims at extractingM mutually independent
vector elements (whence its name) from K sets of mea-
surements by exploiting not only the statistical indepen-
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dence within each set of measurements but also the depen-
dence across sets of measurements. In fact, some of these
assumptions can be relaxed while maintaining the identifi-
ability of the model [4, 5, 6].

The original motivation for IVA was dealing with the
arbitrary permutation in frequency domain BSS of convo-
lutive mixtures, because the dependence across mixtures
imposes the estimates of the corresponding sources in all
mixtures to be aligned, i.e., same permutation [1]. Re-
cently, IVA has shown useful for multimodal data analy-
sis [7], temporal dynamics [8], and more.

Among the many possible variants of IVA, in this
paper, we deal only with the identifiability of instanta-
neous invertible mixtures of real Gaussian random vari-
ables with temporally independent and identically dis-
tributed (i.i.d.) samples. Our motivation to study this spe-
cific setup, proposed by [9], is that each individual BSS is
always non-identifiable (e.g., [10, 11]). Hence, the iden-
tifiability results reflect only the added value of the multi-
set diversity (i.e., the link between datasets) [12, 13, 14].
Identifiability in the presence of additional types of diver-
sity is discussed in Section 4. A motivation to focus on
second-order statistics (SOS) is that non-identifiability of
IVA is associated only with the presence of source samples
with Gaussian distribution [5, 6]. Furthermore, the rela-
tive simplicity and mathematical tractability of this model
allow us to reformulate our derivations in form of a new
type of factorization of a structured matrix, which may be
useful beyond this specific task. We thus define the cross-
covariance matrix S[k,l] , E

{
s[k](t)s[l]H(t)

}
∈ CM×M ,

k, l = 1, . . . ,K, which is diagonal due to the statistical
independence, and Sii , E

{
si(t)s

H
i (t)

}
∈ CK×K . In

what follows, we assume that Sii are invertible ∀i.
In this paper, ·>, ·−>, ·H denote transpose, inverse

transpose, and Hermitian, respectively. Scalars, vectors
and matrices are denoted as normal (λ, M ), bold lower
(λ, x) or upper case (H, A) symbols, respectively. The
(k, l)th entry of P is denoted p[k,l] and the kth entry of
λ is λ[k]. ~, ⊗, �, denote the Hadamard, Kronecker and
column-wise Khatri-Rao products, respectively. diag{λ}
is a matrix whose diagonal is λ, whereas diag{X} is a di-
agonal matrix by setting to zero the off-diagonal terms of
a square matrix X. IM and 0M×N denote an identity or
all-zero matrix, respectively.

The rest of this paper is organized as follows. In Sec-
tion 2 we present the principal concepts behind the previ-
ous proofs, and then explain the underlying idea of ours.
Section 3 is dedicated to the actual mathematical analy-
sis, and presents our proof in detail. It is concluded with a



short discussion of the meaning of these results. Section 4
concludes our work with a broader view of uniqueness and
identifiability, especially in the context of data fusion.

2. BACKGROUND: PREVIOUS PROOFS VS. OUR
APPROACH

A first proof was presented by Vı́a et al. [4], who study
SOS-based IVA in the complex domain. Their proof is
based directly on the definition of identifiability, by char-
acterizing the admissible set of uniquely-defined solutions
of the IVA model, up to the unavoidable indeterminacies.
The derivation is based on the observation that for normal-
ized sources, i.e., S[k,k] = IM , the trivial ambiguities boil
down to S[k,l] = Q[k]Ŝ[k,l]Q[l], where Q[k] ∈ CM×M are
unitary matrices, and both S[k,l] and Ŝ[k,l] are elements of
the admissible set. By reformulating this relationship as

Σ[k,l] = Q[k]Σ̂
[k,l]

Q[k], where Σ[k,l] , S[k,l](S[k,l])H

and Σ̂
[k,l]

, Ŝ[k,l](Ŝ[k,l])H , the authors show that each
column of Q[k] contains exactly one non-null entry. Even-
tually, the theorem that they provide corresponds to Sce-
nario 1 (Section 3.2), generalized to the complex case, but
only with D = K. They mention that additional identi-
fiability conditions can be found in the case of vanishing
correlation values.

A second proof was proposed by Anderson et al. [5, 6].
Their identifiability analysis is quite comprehensive, as it
admits non-Gaussian, non-stationary and statistically de-
pendent samples, all in the real domain. Their approach
is to determine the necessary and sufficient conditions un-
der which the Fisher information matrix (FIM) is positive
definite. Their proof is based on a sequence of statements,
starting from the claim that non-positive-definiteness of the
FIM for each pair of sources (i, j), formulated as

Fi,j = Cov

{[
diag{ΨiΩ

>
j }

diag{ΨjΩ
>
i }

]}
∈ RK×K (2)

amounts to non-positive-definiteness of its sample esti-
mate, that is, if and only if (iff) ∃(µ,ν) 6= (0,0) such
that

µ> diag{ΨiΩ
>
j } − ν> diag{ΨjΩ

>
i } = 0 (3)

where Ωi and Ω̂i are K × T matrices whose (k, t)th el-
ement is the source sample s[k]i (t) or its estimate, respec-

tively, and Ψi , Ψi(Ω̂i) = ∂ log(pi(Ω̂i))

∂Ω̂i
∈ RK×T is the

multivariate score function. This analysis eventually leads
to a general expression for IVA identifiability [6, Theo-
rem 1], from which, as explained in [5, 6], various special
cases can be derived, including all those in Section 3.2,
which correspond to our model.

In this paper, we propose a different approach, which
is based on finding the necessary and sufficient conditions
for non-positive-definiteness of the FIM by direct factor-
ization of the closed-form expression of the pairwise FIM.
In [15], it is shown that the inverse of the 2K × 2K sym-

metric matrix1

H =

[
Sjj ~ S−1ii IK

IK S−1jj ~ Sii

]
(4)

is the key ingredient in the Cramér-Rao lower bound
(CRLB) on the estimation error of the oblique projection
matrices, which extract the sources from their mixtures.
Hence, (4) corresponds to the (pairwise) FIM. Therefore,
the identifiability of the model consists in characterizing
the sufficient and necessary conditions for the invertibility
of H. Although this idea may be reminiscent of the ap-
proach of [5, 6], our analytical derivation is in fact more
similar to that in [16, Appendix B]: we factorize the ex-
plicit closed-form FIM directly, using algebraic identities.

We mention that an expression similar to (4), but
with sample estimates of the covariance matrices, appears
in [17, Equation (9)]. However, neither [17] nor [4] men-
tion any explicit link of this matrix to the performance of
the model or its identifiability.

3. IDENTIFIABILITY: ALTERNATIVE PROOF

3.1. Analyzing H

For H to be positive-definite, we require that for any non-
zero vector x ∈ R2K×1, x>Hx > 0. Conversely, for H
to be non-positive-definite, there must exist some non-zero
x ∈ R2K×1 such that

0 = x>Hx = x>V>Vx ⇔ Vx = 0 (5)

Based on (5), we look for a meaningful decomposition
H = V>V. The desired factorization

H =

[
(S

1
2>
jj � S

− 1
2

ii )>

(S
− 1

2
jj � S

1
2>
ii )>

]
︸ ︷︷ ︸

V>

[
S

1
2>
jj � S

− 1
2

ii S
− 1

2
jj � S

1
2>
ii

]
︸ ︷︷ ︸

V∈RK×2K

follows from introducing the square root factorization
Sjj = S

1
2
jjS

1
2>
jj , and then applying Identity 1 (Ap-

pendix 5.1).
Next, we find x 6= 0 such that Vx = 0. Without

loss of generality, we look for x in the general form x ,[
µ> −ν>

]>
where µ and ν areK×1 vectors. Vx = 0

implies that

(S
1
2>
jj � S

− 1
2

ii )µ− (S
− 1

2
jj � S

1
2>
ii )ν = 0 (6)

for some non-zero µ and/or ν2. We now turn to finding
these µ and ν. Using Identity 2 (Appendix 5.1), equal-
ity (6) rewrites as

vec{S−
1
2

ii diag{µ}S
1
2
jj} = vec{S

1
2>
ii diag{ν}S−

1
2>

jj } .

Removing the “vec” notation and using the invertibility of
S

1
2
ii and S

1
2
jj , we obtain

diag{µ}Sjj = Sii diag{ν} . (7)

1Expression (4) is a special case of the more general result in [15],
in which the sources within each mixture are random vectors instead of
scalar random variables.

2Note the difference between (6) and (3)



Hence, non-identifiability exists for non-zero (µ,ν) for
which equality (7) holds.

The identifiability problem (7) can be further simplified
into characterizing all the solutions to

diag{λ}R = P diag{λ} (8)

where λ is an arbitraryK×1 vector (instead of the original
problem with a 2K × 1 vector x). The K ×K symmetric
positive definite matrices P and R are normalized versions
of Sii and Sjj such that their diagonals are the identity,
p[k,k] = 1 = r[k,k] ∀k. The normalization scheme is

P = ΩiiSiiΩ
>
ii and R = ΩjjSjjΩ

>
jj (9)

where Ωii , diag{(Sii)−
1
2 } ∀i. The proof of (8) is given

in Section 5.2.
In order to extract further information from (8), we

multiply (8) either on the left or on the right by diag{λ},

diag{λ}Rdiag{λ} = Pdiag2{λ} (10a)

diag{λ}Pdiag{λ} = diag2{λ}R (10b)

Since the LHS of (10) is symmetric, so must be the RHS:

diag2{λ}P = Pdiag2{λ} (11a)

diag2{λ}R = Rdiag2{λ} (11b)

which can be reformulated as the set of equations ∀k, l

(λ2[k] − λ2[l])p[k,l] = 0 (12a)

(λ2[k] − λ2[l])r[k,l] = 0 (12b)

where λ2[k] , (λ[k])2. Note that k = l nor λ2[k] = λ2[l]

do not yield any constraints.

3.2. Necessary and Sufficient Conditions for Identifia-
bility

It remains to characterize the non-identifiability scenarios
associated with λ 6= 03. Non-zero λ is associated with two
different types of non-identifiability, as we now explain.

Scenario 1. The first type is associated with

2 ≤ D ≤ K : λ[1] = . . . = λ[D]︸ ︷︷ ︸
6=0

6= λ[k>D]︸ ︷︷ ︸
whatever

(13)

i.e., the first D ≥ 2 elements of λ are equal, non-zero
and different from the rest. Such λ are associated with
non-identifiability where there exists a pair (i, j) of sources
whose covariance matrices have the structure

Sii =

[
S
[1:D,1:D]
ii 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
ii

]
(14a)

Sjj =

[
S
[1:D,1:D]
jj 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
j

]
(14b)

and the blocks on the top left obey

S
[1:D,1:D]
ii = diag{ω}S[1:D,1:D]

jj diag{ω} (14c)

3A similar type of analysis is used, e.g., in [18, Chapter 4.1].

where ω is aD×1 vector with strictly positive values, and
S
[1:D,1:D]
ii is the D × D sub-matrix of Sii with row and

column indices running from 1 to D (similar to Matlab
notation). The proof of Scenario 1 is given in Section 5.3.

Scenario 2. The second type is associated with

1 ≤ D ≤ K : λ[1] 6= . . . 6= λ[D]︸ ︷︷ ︸
one may be zero

6= λ[k>D]︸ ︷︷ ︸
whatever

(15)

i.e., the first D ≥ 1 elements of λ are different from each
other and also from the rest. Such λ are associated with
non-identifiability where there exists a pair (i, j) of sources
whose covariance matrices have the structure

Sii =

[
diag{S[1:D,1:D]

ii } 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
ii

]
(16a)

Sjj =

[
diag{S[1:D,1:D]

jj } 0D×(K−D)

0(K−D)×D S
[D+1:K,D+1:K]
j

]
(16b)

The proof of (16) is given in Section 5.4.

All other types of λ are either not associated with non-
identifiability, or subsumed within the previous two sce-
narios by reordering the source or mixture indices.

One can readily verify that there is one-to-one corre-
spondence between the identifiability conditions in Scenar-
ios 1–2 and those in [4, 5, 6], for our model. We have thus
completed our (alternative) proof.

3.3. Discussion

We conclude this section with a brief discussion of these
identifiability results.

In terms of source separation, Scenario 1 implies that
the IVA model is non-identifiable if in D ≥ 2 mixtures
there exist two sources (i, j) which (i) are not correlated
with any of the other (K−D) mixtures, as imply the zeros
on the off-block-diagonal, and (ii) (14c) holds. Scenario 1
deals with non-identifiability when there is a specific type
of similarity between the covariance and cross-covariance
profiles of two sources, across mixtures. Therefore, it can
be regarded as the multi-set analogue of the “spatial diver-
sity” constraint for BSS, when non-stationarity or colour
diversity is concerned; see, e.g., [12].
For D = K, Scenario 1 corresponds to [4, Theorem 1]
and [6, Theorem 3]. ForD ≥ 2, this is the case of factoriz-
able probability density function (pdf) in [6, Section VII].
For K = 2, SOS IVA amounts to generalized eigenvalue
decomposition (GEVD) [19]. One can readily verify that
the GEVD is indeed not unique when Scenario 1 holds.

In terms of source separation, Scenario 2 implies that
the IVA model is non-identifiable if in each of the mixtures
indexed k = 1, . . . , D, there exist two sources (i, j) that
do not have any statistical correlation with any of the other
(K − 1) mixtures, as imply the zeros on the off-diagonal.
The non-identifiability of this scenario finds its counterpart
in the well-known notion that in classical BSS, one cannot
separate more than one Gaussian source (e.g., [20]). In-
deed, for K = 1, this non-identifiable scenario amounts
to a single BSS problem with (at least two) Gaussian



sources [6, Theorem 5]. If the structure (16) holds for all
pairs of sources (i, j), i, j = 1, . . . , N , then this scenario
amounts to the presence of D individual BSS mixtures;
scenario 2 validates the known fact that this setup is not
identifiable using SOS alone.

In terms of data fusion, Scenario 1 implies that if a pair
of sources is linked across at least two data sets, then these
sources are generically identifiable. Both scenarios indi-
cate that non-identifiability is associated with anomalous
behaviour that is shared by a pair of sources, across one
or more data sets. This pairwise characteristic is not so
surprising, since non-identifiability essentially means that
two (or more) sources cannot be distinguished. A possible
remedy to Scenario 1 is adding data sets, which may re-
duce the risk of (14c) to occur. A possible remedy to both
non-identifiability scenarios is to exploit additional types
of diversity, at least in the mixtures with problematic pairs
of sources.

4. CONCLUSION

In this paper, we presented an alternative proof for the
identifiability of a special case of IVA. The proposed ap-
proach is based on a rigorous linear algebraic formulation.
This type of analysis, as well as the new matrix factoriza-
tion associated with it, may turn out useful in a broader
range of problems.

In this work, we discussed only SOS-based IVA when
each individual BSS problem was not identifiable. We
mention that analogous results, for coupled tensor decom-
positions, when each tensor decomposition is not unique
individually, can be found in [21]. As noted, e.g., by [4, 5,
6], additional types of diversity such as higher-order statis-
tics (HOS), complex values, and non-stationarity, poten-
tially further improve IVA identifiability (with some con-
crete mathematical proofs therein). Therefore, rigorous
analysis of uniqueness and identifiability of various cou-
pled models, not limited to IVA, with different types and
combinations of diversity, is an ongoing challenge. For
data fusion, there is particular interest in such results, as
a large number of questions regarding the combination of
various modalities and data sets is still largely open; see,
e.g., [14, Section V.E] and references therein.

5. APPENDIX

5.1. Some Algebraic Properties

Identity 1. Consider four matrices A ∈ Rµ×ξ, B ∈ Rν×ξ,
C ∈ Rµ×η , D ∈ Rν×η . Then,

A>C ~ B>D = (A�B)>(C�D) . (17)

Proof. Can easily be proved by evaluating the (i, j)th ele-
ment at each side.

The special case A = C, B = D can be found, e.g., in [22,
Chapter 3.2, Equation (12)].

Identity 2. For any matrices A, B and vector x with ap-
propriate dimensions,

(B�A)x = vec{A diag{x}B>} (18)

Identity 2 can be found, e.g., in [23, Table III, T3.13].

5.2. Proof of diag{λ}R = Pdiag{λ}

Applying the normalization scheme (9) to (7) and changing
sides,

Ωii diag{µ}Ω−1jj︸ ︷︷ ︸
,diag{λ}

R = P Ω−>ii diag{ν}Ω>jj︸ ︷︷ ︸
,diag{ϕ}

(19)

Since P and R are normalized, the kth diagonal term
of (19) is λ[k] = ϕ[k] ∀k. Hence, diag{λ} = diag{ϕ}.
Applying this insight to (19) concludes our proof.

5.3. Proof of Scenario 1

We begin by the special caseD = K which is the simplest.
Let λ = λ1K , λ 6= 0 such that diag{λ} = λIK . Then, (8)
reduces to λIR = PIλ, which implies R = P. Next, it
follows from (9) that

Ω−1jj ΩiiSiiΩiiΩ
−1
jj = Sjj (20)

The latter can be reformulated as

diag{ω}Sii diag{ω} = Sjj (21)

where diag{ω} , Ω−1jj Ωii such that ω is a K × 1 vector
with arbitrary strictly positive values. We now prove the
general case. When (13) holds, (12) implies that

p[k≤D,l≤D](λ2[k≤D] − λ2[l≤D]︸ ︷︷ ︸
0

) = 0 (22a)

p[k≤D,l>D](λ2[k≤D] − λ2[l>D]︸ ︷︷ ︸
6=0

) = 0 (22b)

p[k>D,l≤D](λ2[k>D] − λ2[l≤D]︸ ︷︷ ︸
6=0

) = 0 (22c)

p[k>D,l>D](λ2[k>D] − λ2[l>D]︸ ︷︷ ︸
depends on λ

) = 0 (22d)

which induces a structure

P =

[
P[1:D,1:D] 0D×(K−D)

0(K−D)×D P[D+1:K,D+1:K]

]
(23)

and similarly for R. That is, a set of equal values within
λ induces a diagonal sub-block of entries in P and R,
which are uncorrelated with the rest. In a second step,
within this D × D block, denoting λ[k≤D] = λ, (8) im-
plies that λIDR[1:D,1:D] = λIDP[1:D,1:D], which im-
plies R[1:D,1:D] = P[1:D,1:D]. Undoing the normalization
of (23) via (9), similarly to (20), we obtain the desired re-
sult.

5.4. Proof of Scenario 2

When (15) holds, using a procedure similar to (22), equa-
tions (12) induce a structure

P =

[
ID 0D×(K−D)

0(K−D)×D P[D+1:K,D+1:K]

]
(24)

i.e., the top left block is the identity, the top right and bot-
tom left blocks are zero. Only the bottom right block is
unaffected; and similarly for R. Undoing the normaliza-
tion of (24) via (9) yields (16), which concludes our proof.
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