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ABSTRACT 

Subliminal perception studies have shown that one can objectively discriminate a stimulus 

without subjectively perceiving it. We show how a minimalist framework based on Signal Detec-

tion Theory and Bayesian inference can account for this dissociation, by describing subjective and 

objective tasks with similar decision-theoretic mechanisms. Each of  these tasks relies on distinct 

response classes, and therefore distinct priors and decision boundaries. As a result, they may 

reach different conclusions. By formalizing, within the same framework, forced-choice discrimi-

nation responses, subjective visibility reports and confidence ratings, we show that this decision 

model suffices to account for several classical characteristics of  conscious and unconscious per-

ception. Furthermore, the model provides a set of  original predictions on the non-linear profiles 

of  discrimination performance obtained at various levels of  visibility. We successfully test one 

such prediction in a novel experiment: when varying continuously the degree of  perceptual ambi-

guity between two visual symbols presented at perceptual threshold, identification performance 

varies quasi-linearly when the stimulus is unseen and in an “all-or-none” manner when it is seen. 

The present model highlights how conscious and non-conscious decisions may correspond to 

distinct categorizations of  the same stimulus encoded by a high-dimensional neuronal population 

vector. 

Keywords: Signal Detection Theory, subliminal, subjective reports, metacognition, con-

sciousness, 2 alternative forced choice. 
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INTRODUCTION 

Since Helmholtz (1867/1910)‟s proposal of perception as unconscious inference, several 

computational models have been put forward to describe the mechanisms of this process (KERS-

TEN ET AL., 2004; KNILL AND RICHARDS, 2008). The hypothesis that perception corresponds to an infer-

ential decision on sensory data has received support from neurophysiological recordings during 

perceptual tasks (POUGET ET AL., 2002; FRISTON, 2010). For instance, intracranial (GOLD AND SHADLEN, 

2000) and scalp recordings (DE LANGE ET AL., 2011; WYART ET AL., 2012) have revealed a neural re-

sponse seemingly reflecting the accumulation of sensory evidence following the presentation of a 

stimulus and which may predict how subjects perceive the stimulus (SHADLEN ET AL., 2008).  

Nevertheless, superficially at least, conscious perception does not always seem to obey the 

logic of optimal perceptual inference. For instance, one can objectively discriminate a stimulus at 

above-chance level while subjectively claiming not to have seen it (DEHAENE ET AL., 2006; DEHAENE 

AND CHANGEUX, 2011). This paradoxical dissociation, referred to as “subliminal perception”, has 

nourished a vast body of  philosophical and scientific proposals on the nature of  conscious and 

unconscious perception. For instance, Tononi and Edelman (TONONI AND EDELMAN, 1998) have 

argued that conscious processes are quantitatively more complex, integrated and differentiated, 

than unconscious processes. Lau (LAU, 2008) and Rosenthal (ROSENTHAL, 1997) claim that conscious 

perception is qualitatively different from unconscious perception as it relies on higher-order meta-

cognitive representations. Recent empirical studies challenge these accounts, however. First, sub-

liminal stimuli can recruit complex semantic and integrative processes (GREENWALD ET AL., 1996; 

DEHAENE ET AL., 1998; KOUIDER AND DEHAENE, 2007). Second, even second-order metacognitive infer-

ences can apparently be performed above chance on unseen stimuli (KANAI ET AL., 2010; CHARLES ET 

AL., 2013).  

Here, building upon earlier proposals (LAU, 2008; SHADLEN ET AL., 2008), we explore a simple 

theoretical idea: objective and subjective tasks rely on the same inference principles, but they dif-

fer in the nature and the size of the decision space. Our proposal stems from Signal Detection 

Theory (SDT) and outlines how a minimal extension of the classic unidimensional depiction of 

SDT to multiple dimensions provides geometrical intuitions on several empirical findings in con-

scious and unconscious perception.  

Specifically, we identified six major sets of empirical findings that should be accounted 

for: 

- Stimuli which are subjectively reported as “unseen” can nevertheless be objectively dis-

criminated above chance in a two-alternative forced-choice task (WEISKRANTZ, 1986; MAR-

SHALL AND HALLIGAN, 1993; DRIVER ET AL., 2001; DEHAENE ET AL., 2006; KOUIDER AND DEHAENE, 

2007; STOERIG AND COWEY, 2009). 

- Discrimination performance is typically better on seen than on unseen trials, even when 

sensory stimuli are physically identical (LAU AND PASSINGHAM, 2006; DEL CUL ET AL., 2007; NEU-

ROSCIENCE ET AL., 2012).  

- Experimental paradigms can be designed in which objective discrimination performance 

is identical, while subjective visibility differs (LAU AND PASSINGHAM, 2006; LAU, 2008; RAHNEV ET 

AL., 2011). 



 

 

- Subjective reports vary non-linearly as a function of sensory strength. For instance, brief 

or faint visual stimuli are generally reported as “completely unseen”, but once their dura-

tion or contrast reaches a threshold level, subjects tend to report items as “clearly seen” 
(SERGENT AND DEHAENE, 2004; SERGENT ET AL., 2005; DEL CUL ET AL., 2007; MELLONI ET AL., 2011; 

NEUROSCIENCE ET AL., 2012).  

- Prior knowledge increases the subjective visibility of physically identical stimuli (SIMONS 

AND CHABRIS, 1999; CUL ET AL., 2006; MELLONI ET AL., 2011; PITTS ET AL., 2012). 

- Attention generally increases subjective visibility, but has also been found to decrease it 

(DEHAENE ET AL., 2006; RAHNEV ET AL., 2011). 

MODEL 

GENERAL ASSUMPTIONS  

Our first assumption is that incoming stimuli are encoded as continuous vectors in a vast repre-

sentational space. In the visual domain, for instance, a hierarchy of specialized visual processors 

decompose any visual scene into a broad variety of features that range from low-level (line orien-

tation, contrast, colour etc) to higher-level attributes (face/non-face, etc). Each of these features 

may be encoded by the firing rate of a group of neurons. Mathematically, each stimulus is there-

fore encoded by a set of coordinates, one for each feature dimension (Figure 1.a).  

Second, stimulus strength is assumed to be directly reflected in the length (i.e. the norm) of 

the input vector. This assumption corresponds to the observation that the depth of sensory en-

coding varies with the quality of the incoming stimulus: a briefly flashed and masked stimulus 

only evokes modest activity in higher visual cortices (SERGENT ET AL., 2005; DEL CUL ET AL., 2007), and 

thus, its internal vector has a small projection, particularly on high-level dimensions. Conversely, 

an unmasked high-contrasted image results in a long internal vector (Figure 1.a). 

Our third assumption is that each behavioural task imposes, in a top-down manner, a cate-

gorical structure of classes to this continuous vector space (e.g. “click left for faces, and right for non-

faces”). Performing the task consists in identifying, on every trial, the class in which the input 

vector falls. Formally, this is a statistical inference problem: in order to perform optimally, given a 

sensory input and prior knowledge, subjects should attempt to compute the posterior probability 

of each of the classes in order to select the class with the maximum a posteriori (MAP), which is 

the one most likely to be correct. Each task imposes distinct, possibly overlapping response 

classes, and may therefore lead to different answers.  

Our fourth assumption is that the content of conscious perception, which can be reported ver-

bally, is the outcome of such an inferential decision process, but with the specific characteristic of 

having a very rich set of classes. While simple binary decisions may be performed non-

consciously (e.g. press right or press left (DEHAENE ET AL., 1998)), the inference system that underlies 

conscious perception must remain constantly open to myriads of possible contents, including 

unexpected ones (e.g. a fire alarm). We propose that what the subject experiences as a conscious 



 

 

percept is the class with the highest posterior probability, amongst all possible classes. As we shall 

see, “negative” classes, such as “I didn‟t see anything”, must be considered too. 

 

 

FIGURE 1. A MULTIDIMENSIONAL DECISION-THEORY FRAMEWORK FOR OBJECTIVE DISCRIMINATION AND SUBJECTIVE 

REPORTS. 

(a) Stimulus information is represented in a vast vector space, in which each dimension encodes the 
evidence about a particular feature. Each sensory stimulus thus corresponds to an input vector whose 
length and direction changes depending on the quality of the stimulus. 

(b) When considering binary decisions (e.g. perceiving stimulus X or stimulus Y), the huge 
dimensionality of the representational space can be approximated by a 2D feature space. In this space, 
assuming that the true stimulus distributions are known, the likelihood (top), the prior and the 
posterior probability (bottom) of belonging to a given class (“Absent” trial in green, stimulus X in red, 
or stimulus Y in blue) can be computed for each input vector (here, the posterior probabilities of the 
Absent class have been removed for readability.) 

(c) Posteriors can be used to perform different tasks. In each case, the regions of the problem space 
corresponding to a fixed decision are delineated by a boundary. Identification consists in finding the 
maximum a posteriori (MAP) across all classes (Absent, X, or Y ; black lines). Discrimination consists 
in determining the MAP amongst a restricted set of classes (X or Y; purple line). Visibility judgment 
consists in determining whether the absent class is the most likely amongst all classes (“absent” or not 
“absent”; green line). Each of these first-order decisions can be supplemented by a second-order 
confidence judgment task, which is modelled as the estimation of the likelihood of a correct response in 
the primary task. Samples far away from the decision border are associated with higher posterior 
probabilities of the corresponding class and can thus be classified as more “confident” than samples 
close to the border. This geometrical representation makes it clear that each confidence judgment is 
always attached to a specific task, and is thus not necessarily identical to visibility judgment. 

Note that the present colour coding (classes, tasks, etc.) will be used throughout the figures. 



 

 

GEOMETRICAL APPROXIMATION IN TWO DIMENSIONS 

The vast number of input features, classes and tasks makes the present proposal difficult 

to apprehend in its full generality. However, most of its properties can be approximately captured 

by projecting the large vector space onto a plane defined by the two main axes of interest (Figure 

1.b-c). These axes are chosen to be two features or feature bundles that are most relevant to the 

task under consideration (e.g. the mean vectors of neuronal activity evoked by face and by non-

face stimuli, if the task is face/non-face discrimination). Each circle represents the top of the 

distribution of a particular class of stimuli (i.e. likelihood function, given sensory and internal 

noise). The lines delimit the regions of space where response decisions change. Although one 

should not forget that this is just a considerable simplification of the underlying multidimensional 

space and stimuli distribution, this 2D representation brings the present model closer to the clas-

sic two-class problem of Signal Detection Theory. Indeed, although Signal Detection Theory is 

not limited to a single dimension, it is often depicted as a binary problem with two Gaussian dis-

tributions plotted along a single axis. We argue that this classic diagram fails to capture the inter-

action between multiple features, classes and tasks, whereas a 2D depiction fulfils these require-

ments (see (GREEN AND SWETS, 1966; KLEIN, 1985; KO AND LAU, 2012) for similar proposals using 2D 

representations to dissociate tasks such as discrimination and detection). 

MATHEMATICAL FORMULATION 

Bayesian theory describes the optimal way of selecting the most likely model of the envi-

ronment, referred to as “hypothesis” (H, here the response class), in the presence of sensory evi-

dence (E), here the input vector. Each class is characterized by a likelihood function P(E|H) and 

a prior probability P(H). P(E|H) indicates the probability that the evidence E was generated by 

the class H, and therefore captures how sensory samples from a given class are distributed within 

the vector space. The prior probability P(H) defines the probability of H to occur independently 

of any evidence. Bayes‟ theorem stipulates that the posterior probability of H is a function of its 

prior probability and of its likelihood: P(H|E) = P(E|H) * P(H) / P(E). Finally, decisions result 

from the selection of the class that has the maximum posterior probability (MAP). This MAP 

criterion results in the segregation of representational space into distinct regions separated by 

sharp decision boundaries (importantly, the placement of these boundaries does not constitute an 

additional hypothesis of the model, but derives directly from the hypothesis that decisions are 

based on a MAP criterion). 

In the following simulations, we use a series of computational simplifications. First, we 

neglect the cost function associated with each decision – sometimes referred to as “loss” or “util-

ity” function. In the presence of costs, the optimal decision is the ones which minimizes the ex-

pected loss and may differ from the MAP. Mathematically, however, priors and costs play a simi-

lar role and were thus merged in the present paper for simplicity. Second, the present model as-

sumes that priors are fixed in a given context, rather than continuously updated after each deci-

sion. Assuming modifiable priors would lead to important new predictions, but would also in-

crease the number of ad-hoc parameters in the models (e.g. learning rate, estimated world volatil-

ity, creation or deletion of classes etc.). Third, we assume Gaussian distributions in order to facili-

tate the computations. Fourth, importantly, we assume that subjects have an accurate estimate of 

stimulus distributions – although following Lau (LAU, 2008; KO AND LAU, 2012), we will discuss the 



 

 

important consequences that ensue when subjects‟ priors and likelihood functions are inappro-

priately calibrated. Fifth, we assume that, on a given trial, the same input vector enters into dif-

ferent tasks, thus neglecting the possibility that the internal evidence evoked by a fixed stimulus 

may vary with the task, due for instance to decay (GREENWALD ET AL., 1996; DUPOUX ET AL., 2008), 

noise level (DEL CUL ET AL., 2007), attention (SERGENT ET AL., 2013) or other top-down changes. Fi-

nally, we treat stimulus evidence on a given trial as a single discrete point in the n-dimensional 

space. In the discussion, we briefly examine the additional properties that arise if these simplify-

ing assumptions are relaxed. 

THE FUNDAMENTAL THREE-CLASS PROBLEM 

Given these assumptions, binary decision experiments can be simplified to a stereotypical 

three-class problem: either nothing is presented (“Absent” trial), or one of two stimuli X or Y is 

displayed (Figure 1.b). Absent trials are assumed to correspond to a null vector whose likelihood 

function peaks at the origin of vector space. X and Y trials are represented by two base vectors 

which are chosen as the axes of the 2D representation.  

In this typical setup, three different tasks can be performed (Figure 1.c):  

i) Identification consists in determining which hypothesis has the highest posterior 

probability (Absent, X, or Y?).  

ii) Forced-choice discrimination consists in restricting the responses to a subset of 

classes (e.g. X or Y, excluding the Absent class).  

iii) Visibility judgment consists in reporting whether the stimulus is seen or unseen. 

We assume that this instruction is interpreted as a decision, whether the stimulus 

is most likely to be absent or present (i.e. Absent or not Absent?). 

Formally, these are all first-order tasks, because they all ask a simple question: which class 

(or set of classes) could have led to the observed input vector? For each of them, a second-order 

“confidence” judgment can also be performed by setting additional response classes, correspond-

ing to whether the first-order decision has a high or a low probability of being correct. As shown 

graphically in Figure 1.c, there is a distinct confidence judgment associated with each primary 

task. At expense with Persaud et al. (PERSAUD ET AL., 2007) and Lau et al. (LAU, 2008), we note that 

second-order tasks need not coincide with visibility judgment. Also note that, for both first- and 

second-order decisions, the decision boundaries can be derived directly from the definition of the 

task, the priors, and the likelihood functions for each class, and therefore do not constitute addi-

tional assumptions of the model. 

EMPIRICAL CONSEQUENCES OF THE DECISION 

FRAMEWORK 

We shall now see how this framework accounts for the six fundamental empirical proper-

ties listed above. 



 

 

1. ABOVE-CHANCE DISCRIMINATION OF STIMULI REPORTED AS “UNSEEN” 

Empirical finding 1 is that perceptual decisions can be performed at above-chance level 

even when subjects report not seeing any stimulus (MARSHALL AND HALLIGAN, 1993; COWEY AND STOE-

RIG, 1995; DRIVER ET AL., 2001; PERSAUD ET AL., 2007; TAMIETTO ET AL., 2007). For example, blindsight pa-

tients can perform simple discriminations on visual stimuli they report not seeing (STOERIG AND 

COWEY, 2009). This paradoxical ability also exists in healthy subjects whose discrimination per-

formances have been repeatedly shown to be dissociated from subjective reports (see review in 

(KOUIDER AND DEHAENE, 2007; OVERGAARD AND SANDBERG, 2012)). 

 

For simplicity, we only consider here the case in which two stimuli (X and Y) become 

undetectable when they are visually degraded (X‟ and Y‟). We assume that the degraded stimuli 

are generated from the same class as X and Y, yet with lower evidence (i.e. shorter vector length). 

As shown in Figure 2.a, it is quite possible for degraded stimuli X‟ and Y‟ to fall in the region 

reported as “unseen” during visibility judgment (i.e. the most likely class is Absent), and yet to 

yield above-chance performance in a forced-choice task when discrimination is restricted to 

classes X and Y. This finding could be trivial if the visibility judgment was systematically biased 

towards the “unseen” response (and indeed such response bias has often been proposed as an 

interpretation of subliminal perception experiments (HOLENDER, 1986)). However, our simulations 

assume a Bayes-optimal inference process. Thus, we show that there are conditions under which 

the Absent or “unseen” response is the most probable one, and yet X versus Y can still be dis-

criminated.  

 

FIGURE 2. AN ACCOUNT OF UNCONSCIOUS AND CONSCIOUS DISCRIMINATION PERFORMANCE IN TWO TYPES OF 

EXPERIMENTAL DESIGNS. 

A. In the stimulus degradation design, stimuli are made invisible by reducing the evidence (e.g. 
lowered contrast, masking, inattention, etc). This manipulation makes the stimuli more similar to 
the Absent class (right). As the XY distance can be longer than the distances separating the Absent 
class and the stimuli classes (OX, OY), discrimination performance (purple) can remain significant 
while detection sensitivity (green) is not detectable better than chance.  

B. In the fixed-stimulus design, near-threshold stimuli are sorted as a function of whether they are 
reported as “seen” or “unseen”. Unseen stimuli can be discriminated at above-chance levels, but 
discrimination performance improves drastically on seen trials. 



 

 

The geometry of the 2D model reveals why discrimination performance (i.e. d’ of X/Y 

discrimination) can be higher than detection sensitivity (i.e. d’ of Absent/not-Absent judgment): 

the distance separating the X and Y vectors is larger than the distance separating them from the 

Absent class. In the two-dimensional case, discrimination performance is √2 higher than detec-

tion performance (Figure 2.a). Consequently, given adequate statistical power, discrimination may 

be significantly above chance when detection sensitivity is not.  

The above account can also be extended to second-order judgments such as confidence 

rating and post-decision wagering on the first-order forced-choice X/Y discrimination task. Be-

cause such second-order judgments rely on similar decisional principles as the first-order tasks 

(Figure 1.c), confidence in discrimination can be above-chance on “unseen” trials, and confi-

dence in visibility can be lower than confidence in discrimination. This conclusion fits with two 

recent experiments in which subjects performed above-chance in their confidence judgments, 

even on trials reported as unseen (KANAI ET AL., 2010; CHARLES ET AL., 2013).  

2. DISCRIMINATION PERFORMANCE GENERALLY IMPROVES WITH SUBJECTIVE 

VISIBILITY  

Empirical finding 2 is that, although objective discrimination can be above chance with 

subjectively invisible stimuli, such unconscious performance is generally mediocre. In many stud-

ies, objective discrimination performance improves dramatically when the stimuli are reported as 

“seen” compared to “unseen”, even when sensory stimulation is identical (SERGENT AND DEHAENE, 

2004; DEL CUL ET AL., 2007; NEUROSCIENCE ET AL., 2012).  

How does the model account for these findings? In experiments that compare high-

contrast visible stimuli with degraded invisible stimuli, the improvement in discrimination per-

formance with subjective visibility is trivial (Figure 2.a): stimulus degradation diminishes the evi-

dence for X and Y, and thus worsens both visibility judgment and X/Y discrimination. The two 

tasks are thus necessarily correlated (LAU AND PASSINGHAM, 2006; LAU, 2008). Less trivially, however, 

the model predicts the same effect for fixed stimuli presented at perceptual threshold. Even when 

the stimuli are physically identical, internal variability can explain why ~50% of them are reported 

as “unseen” (those which are most similar to the Absent class). As a consequence of this variabil-

ity, sensory inputs reported as “unseen” are associated with a shorter input vector and are there-

fore closer to the X/Y discrimination border than samples reported as “seen” (Figure 2.b). The 

simple hypothesis of a noisy input vector, together with non-orthogonal discrimination and de-

tection tasks, suffices to explain why unseen trials generally exhibit a lower discrimination per-

formance than seen trials.  

3. DISCRIMINATION PERFORMANCE CAN BE EQUATED ON “SEEN” AND 

“UNSEEN” TRIALS  

Empirical finding 3 is that it is possible to find experimental conditions in which dis-

crimination performance is equated while visibility varies. For instance, blindsight patients do not 

always show different discrimination performance in their blind and healthy visual fields (WEIS-

KRANTZ, 1986; COWEY, 2010; KO AND LAU, 2012). In healthy subjects, using metacontrast masking and 



 

 

inattention, stimuli have been created that differ in visibility, but are equated for objective dis-

crimination performance (LAU AND PASSINGHAM, 2006; RAHNEV ET AL., 2011, 2012).  

 

In the model, three major circumstances (and mixtures of them) may lead to identical dis-

crimination performance for seen and unseen stimuli.  

First, for fixed stimuli X and Y, an increase in the prior probability (or cost) of the Absent 

class may lead to an increase in “unseen” responses while leaving X/Y discrimination unaffected 

(Figure 3.a). This account formalizes the hypothesis that blindsight patients have an inappropriate 

“criterion” for visibility judgment (e.g. (LAU, 2008; COWEY, 2010; KO AND LAU, 2012)). Note however 

that the concept of criterion can be misleading because it incorrectly suggests a single scalar 

value. In the present framework, the “criterion” emerges as a set of decisional boundaries that 

delimit the categorical regions in the representational space, and that are specific to the selected 

task. A change in the task or in the priors may thus impose a different division of space, and 

hence a shift in decision boundaries. 

Second, consider experiments in which, within each class, the experimenter presents two 

visible targets X and Y, and two invisible targets X‟ and Y‟. If both the length and the variance of 

the input vectors X‟ and Y‟ are reduced compared to X and Y, their visibility can drop without 

 

FIGURE 3. THREE WAYS IN WHICH STIMULUS VISIBILITY CAN BE MANIPULATED INDEPENDENTLY OF STIMULUS 

DISCRIMINABILITY. 

A. Changing the prior (or the cost) of the Absent class affects the placement of the criterion for 
subjective visibility reports and can thus lead to a systematic report of invisibility, without affecting 
objective discrimination performance (purple) or detection sensitivity (green).  

B. Simultaneously changing the length and the variance of the input vectors jointly affects detection 
sensitivity and subjective visibility reports while preserving objective discrimination performance. 
(The Area Under the Curve (AUC) is an equivalent of d’ for continuous measures.) 

C. Simultaneously changing the length (e.g. contrast) and the angle (e.g. ambiguity) of the input 
vectors can lead to a similar pattern of results. 



 

 

affecting discrimination performance (Figure 3.b). This case could correspond to a simultaneous 

manipulation of stimulus strength (length of input vector) and of attention (variance of the input 

vector) as proposed by Rahnev and collaborators (RAHNEV ET AL., 2011).  

Third, if both the amplitude and the angle of the input vectors X‟ and Y‟ are decreased 

compared to X and Y, then X/Y discrimination performance could be manipulated independ-

ently of visibility (Figure 3.c). This case could correspond to a simultaneous change in contrast 

and in stimulus ambiguity, for instance using morphing or blending to reduce the difference be-

tween X and Y stimuli. 

The present account provides no less than three mechanisms by which blindsight, meta-

contrast and inattention could produce their effects. Each mechanism could be explicitly tested 

by experimentally manipulating the contrast, the variance and/or the blending of sensory stimuli 

as well as the prior probability associated with each class.  

4. SUBJECTIVE REPORTS ARE OFTEN NON-LINEARLY RELATED TO SENSORY 

STRENGTH 

Empirical finding 4 is that a non-linear curve often relates the strength of sensory stimula-

tion and visibility ratings (SERGENT AND DEHAENE, 2004; DEL CUL ET AL., 2007; MELLONI ET AL., 2011). For 

example, when the stimulus onset asynchrony (SOA) separating a briefly flashed digit and its sub-

sequent mask is varied linearly, a sharp transition in visibility occurs around an SOA of 50 ms: 

below this duration, subjects tend to report the stimulus as completely unseen, whereas above it, 

stimuli are reported as clearly visible (SERGENT AND DEHAENE, 2004; DEL CUL ET AL., 2007). However, 

this all-or-none visibility pattern does not characterize all types of subjective reports (SERGENT AND 

DEHAENE, 2004; SANDBERG ET AL., 2011; OVERGAARD AND SANDBERG, 2012; WINDEY ET AL., 2013). For exam-

ple, Sergent and Dehaene (SERGENT AND DEHAENE, 2004) showed that the attentional blink leads to a 

much sharper non-linear pattern than backward masking.  

We consider two classes X and Y, within which the stimuli can vary parametrically in 

strength from trial to trial (Figure 4.a). This parametric variation is assumed to have a linear effect 

on the amount of sensory evidence in favour of the corresponding stimulus (i.e. the length of the 

input vector). In such cases, the model predicts that visibility responses are non-linearly related to 

stimulus evidence, as the MAP criterion imposes a decision boundary that sharply delineates the 

regions of space respectively responded with the “seen” and “unseen” labels. Interestingly, al-

though the fraction of “seen” responses is always a sigmoid, its slope may vary from a step-wise 

“all-or-none” pattern to a shallow and near-linear function. The parameter driving this change in 

sigmoid slope is the variance in representational space. With higher variance, visibility becomes 

more linearly related to sensory evidence (Figure 4.a right). This is because when variance in-

creases, a greater number of Absent samples fall outside of the region responded classified as 

Absent, and, analogously, a greater number of present trials (X or Y) fall outside their respective 

regions – ultimately leading to a flat relationship between stimulus evidence and discrimination 

performance. This change is also accompanied by an increased proportion of unseen responses. 

Contrarily, the sigmoid becomes sharper and the number of seen responses increases when the 

variance of the stimulus diminishes (Figure 4.a left). 



 

 

 

 

FIGURE 4. INPUT VARIANCE AND PRIOR KNOWLEDGE CAN AFFECT THE NON-LINEARITY AND THE THRESHOLD OF 

SUBJECTIVE VISIBILITY REPORTS. 

(a) Parametrically varying stimulus strength directly changes the amplitude of the input vector and 
leads to a non-linear pattern of subjective visibility reports. The slope and the intercept of the 
resulting sigmoid depend on stimulus variance: low variance leads to an all-or-none relationship 
between the evidence and the visibility reports (left), whereas high variance leads to a more linear 
relationship as well as an increase in the visibility threshold (right).  

(b)  Prior knowledge can also affect the visibility threshold. Increasing the prior probability of the 
Absent class increases the visibility threshold for all stimuli, thus lowering subjective visibility 
reports. When only the prior probability of X is increased (capturing “hysteresis” experiments where 
subjects come to expect the next stimulus), then the visibility threshold is lowered for X alone, while 
the visibility threshold for Y barely changes.  

(c)  Visibility and discrimination interact when both priors and stimuli variance are varied. If the 
probability of the Absent class is relatively low (or similarly if the evidence is relatively high), 
increasing the variance reduces both visibility ratings and discrimination performance. However, 
when P(Absent) is high (or similarly, if the evidence is low), increasing the variance can diminish 
discrimination performance while increasing visibility ratings. This diagram captures the 
paradoxical finding that increased attention can lead to reduced visibility (RAHNEV ET AL., 2011). 



 

 

The present model thus shows how both near-linear and non-linear visibility patterns can 

be produced by a single type of decision. The model also predicts that unseen trials should tend 

to be characterized by linear patterns, and seen trials with all-or-none patterns – an empirically 

verified phenomenon (SERGENT AND DEHAENE, 2004; DEL CUL ET AL., 2007; DE GARDELLE ET AL., 2011; DE 

LANGE ET AL., 2011; MELLONI ET AL., 2011). Because there is no unequivocal way of determining the 

internal variance of sensory inputs in existing experiments, the present account remains specula-

tive. Nevertheless, stimulus variance could be explicitly manipulated in future experiments.  

5. PRIOR KNOWLEDGE CAN LOWER THE VISIBILITY THRESHOLD 

Empirical finding 5 is that the subjective visibility threshold is affected by prior knowl-

edge (MOONEY, 1957; RODRIGUEZ ET AL., 1999; SIMONS AND CHABRIS, 1999; TALLON-BAUDRY AND BERTRAND, 

1999; CUL ET AL., 2006; MELLONI ET AL., 2011). Prior exposure to a given word increases its objective 

identification and subjective visibility when the same word is later presented under stronger 

masking (CUL ET AL., 2006). Similarly, Melloni et al. (MELLONI ET AL., 2011) recently used a hysteresis 

paradigm in which letters were embedded in white noise. Across a series of trials, the identity of 

the letter was fixed while its signal-to-noise gradually increased and then gradually decreased. 

Subjects reported seeing the letter better in the descending than in the ascending condition (i.e. 

once they knew the identity of the letter), even for identical physical stimulation. 

In the present model, these effects arise from changes in the priors for classes X and Y. 

At the beginning of the ascending condition, stimulus evidence is low, and the X and Y classes 

are equally likely. Once the stimulus has been identified, at the beginning of the descending con-

dition, its prior probability P(X) is increased, and consequently P(Absent) and P(Y) are decreased. 

Because the decision boundary for the “seen” response is partly determined by P(X), the “seen” 

response is more likely in the descending sequence than in the ascending one (Figure 4.b). 

Although this account captures the influence of prior knowledge on visibility reports (CUL 

ET AL., 2006), it oversimplifies the hysteresis paradigm (MELLONI ET AL., 2011). Indeed, subjects are 

also likely to learn the structure of the ascending and of the descending sequences, and expect a 

higher frequency of absent trials towards the beginning of the ascending sequence and towards 

the end of the descending sequence. This expectation, if present, would again increase the prior 

probability of the “unseen” response, thus leading to increased reports of invisibility for these 

stimuli compared to physically identical stimuli presented in a random sequence. The model fur-

ther predicts that X/Y discrimination should remain identical in ascending and descending se-

quences. During the descending sequence, subjects should exhibit a bias towards X reports, due 

to the increased prior for X, but no change in d’. These predictions offer a way to test the validity 

of the present model. 

6. ATTENTION CAN EITHER INCREASE OR DECREASE VISIBILITY 

Empirical finding 6 is that attention and visibility can be paradoxically decorrelated. In 

many studies, attention increases detection sensitivity and subjective visibility (e.g. (KIM AND BLAKE, 

2005; RAHNEV ET AL., 2011; SERGENT ET AL., 2013)). However, attention can also lead to decreased subjec-

tive visibility (RAHNEV ET AL., 2011). In Rahnev et al.‟s study (RAHNEV ET AL., 2011), subjects performed 

a basic detection task on a target whose location was validly cued on 70% of trials. Crucially, the 



 

 

contrast of the unattended target was adjusted to yield the same level of objective performance as 

the attended target. Remarkably, subjects reported that unattended trials were more visible than 

attended ones. 

If we assume that attention affects the variance of the input vector, the present model 

predicts that attention can lead to opposite visibility effects depending on the proportion of trials 

reported as seen or unseen (Figure 4.c). If P(absent) is low, so that most trials are reported as 

seen, then increasing the variance diminishes both discrimination performance and visibility, be-

cause it increases the proportion of input vectors that fall close to the Absent class. This captures 

the classical effect that inattention increases noise and thus reduces both objective performance 

and subjective visibility. Importantly, however, if P(absent) is high, so that most trials are re-

ported as unseen, then increasing the stimulus variance still diminishes discrimination perform-

ance, but may paradoxically increase visibility ratings. This is because with higher variance, a 

greater number of samples fall outside of the region responded as “unseen” and thus become 

subjectively visible (see Figure 4.c).  

The model therefore predicts that attention can induce opposite effects on visibility and 

discrimination performance even when the mean evidence is unchanged. Contrarily to Rahnev et 

al. (RAHNEV ET AL., 2011), who argue that attention induces a conservative visibility bias by changing 

the inter-trial variance of the stimulus, we predict that visibility ratings are influenced by an inter-

action between the variance and the initial visibility threshold (determined by prior knowledge or 

stimulus evidence). Once again, this prediction could be tested in an experiment explicitly ma-

nipulating stimulus variance, contrast and priors. 

EXPERIMENTAL TEST OF THE MODEL 

Most the above arguments account for empirical observations only in retrospect. We thus 

opted to confront the present model to a novel experimental setup. The model critically predicts 

that linear and non-linear profiles of behavioural responses arise from the same decision mechanism. 

In particular, it predicts that the discrimination profile of physically identical stimuli will increasingly 

become non-linear as visibility increases (Figures 2.b & 4.a).  

We tested this prediction by linearly varying a parameter λ to create a continuum between 

two perceptual classes X and Y (Figure 5). For λ=0, the stimulus is X, for λ=1, the stimulus is Y, 

but we can create an arbitrary series of intermediate stimuli S(λ)= λX+ (1- λ)Y. Whereas de 

Gardelle et al. (DE GARDELLE ET AL., 2011) used a linear morph between two faces, here we varied 

the contrast of a single line to create a continuum between two different digits (e.g. ). 

Geometrically, such a continuum can be represented as a line joining the prototypical vectors of 

each class (Figures 6.a left). We presented the stimuli at perceptual threshold, such that for a fixed 

stimulus, there was a large number of both “seen” and “unseen” subjective reports.  

The model predicts that the steepness of discrimination performance should increase as 

subjective visibility increases. Stimuli rated as “unseen” could be categorized better than chance 

(Figure 2.b), but with a shallow slope because such stimuli are necessarily close to the “Absent” 



 

 

class (Figure 6.a right). Conversely, highly visible stimuli should yield a steeper sigmoidal func-

tion. Thus, we expected significantly better identification performance on “seen” compared to 

“unseen” trials (Figure 2.b), and an increasingly “all-or-none” response pattern as a function of 

stimulus ambiguity λ (Figure 6.a right).  

METHOD 

Nineteen healthy volunteers, with normal or corrected-to-normal vision, participated after 

giving informed consent (29% males, Age: 25 ± 5 years old, 88% right handed). Each trial began 

with the presentation of an ambiguous digit (target) presented for 83 ms and subsequently 

masked by pseudo-random black surrounding letters displayed for 67 ms (Figure 5). Subjects 

were asked to identify in less than 2 s which of four digits was presented (5, 6, 8 or 9), using their 

left and right index and middle fingers. Visual feedback was given for non-ambiguous trials 

(morphs at 0% or 100%): misidentifications were followed by a 100 ms red fixation cross, 

whereas correct identifications were followed by 100 ms green fixation cross. Subjects subse-

quently reported subjective visibility using a 10-point vertical rating scale (bottom: not seen, top: 

clearly visible). Subjects used the two middle fingers to change the location of the randomly-

placed visibility cursor, and pressed the space bar with their thumb to validate the visibility rating. 

The inter-trial interval was fixed at 300 ms. Subjects performed a total of 1000 trials divided into 

25 blocks, at the end of which their median reaction times and their accuracy were displayed. The 

experiment lasted approximately one hour. 

 

Prior to the main experiment, subject performed a staircase procedure similar to the main 

task (100 trials with unambiguous targets, no visibility ratings, and no time limit). The contrast 

was lowered to reach an accuracy of ~70% (KAERNBACH, 1991). Target contrast then remained 

fixed throughout the main experiment. The staircase procedure was repeated up to five times in 

case of an unstable perceptual threshold. Two subjects who failed to converge to a stable thresh-

old were excluded.  

All stimuli were generated on a computer using INKSCAPE, MATLAB 2009b and the 

Psychophysics Toolbox and were displayed on a 17‟‟ computer CRT screen (1600 x 900 refreshed 

at 60 Hz). The screen background colour was 50% gray throughout the whole experiment and a 

black fixation-cross was constantly presented in the middle of the screen. Targets were morphs 

 

FIGURE 5. EXPERIMENTAL DESIGN 

To test whether linear and non-linear subjective reports could be accounted by a single type of 
decision, we parametrically varied the evidence (λ) favouring four different stimuli (5, 6, 8, 9) by 
creating morphs between pairs of these digits (left). For each morph, on each trial, subjects 
performed a forced-choice identification task and provided a subjective visibility report (right).  



 

 

between two digits (5-6, 5-9, 6-8, 9-8) each made of 5 to 7 black bars (Figure 5). In each pair, a 

single bar varied between gray (background colour) to maximal contrast in eight linear steps (pa-

rameter λ varying from 0 to 1 in steps of 0.143). Masks were composed of four pseudo-random 

capital letters constructed from the same basic visual features as the digits and were located at the 

top (E, O, U, Z), at the bottom (A, F, P Z), to the left (A, H, O, U) and to the right (E, F, P H) 

of the target digit. Symbols subtended 0.45° x 0.85° and were presented to the left or to the right 

side of the fixation (2.12°). Masks were centred on the previously presented target (1.23° x 2.27°). 

Targets, masks and their respective location were randomly selected at each trial. On 15% of tri-

als, the target was absent and replaced by a gray background. 

 

RESULTS 

Unambiguous targets were accurately identified on 67.7% of trials (SD = 14.1%, t(16) = 

5.00, p < 0.001) confirming that the staircase procedure was efficient (targeted accuracy: 70%). 

Subjects used the visibility scale appropriately, as indicated by their more frequent use of the 0% 

visibility response on target-absent trials than on target-present trials (36.7% vs. 16.9% of trials, 

 

FIGURE 6. EMPIRICAL TEST OF THE PREDICTED VARIATION IN NON-LINEAR CATEGORIZATION AS A FUNCTION OF 

VISIBILITY. 

The present framework predicts that the steepness of the sigmoid characterizing discrimination 
performance as a function of λ should increase with visibility reports. In particular, the 
discrimination performance of unseen stimuli should follow a quasi linear trend. 

The results (n=17) confirm that i) stimuli could be identified above chance even at the lowest visibility 
ratings ii) discrimination performance correlated with visibility ratings, and iii) increasingly steeper 
sigmoids indicated that, unlike unseen stimuli, visible stimuli were associated with a nearly all-or-
none identification performance. 



 

 

t(16) = 4.867, p = < 0.001). Subjects used the entire visibility scale on target-present trials, from 

0% visibility (16.9% of trials) up to 100% visibility (18.7% of trials). 

We sorted trials as a function of reported visibility (10 levels), and within each level, ex-

amined how identification responses varied as a function of bar contrast (parameter λ). We only 

focused on the two adequate responses to a given morph (e.g. responses 5 or 9 for the 5-9 

morph), and computed the fraction of these responses that corresponded to reporting the pres-

ence of a bar. We used R software to fit a binomial distribution as a function of bar intensity, 

separately for each subject and each visibility level. As seen in Figure 6.b, subjects‟ choices varied 

significantly as a function of bar contrast at all visibility ratings (all p < 0.001). Thus, subjects 

discriminated digits at above-chance level even on trials when they reported no subjective percep-

tion. Furthermore, as predicted, the slope of the sigmoid function increased significantly with 

visibility ratings (r² (15) = 0.79, p = 0.004). Thus, discrimination performance improved with 

subjective visibility ratings. Trials rated as invisible had such a shallow slope that the response 

proportion were nearly linearly related to the intensity of the bar, while trials rated as highly visi-

ble resulted in a nearly stepwise, “all-or-none” response function. 

DISCUSSION OF THE EXPERIMENT 

Although subjects were presented with identical stimuli, subjective reports varied consid-

erably from trial to trial, from total invisibility to maximal visibility. Furthermore, three predic-

tions were verified: (1) identification scores were always higher than chance level; (2) they in-

creased with visibility; (3) when varying the degree of ambiguity λ, objective identification became 

increasingly non-linear as subjective visibility increased. These results confirm that, for physically 

identical stimuli, visibility is associated with a greater degree of “all-or-none” perception, a find-

ing that the framework can explain without any additional assumption (i.e. no need to postulate a 

qualitative difference between conscious and unconscious processing). 

Our results extend a previous study by de Gardelle et al. (DE GARDELLE ET AL., 2011), which 

examined the amount of masked repetition priming elicited by a morphed face when the prime 

was unmasked (SOA = 300 ms) or heavily masked stimuli (SOA = 43 ms). As in the present ex-

periment, they observed linearly increasing priming for invisible morphs, and categorical priming 

for visible morphs. Although the authors proposed that this dissociation reflected two distinct 

processes (unconscious analogue versus conscious discrete), the present model suggests that this 

interpretation is unnecessary: even within a single decision process, response patterns may vary in 

their degree of non-linearity depending on the mean and variance of the stimulus evidence. 

The model further predicts that, when conscious perception occurs, subjects perceive the 

stimuli strictly categorically (digit 5 or 9, but no intermediate percept). According to Harnad‟s 

definition (HARNAD, 2003), categorical perception is defined by “within-category compression and 

between-category separation”. In another paper (King et al., in preparation), we present additional 

evidence that the conscious experience of our morphs follows Harnad‟s definition of categorical 

perception (HARNAD, 2003). First, discriminability is indeed enhanced for pairs of digits presented 

near the perceptual boundary. Second, when presented with two identical ambiguous morphs, 

subjects frequently judge that the stimuli differ, as predicted if each has a ~50% chance of falling 

in either of two discrete perceptual categories. Third, when the present identification task is repli-



 

 

cated using a continuous response scale, subjects respond bimodally and barely use the interme-

diate levels to report perceiving a mixture of two digits. Thus, at least for this type of stimuli, and 

as postulated in our theoretical premises, what we consciously perceive seems to result from a 

categorical decision among a limited number of classes (see also (MORENO-BOTE ET AL., 2011; GERSH-

MAN ET AL., 2012)). 

GENERAL DISCUSSION 

We have shown how a simple geometrical framework for subjective report and objective 

discrimination tasks, based on Signal Detection and Bayesian Theories, can account for six fun-

damental findings in behavioural studies of conscious and unconscious perception. The present 

model subsumes a series of frameworks describing both conscious and unconscious perception 

as statistical inferences (KERSTEN AND YUILLE, 2003; KERSTEN ET AL., 2004; KNILL AND POUGET, 2004; DOYA, 

2007; KNILL AND RICHARDS, 2008; LAU, 2008; SHADLEN ET AL., 2008). The core of our hypothesis is that, 

during perception, the brain is faced with a massive classification problem. Each task, including 

conscious identification and subjective report, imposes, in a top-down manner, a set of classes 

along which the stimuli can be classified. Contrarily to most laboratory tasks, open-ended subjec-

tive reports are typically based on numerous features and classes. A picture naming task, for in-

stance, typically involves tens of thousands of classes. Like others before us (GREEN AND SWETS, 

1966; KLEIN, 1985; KO AND LAU, 2012), we thus insist on the necessity to conceptualize decisions 

within a multidimensional framework. This conceptualization leads to several important meth-

odological and theoretical consequences. 

Firstly, the present model goes against the idea that subjective reports of “not seeing” are 

necessarily unreliable because they can be affected by conservative response biases (ERIKSEN, 1960; 

GREEN AND SWETS, 1966; MERIKLE, 1982; HOLENDER, 1986), and that objective measures such as detec-

tion sensitivity (d’ ) should be favoured (see review in (KOUIDER AND DEHAENE, 2007)). On the con-

trary, we show that subjective reports cannot be reduced to objective measures (ERIKSEN, 1960; 

MERIKLE, 1982; HOLENDER, 1986) nor to second-order measures such as confidence rating and post-

decision wagering (LAU AND PASSINGHAM, 2006; PERSAUD ET AL., 2007; LAU, 2008; RAHNEV ET AL., 2011). In 

particular, the present model predicts that visibility and confidence should be partially correlated 

(Figure 1.c) but experimentally dissociable. This prediction is well supported by recent empirical 

findings showing that second-order judgments can be performed above chance on unseen stimuli 

(KANAI ET AL., 2010; SANDBERG ET AL., 2011; OVERGAARD AND SANDBERG, 2012; CHARLES ET AL., 2013). In the 

present model, subjective visibility reports reflect a legitimate decision process whose details (in-

cluding response bias) can and should be accounted for. As recently demonstrated (CUL ET AL., 

2006; SCHWIEDRZIK ET AL., 2009; MELLONI ET AL., 2011), a shift in visibility criterion reflects the underly-

ing prior probabilities and cost functions of the subjects‟ internal model of the world, and, con-

sequently, should not be disregarded as an experimental confound. What we call a “subjective” 

report may simply be the brain‟s best attempt at solving a difficult perceptual decision problem 

with myriad of potential classes, each with different costs and prior probabilities that depend on 

the subject‟s prior experience.  



 

 

Secondly, the model shows, in a principled manner, how experimental conditions can be 

designed to equate discrimination performance between seen and unseen trials (Figure 3). In a 

series of behavioural experiments, Lau and collaborators have equated objective discrimination 

performance between seen and unseen responses, in an attempt to isolate conscious processing 

independently of other pre- or post-perceptual increases in information processing (LAU AND PAS-

SINGHAM, 2006; LAU, 2008; RAHNEV ET AL., 2011). The present geometrical analysis suggests that Lau‟s 

experiments have adopted only a subset of the possible solutions: masking the stimuli at different 

levels (LAU AND PASSINGHAM, 2006) or changing the amount of attention they receive (RAHNEV ET AL., 

2011) may both change the signal-to-noise ratio of the incoming evidence. However, under such 

conditions, discrimination performance is equated at the expense of introducing physical differ-

ences between the visible and invisible stimuli. It is therefore unclear whether contrasting the two 

reflects an effect of visibility or of the stimulus‟ physical properties. Consequently, it may be pref-

erable to use physically identical stimuli and alter subjective visibility by changing the priors (Fig-

ure 3.a) – a solution indeed adopted in several recent studies (CUL ET AL., 2006; SCHWIEDRZIK ET AL., 

2009; MELLONI ET AL., 2011). 

The empirical finding of a non-linear sigmoidal relationship between subjective visibility 

reports and the physical properties of a stimulus (VORBERG ET AL., 2003; DEHAENE ET AL., 2006; DECO ET 

AL., 2007; KOUIDER AND DEHAENE, 2007; QUIROGA ET AL., 2008; DE GARDELLE ET AL., 2011; DE LANGE ET AL., 

2011) has led to the notion that conscious perception is an all-or-none phenomenon (SERGENT AND 

DEHAENE, 2004; DEL CUL ET AL., 2007; MELLONI ET AL., 2011). The present model readily reproduces this 

non-linear pattern (Figure 4.a), but it also predicts exceptions in cases of high stimulus variance 

or low signal-to-noise ratio. These predictions remain untested, but may offer potential explana-

tions to studies revealing a continuous relationship between stimulus evidence and subjective 

reports (SERGENT AND DEHAENE, 2004; SANDBERG ET AL., 2011; OVERGAARD AND SANDBERG, 2012; WINDEY 

ET AL., 2013). In the future, directly manipulating the mean and the variance of stimulus evidence 

could clarify the role of each of these factors in linear and non-linear response patterns to sensory 

manipulations. 

According to the present model, the reason why unconscious responses tend to be line-

arly related to stimulus evidence is simple: when perceptual evidence is low enough to be catego-

rized as “unseen”, the evidence necessarily lies close to the origin of the multidimensional space 

and therefore leads to shallow (though above-chance) forced-choice curves. We tested this idea in 

an original experiment, and the results confirmed that fixed stimuli presented at threshold lead to 

quasi-linear discrimination when reported as unseen, but to a sharp sigmoid discrimination curve 

when reported as seen. Contrarily to previous proposals (DEL CUL ET AL., 2007; DE GARDELLE ET AL., 

2011; CHARLES ET AL., 2013) the present model accounts for these findings without having to postu-

late that distinct processes operate below and above the threshold for conscious perception.  

LIMITS OF THE MODEL AND POSSIBLE EXTENSIONS 

For simplicity we postulated that the very same representational vector is used for differ-

ent tasks. The idea is that the same input vector is “resampled” several times with different re-

sponse classes (e.g. a discrimination task followed by a visibility task on the same trial). This re-

sampling assumption is supported by a recent experiment (VUL ET AL., 2009) in which, within a 

rapid stream of letters, subjects were asked to identify the one that was circled by a visual cue. On 



 

 

each trial, subjects provided as many as four mutually exclusive guesses about the target letter. 

The results showed that all guesses were sampled from an identical distribution centred on the 

position and/or the time of the cue. This experiment suggests that the posterior probability of 

each letter was computed once and for all, and that successive guesses corresponded to the 

maximum a-posteriori (MAP) after excluding the previous answers, exactly as expected from the 

present model.  

Nevertheless, in other contexts, the hypothesis that the input vector remains unchanged 

and identically available for a series of successive judgments may turn out to be simplistic. Tem-

poral decay may affect the quality of decisions made after a delay (SPERLING, 1960), particularly for 

unconscious stimuli (GREENWALD ET AL., 1996; DUPOUX ET AL., 2008). A recent study suggests that an 

attentional cue presented after a sensory stimulus can retroactively improve its visibility (SERGENT 

ET AL., 2013). The task set imposed by a first task may also change the quality of the evidence avail-

able for a second task (JAZAYERI AND MOVSHON, 2007). Similarly, the order in which two questions 

are presented may influence the subject‟s answers (GILOVICH ET AL., 2002). Busemeyer et al. (BUSE-

MEYER ET AL., 2011) have proposed to account for the latter phenomenon with a computational 

principle inspired from quantum mechanics, according to which each successive judgment alters 

the input vector by projecting it onto a subspace defined by the task. As projections are not 

commutative, the order of successive questions can change the successive decisions. It remains to 

be seen whether such non-commutativity is a fundamental principle that should be added to the 

present model. 

Another limit of the present model lies in its assumption, shared with SDT, that decisions 

are based on a single input vector. A natural extension of the model would represent a sensory 

input as a series of samples, i.e. a trajectory in multidimensional space. Indeed, SDT has been 

superseded by sequential sampling models (RATCLIFF AND ROUDER, 1998; GOLD AND SHADLEN, 2001; 

LEITE AND RATCLIFF, 2010), according to which each decision is based on an accumulation of noisy 

samples arising from the stimulus. Whichever accumulator first reaches a fixed threshold is se-

lected as the winner of the perceptual decision. Models of this kind are supported by a large set 

of empirical findings, (RATCLIFF ET AL., 1999; KNILL AND RICHARDS, 2008; SHADLEN ET AL., 2008; DEHAENE, 

2009; LIU AND PLESKAC, 2011) and account, not only for response proportions, but also for response 

times and their distributions (RATCLIFF ET AL., 1999; RATCLIFF AND MCKOON, 2008; LEITE AND RATCLIFF, 

2010). Extending the present model in this direction, as attempted by Del Cul et al. (DEL CUL ET AL., 

2007), would lead to precise predictions about subjects‟ reaction times in objective and subjective 

tasks. 

In the tradition of “ideal observer” analyses, we also assumed that the decision system is 

fully informed of the stimulus distributions and uses optimal priors and likelihood functions to 

compute the posterior probability of each response class. This is undoubtedly an idealization. A 

dynamic model in which the likelihood functions, priors and costs would be learned by updating 

them after each trial, and may therefore be ill-estimated, may go a long way towards explaining a 

variety of human deviations from optimality. For instance, using a model similar to the present 

one, Ko and Lau (KO AND LAU, 2012) proposed an account of blindsight as an inadequate revision 

of priors following the radical decrease in visual input strength caused by a lesion to area V1 

(similar to Figure 3.a). Confidence judgments and visibility ratings would be particularly affected 

by inadequate priors and likelihoods, because the present model assumes that these tasks require 



 

 

a quantitative estimation of the posterior probabilities (Figure 1). In agreement with this idea, 

Rahnev, Lau and collaborators (RAHNEV ET AL., 2011, 2012) performed a series of experiments in 

which human observers deviated radically from optimality in their confidence judgments. Their 

findings could be explained by assuming that subjects used a single estimate of input variance for 

distinct experimental conditions (e.g. for attended versus unattended trials). This interpretation is 

compatible with the present model, and with the general idea that there are sharp limits to the 

number of decision criteria that subjects may deploy on a given trial (GOREA AND SAGI, 2000, 2010).  

NEURAL MECHANISMS 

The present model was framed at an abstract mathematical level of description. While this 

approach provides useful geometrical intuitions and a simple testable framework, an important 

future endeavour will be to flesh it out at the neural level. The vast representational space may 

correspond to the function of posterior unimodal and multimodal sensory areas, where many 

neurons render explicit dimensions of the stimuli that are only encoded implicitly and in a dis-

tributed form in the sensory periphery. Their role may be to augment the dimensionality of sen-

sory inputs and therefore facilitate decision making by turning decisions into linearly separable 

problems (DICARLO ET AL., 2012). The categorical decision system, in turn, could be subserved by 

areas of the dorsolateral and inferior prefrontal cortices as well as anterior temporal and superior 

parietal cortices. These areas have been proposed to form a “global workspace” where conscious 

information is maintained and broadcasted to additional processes (DEHAENE AND CHANGEUX, 2011). 

They receive the necessary convergence of multimodal inputs and are known to contribute to 

both decision making and to all-or-non conscious perception (FREEDMAN ET AL., 2002; WOOD AND 

GRAFMAN, 2003; DEHAENE AND CHANGEUX, 2011). Explicit simulations of such recurrent networks with 

winner-take-all dynamics show how they tend to quickly converge to a discrete stable attractor 

(DEHAENE ET AL., 2003) which approximates the maximum-likelihood estimate (DENEVE ET AL., 1999; 

WANG, 2008). The dynamics of such networks may therefore account for perceptual categoriza-

tions, which the present model considers as inherent to conscious perception. 
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