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Abstract
Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and in-

secticide properties that can affect metabolism and cognition. In vertebrates, the metabo-

lites derived from caffeine have been identified, and their functions have been

characterized. However, the metabolites of caffeine in insects remain unknown. Thus,

using radiolabelled caffeine, we have identified some of the primary caffeine metabolites

produced in the body of Drosophila melanogastermales, including theobromine, para-

xanthine and theophylline. In contrast to mammals, theobromine was the predominant me-

tabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in

rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coor-

dinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, in-

cluding several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated

with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine

metabolism, indicating that CYPs are involved in this process. Using interference RNA ge-

netic silencing, we measured the metabolic and transcriptomic effect of three candidate

CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas

CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene

expression. Therefore, we characterized several metabolic products and some enzymes

potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to

caffeine metabolism in insects opens novel perspectives for the investigation of the physio-

logical effects of caffeine metabolites. It also indicates that caffeine could be used as a bio-

marker to evaluate CYP phenotypes in Drosophila and other insects.

Introduction
Caffeine (1, 3, 7-trimethylxanthine) is a typical purine alkaloid that is produced in a variety of
plants, including coffee (Coffea arabica) and tea (Camellia sinensis) [1]. Caffeine is involved in
plant chemical defense, acting as a repellent, pesticide and allelopathic agent [2–4]. With its
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psychostimulant, cardiac and diuretic effects, caffeine is one of the most widely used plant sec-
ondary metabolites, primarily as a food additive or an ingredient in drugs [5].

Various insect studies have revealed that caffeine can induce similar effects than in verte-
brates: inhibition of feeding and sleep [6–8], increased heart rate [9], and mutagenic and mitot-
ic action [10,11]. In insects in particular, caffeine can affect olfactory and visual associative
learning, as demonstrated by studies conducted in honeybees [12]. Caffeine can also affect the
reproductive (egg laying ability) [3,13,14] and dopaminergic systems, calcium exchange and
potassium currents in the central nervous system of insects [15–17]. In Drosophila, the effect
of caffeine was measured in regard to bitter taste-induced aversive behavior [18]. Caffeine in-
duces similar repulsive effects to a male sex pheromone, as shown by both the male courtship
behavior and the feeding response [19,20]. Several gustatory receptors sensitive to caffeine,
such as Gr66a, Gr33a and Gr93a, were also characterized [19,21].

All of these effects may involve metabolites derived from caffeine, which could have, as in
humans, their own biological activities [22–24]. Caffeine derivatives in the human liver, metab-
olized by the cytochrome P450 oxidase enzyme system (in particular by the CYP1A2 isoen-
zyme), include three major dimethylxanthine metabolites (paraxanthine, theobromine and
theophylline) and one hydroxylated metabolite (1, 3, 7-trimethyluric acid) [25]. Paraxanthine
is the predominant caffeine-derived metabolite in humans, but 1, 3, 7-trimethyluric acid and
theophylline are the major metabolites found in rodents and monkeys, respectively [26–28].

Among the compounds known to induce toxic effects in Drosophila melanogaster, caffeine
has been studied primarily in regard to its regulatory effect on detoxification enzymes. Expo-
sure to caffeine enabled the identification of CYP enzymes involved in insecticidal or toxic host
plant resistance and metabolism [29,30]. These studies led to a better understanding of insecti-
cide resistance [31] and the regulation of CYP expression [32–34]. CYPs have also been pro-
posed to interact in the metabolism of odorant compounds [35,36]. Cytochrome P450s make
up a diverse and important gene super-family in all organisms. In insects, CYPs are known to
catalyze a diverse range of chemical reactions important for both developmental processes and
the detoxification of exogenous compounds. We focused on the CYP12d1, CYP6a8 and
CYP6d5 genes, which showed the largest amplitude of variation in our initial tests. These en-
zymes were also selected because they belong to two of the four large clades of insect P450
genes: the CYP2 clade, the CYP3 clade (CYP6a8, CYP6d5), the CYP4 clade and the mitochon-
drial P450 clade (CYP12d1).

Interestingly, there have been few insect reports providing a global picture of the CYP-
related metabolism of a xenobiotic compound. Our study takes into account the activity of the
genes induced by xenobiotic compounds as well as the catalytic function of the coded enzymes
leading to compound degradation. More specifically, we identified the metabolites of caffeine
in Drosophila melanogaster and screened the “xenobiotic-metabolizing-enzyme genes” affected
by caffeine exposure. Among the genes strongly impacted by caffeine exposure, three CYP can-
didates were silenced, the effects of which were measured on caffeine metabolism together with
the coordinated variation of expression between the three CYPs.

Materials and Methods

Chemicals
Caffeine (58–08–2), Theobromine (83–67–0), Theophylline (58–55–9), Paraxanthine
(611–59–6) and Metyrapone (54–36–4) were purchased from Sigma-Aldrich (St. Louis, MO,
USA), and 1, 3, 7 trimethyluric acid (5415–44–1) from ChemCruz (Santa Cruz, CA, USA).
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Drosophila strains and rearing conditions
Flies were reared on a standard yeast/cornmeal/agar medium at 25°C on a 12L:12 D cycle.
w1118 (y1 w+) and P{Act5C-GAL4}25FO1/CyO strains, identified as w1118 and Actin-GAL4, re-
spectively, were obtained from the Bloomington stock center. All of the UAS-RNAi strains
(dsCYP12d1 (109256); dsCYP6a8 (4884); dsCYP6d5 (12139)) were purchased from the Vienna
Drosophila Resource Center (stock ID indicated in parentheses). The UAS RNAiCYP/Actin-
GAL4 system was used to target all tissues (with an Actin-GAL4 driver) potentially involved in
the metabolism of caffeine and to inhibit (with UAS-RNAiCYP) the expression of the selected
CYPs in the targeted tissues.

Caffeine treatment and microarray analysis
Four-day-old adult males were starved for 12 hours in a vial containing a filter paper
impregnated with water before being transferred to caffeine-rich medium (18 mM; Sigma-
Aldrich) for 12 hours. Food mixed with water served as a control. Taking into account the
studies reported by Le Goff G (2006), and Willoughby L, (2006) [29–52], we decided to
expose adult male flies for 12 hours on an 18 mM caffeine-rich medium to obtain a trade-off
between the optimal induction of CYP genes and the lower mortality for the flies. For
each food treatment (caffeine and water), RNA was isolated from 10 fly bodies (thorax and
abdomen) using Isol RNA Lysis reagent (5Prime). All samples were prepared in triplicate
to permit statistical analysis. Probe labeling, hybridization to single color Agilent 4x44k
arrays, scanning and statistical analysis were performed by the IMAXIO company. Genes
showing a 2-fold change and a significant p-value< 0.05 were considered to be differentially
expressed. Microarray data obtained from this study can be accessed at NCBI GEO
(GSE59084).

RNA extraction and RT-qPCR
Total RNA was extracted from 10 fly bodies using Isol RNA Lysis reagent (5Prime) and treated
with RNAse-free DNAse (Euromedex) to avoid genomic DNA contamination. Total RNA
(1 μg) was reverse-transcribed using the iScript cDNA Synthesis Kit (BioRad). The qPCR reac-
tions were carried out using a MyIQ (BioRad) and the IQ SYBR Green SuperMix (BioRad).
Each reaction was performed in triplicate and all results were normalized to the tubulin and
rp-49 mRNA levels and calculated using the ΔΔCt method.

The following forward and reverse primers were used: tubulin TGTCGCGTGTGAAA-
CACTTC and AGCAGTAGAGCTCCCAGCAG; rp-49 CCCAAGGGTATCGACAACAG
and GTTCGATCCGTAACCGATGT; cyp12d1p TTAGCTTGTTCATGTGCC and
ATTTACGTGGGTCCCGTTC; cyp6a8 GGCTGAGGTGGAGGAGGT and CGATGAC-
GAAGTTTGGATGA; cyp6d5 AAGCAACTGCCTGCGAAC and CAATAATGTC-
GATGGCGTATGT. For each gene, primer efficiency was calculated: tubulin (1.90), rp-49
(2.00), cyp12d1p (1.98), cyp6a8 (1.92); cyp6d5 (2.00) [37].

Western-blot
Protein extracts were prepared from male adult flies. Equal amounts of protein were separated
on a 4–15% SDS-polyacrylamide gel (Bio-Rad) and blotted using standard procedures. The
membrane was incubated with a polyclonal anti-CYP6d5 (1/5000, Proteogenix) and a specific
antibody against Actin (1/2000, Abcam) was used for loading controls.

Caffeine Metabolism in Drosophila melanogaster
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Caffeine exposure
Four-day-old male adult flies, starved for 12 hours under humid conditions and pre-exposed
for 12 hours to a caffeine-rich medium (18 mM), were placed under humid conditions for
3 hours and transferred, without anesthesia, into a MultiCAFE device [38]. Briefly, pre-exposed
individuals were transferred into a box containing 4 capillaries filled with a red dye used for
further quantification (0.2 mg/mL sulforhodamine, Sigma-Aldrich), 100 mM sucrose (Euro-
medex) and 0.04 μM radiolabeled caffeine (8–14C, Bio trend, 3.7.103 Bq/μL). Flies were fed in
the dark for 2 hours at 27°C under high humidity (>60%).

For the metyrapone experiment (Fig. 1B), the 4 capillaries were filled with 100 mM sucrose
and 0.04 μM radiolabeled caffeine, as well as 25 mMmetyrapone (Sigma-Aldrich).

Radioactive caffeine and thin layer chromatography (TLC)
We initially performed mass spectrometry analysis to identify caffeine metabolites but faced
technical problems, including low metabolism recording and matrix effect on mass detection,
which led to a lack of reproducibility (with four attempts). If a similar experiment is never re-
ported in insects, it may be partly because xenobiotic metabolic activity can be inhibited by en-
dogenous compounds present in homogenates [40,41]. This was the reason for the
development of a radiolabeled TLC method.

Exposed flies with red-dye-colored abdomens were pooled into groups of 50, homogenized
with 150 μL of lysis buffer (Tris 0.1 M, 0.1% SDS, 20% glycerol, 10% protease inhibitor), and
centrifuged for 5 min at 16000 g. An aliquot of the supernatant (5 μL) was mixed with scintilla-
tion liquid, and the radioactivity was counted with a Tri-Carb 3110TR scintillation counter
(PerkinElmer). A similar amount of each sample, or radiolabeled caffeine alone (positive con-
trol), was directly applied to a thin layer chromatography plate (Nano-SIL NH2/UV,
Macherey-Nagel). The mobile phase used for the separation was composed of chloroform,
dichloromethane and isopropanol (v/v/v 4:2:1). After migration, the plate was autoradio-
graphed. The total amount of radiolabeled caffeine-derived metabolites was quantified by den-
sitometry and normalized to non-metabolized caffeine using ImageJ (Software, NIH, Bethesda,
MD, USA). Each experiment was conducted in triplicate for appropriate statistical analysis.

Statistical analyses
For qPCR, transcript level ratios were compared between strains using the Relative Expression
Software Tool (REST, REST-MCS beta software version 2) with 2000 iterations [39]. For the ra-
dioactivity assay, the amount of caffeine metabolites was compared between control strains
and transgenic or treated flies. Normal distribution and homoscedasticity of the variances were
checked. In two-group comparisons, Student’s t tests were performed for parametrically dis-
tributed data. When more than two groups were compared, ANOVA was performed for para-
metrically distributed data using R software.

Results

Caffeine metabolism
Drosophila melanogaster adult males fed with radiolabeled caffeine for 2 hours produced eight
caffeine-derived metabolites. These metabolites were distinctly separated by thin layer chroma-
tography (Fig. 1A-lane 2) and additionally identified based on their physical characteristics
(retention factors = RFs) compared to commercially available compounds (Fig. 1A-lane 1).
The pattern of Drosophila caffeine-derived metabolites was compared with that observed in
mammals, in which caffeine degradation generally yields four primary metabolites:

Caffeine Metabolism in Drosophila melanogaster

PLOSONE | DOI:10.1371/journal.pone.0117328 February 11, 2015 4 / 15



Fig 1. Caffeine metabolism inDrosophila melanogaster and the influence of cytochrome P450
inhibitor. A- Separation of non-radiolabeled standards of caffeine and metabolites (lane 1) with a
homogenate of wild-type four-days-old Drosophilamale flies (w1118) exposed with radiolabeled caffeine for
2 hours (lane 2) on thin layer chromatography. B- The total amount of caffeine derived metabolites was
strongly decreased in the body of male flies after exposure to caffeine mixed with metyrapone (+), as
compared to control food (-). The amounts were evaluated by densitometry which is based on the comparison
of the areas under the curve (AUC) for both metabolites and caffeine. Bars indicate the mean values
(±s.e.m.). Significant differences are indicated by asterisks (Student’s t-test *** p< 0.001; n = 3).
C- Interspecific variation for the level of major caffeine metabolites. The proportions of theobromine,
paraxanthine and theophylline and of the unidentified M2metabolite detected in fly bodies after caffeine
exposure (18mM) are indicated as the mean (±s.e.m.; n = 4). In Drosophila melanogaster, these amounts
were evaluated by measuring the relative intensity of the radiolabelled signal associated with each metabolite
after thin layer chromatography separation. The proportion of these compounds detected in Drosophila
melanogaster was compared with that reported for Rattus norvegicus andHomo sapiens [25–28].

doi:10.1371/journal.pone.0117328.g001
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theobromine, 1, 3, 7-trimethyluric acid, paraxanthine and theophylline (RFs: 0.63, 0.34, 0.21,
0.16, respectively) (Fig. 1A-lane 1).

The pattern of caffeine-derived metabolites in mammals partially overlapped with that ob-
tained in Drosophila melanogaster. Notably, theobromine, paraxanthine and theophylline
were found in both human and flies. Five additional metabolites detected remain unidentified
(M1–M5; Fig. 1A-lane 2). However, the relative amount of caffeine metabolites diverged be-
tween flies, rat and human (Fig. 1B). While the caffeine ingested by Drosophila was metabo-
lized into 42% theobromine, 20% paraxanthine, and 4% theophylline, mammals produced
much less theobromine and slightly more theophylline. Humans also produced more para-
xanthine than the two other species. The presence of the M2 metabolite (34%) in Drosophila
did not match the mammalian standard metabolite tested. Reciprocally, 1, 3, 7-trimethyluric
acid was detected in mammals, but apparently not in Drosophila.

Genes induced by caffeine exposure
Next, we screened for xenobiotic-metabolizing-enzyme genes (XMEs) induced by caffeine ex-
posure. We carried out a microarray experiment (with a Drosophila pangenomic array on flies
exposed or not exposed to caffeine). Interestingly, several genes belonging to all major classes
of detoxification enzymes, including XMEs, were among those that were the most highly in-
duced (Tables 1 and 2). Among XME genes, several CYPs were up-regulated (including
CYP12d1, CYP6a8 and CYP6d5), whereas others were down regulated (Table 1). Remarkably,
all induced CYPs were already known to be inducible by a broad range of compounds, such as
phenobarbital or the herbicide atrazine (Table 1). In a similar manner, several CYPs known to
be repressed by paraquat, a compound known to induce stress by producing reactive oxygen
species, were also down-regulated by caffeine [42] (Table 1). Our screen also found several
other major detoxification enzymes known to be regulated by different xenobiotics (Table 2).

Pharmacological and genetic silencing of CYP: effect on caffeine
metabolism
Given that the expression of several CYP genes was significantly modulated after caffeine expo-
sure, we tested the effect of metyrapone, a general CYP inhibitor [35]. Male flies fed for 2 hours
with the “caffeine + metyrapone”mixture produced much less caffeine metabolites in their
body than controls (Fig. 1C). Furthermore, we manipulated the expression of several CYP can-
didate genes by using the GAL4/UAS-RNAi binary system. In particular, a ubiquitously ex-
pressed driver (Actin-GAL4), allowed us to separately target the RNAi of three CYP candidates
(dsCYP12d1, dsCYP6a8 and dsCYP6d5) that were highly up-regulated after caffeine exposure
(Table 1). Given the simultaneous up-regulation of these three CYP genes by caffeine, we also
measured their potential interaction and coordinated regulation.

First, ubiquitous silencing of CYP6d5 strongly altered the production of two caffeine-
derived metabolites in caffeine-exposed male flies: the production of theobromine was dramat-
ically decreased, whereas M2 was significantly increased (in dsCYP6d5/Actin-GAL4). This ef-
fect was specifically due to CYP6d5 silencing because no such variation was detected in the two
transgenic controls (Actin-GAL4/+ and dsCYP6d5/+). Fig. 2A shows that the paraxanthine
and theophylline levels did not differ between the RNAi-targeted and control strains. The si-
lencing efficiency of dsCYP6d5, measured by RT-qPCR in the body of male adult flies, was
measured not only on the expression of CYP6d5 but also of CYP12d1 and CYP6a8 genes
(Fig. 2B). The mRNA level of CYP6d5 was strongly decreased (-95%) in dsCYP6d5/Actin-
GAL4 strain, whereas the expression level of two other CYPs remained unaffected. Moreover,
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the level of the CYP6D5 protein was strongly decreased in dsCYP6d5/Actin-GAL4 males com-
pared to transgenic control males as demonstrated by western blot (Fig. 2C).

The ubiquitous silencing effects of CYP12d1 and CYP6a8 on metabolism and transcription
were also similarly assessed.

Caffeine-exposed dsCYP6a8/Actin-GAL4 males produced much more theobromine, M2
and theophylline compared to transgenic controls (Actin-GAL4/+, dsCYP6a8/+; Fig. 3A). In
dsCYP6a8/Actin-GAL4 flies, the mRNA level of CYP6a8 was significantly decreased (-90%),
whereas the transcription of CYP12d1 and CYP6d5 was not affected (Fig. 3B).

dsCYP12d1/Actin-GAL4 males fed with caffeine only showed a significant decrease of the
M2 metabolite compared to controls (Actin-GAL4/+, dsCYP12d1/+; Fig. 3C). Moreover, if the
mRNA level of CYP12d1 was significantly decreased in dsCYP12d1/Actin-GAL4 males (-70%),
the expression level of CYP6a8 was strongly increased (+400%), whereas CYP6d5 expression
remained affected (Fig. 3D).

Table 1. Expression of CYP genes in Drosophila melanogaster after caffeine exposure.

Gene
name

Microarray P value Quantitative PCR P value Regulation by other compounds a

Up or down (-)
regulation

Up or down (-)
regulation

(+) up-expression or

(-) down-expression

CYP12d1-p 21.41 1.7E-3 15 1.0E-3 + (phenobarbital, atrazine, piper nigrum, piperonyl butoxide, pyrethrum,
ethanol, DDT, chlorpromazine)

CYP12d1-d 19.55 1.5E-3 15 1.0E-3

CYP6a8 13.48 3.2E-3 20.5 1.0E-3 + (phenobarbital, piper nigrum, ethanol, DDT, chlorpromazine)

CYP6d5 3.46 2.6E-3 11.8 1.0E-3 + (phenobarbital, atrazine, piper nigrum, piperonyl butoxide, paraquat,
cadmium, ethanol, zinc, rotenone)

CYP4p1 2.95 1.9E-3 2.1 1.0E-2 +(paraquat, tunicamycin, piperonyl butoxide, ethanol, cadmium, rotenone)

CYP304a1 2.85 2.9E-2 2.1 5.0E-2 +(atrazine)

CYP28a5 2.45 3.0E-3 Nd nd +(paraquat, tunicamycin, ethanol, rotenone)

CYP12a5 2.42 5.0E-3 3.5 1.0E-2 +(cadmium, ethanol, rotenone)

CYP6a9 2.39 6.3E-3 3.9 1.0E-2 +(ethanol, rotenone)

CYP6a20 2.30 5.0E-3 2.0 1.0E-2 +(cadmium, copper, paraquat)

CYP6w1 2.06 4.2E-3 Nd nd +(phenobarbital, atrazine, piper nigrum, piperonyl butoxide, cadmium,
zinc, ethanol, paraquat)

CYP313a3 -2.05 4.4E-2 Nd nd -

CYP6a18 -2.39 3.8E-3 Nd nd -(paraquat)

CYP4d8 -2.55 3.3E-3 Nd nd -

CYP316a1 -2.81 3.9E-3 Nd nd -

CYP4e1 -3.55 2.2E-3 Nd nd -(paraquat), +(tunicamycin)

CYP4d20 -4.20 2.6E-3 -2.3 1.0E-3 -(paraquat, phenobarbital)

CYP313a1 -4.29 3.6E-3 -5.3 1.0E-3 -(paraquat, phenobarbital), + (tunicamycin)

CYP4ac1 -4.95 3.5E-3 -3.5 1.0E-3 +(endosulfan)

CYP4ac2 -9.61 3.5E-3 -3.0 1.0E-3 -(paraquat)

CYP4d21 -15.43 3.5E-3 -9.8 1.0E-3 -(paraquat, phenobarbital)

Adult males were exposed to 18mM caffeine during 12 hours.
a Data extracted from the following references [42], [32], [55], [56], [57], [52], [34], [58], [59], [60] and from RNAseq experiments referenced in

modENCODE treatment expression data in Flybase (http://www.flybase.org).

doi:10.1371/journal.pone.0117328.t001
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Discussion
While the metabolism of caffeine has been extensively investigated in vertebrates, this is not
the case in invertebrates. Medical and pharmacological applications based on human caffeine
metabolism are widely available. For example, the measure of caffeine metabolites in urine pro-
vides an accurate assessment of an individual’s ability to metabolize drugs [43]. This measure
is often based on the activity of CYP1A2, one of the main human enzymes involved in caffeine
metabolism. In cases of combined ingestion of caffeine with pharmaceutical compounds, the
measurement of CYP1A2 activity allows for precise adjustment of the optimal drug amount re-
quired for each person [44,45].

Despite the multiple effects induced by caffeine in insects (genome defect, growth, meta-
morphosis, sleep, pesticide adaptation, gene regulation), CYP-related metabolism of caffeine
was previously unknown in invertebrates. We detected (on TLC) theobromine, paraxanthine

Table 2. Expression of major detoxification genes in Drosophila melanogaster after caffeine exposure.

Gene name Up (+) or down (-) regulation P value Regulation by other compounds (a)

Esterase

Alpha-Est7 -2.74 2.2E-3 Rotenone, ethanol, cadmium

Est-6 -3.00 3.1E-3 Paraquat, ethanol, heat shock, zinc

Alpha-Est2 -4.06 2.9E-3 -

Glutathione-S-transferase

GSTD6 4.05 8.4E-3 Rotenone, ethanol

GSTE1 4.04 3.3E-4 Paraquat, ethanol, heat shock, phenobarbital, cadmium

GSTD5 3.08 6.7E-3 Ethanol, cadmium

GstE12 -2.09 1.1E-4 Heat shock, cadmium, ethanol, rotenone, copper, paraquat

GSTD10 -2.40 2.3E-2 Heat shock, cadmium, ethanol, rotenone, atrazine

GSTE9 -2.46 1.8E-3 paraquat

GSTD8 -2.84 6.8E-3 -

GstZ1 -3.22 1.9E-4 copper

GSTE10 -3.74 2.2E-3 -

GstD11 -4.04 2.5E-3 -

UDP-glycosyltransferase

CG6475 2.58 1.9E-02 -

CG4302 -2.28 5.5E-04 ethanol

CG6850 -2.59 3.6E-05 -

Ugt35b -2.86 2.5E-05 -

CG17322 -2.87 1.6E-03 cadmium

CG30438 -3.34 2.4E-04 -

Ugt37b1 -3.43 2.3E-05 -

ATP-binding cassette transporter

CG8908 3.36 1.7 E-3 -

CG4562 -2.04 8.6 E-3 -

CG31792 -2.09 3.5 E-3 -

CG9664 -2.77 3.4 E-3 -

CG33970 -3.05 1.7 E-3 -

Adult males were exposed to 18mM caffeine during 12 hours.
(a) according to data available from RNAseq experiments referenced in modENCODE treatment expression data in Flybase (http://www.flybase.org), [57],

[52].

doi:10.1371/journal.pone.0117328.t002
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and theophylline, three Drosophila caffeine-derived metabolites that are also present in mam-
mals. This indicates that the substances resulting from caffeine metabolism have been partially
conserved across evolution. We were not able to relate the 1, 3, 7-trimethyluric acid (TMUA)
standard to any of the five unknown metabolites detected. Alternatively, the absence of 1, 3, 7-
TMUA in flies can also be due to a slight change of the migratory properties (on TLC) of some

Fig 2. Effect ofCYP6d5 knockdown in Drosophila caffeinemetabolism. A- The comparison of the
normalized quantities of caffeine metabolites reveals a dramatic decrease of theobromine combined with a
substantial increase of M2 in CYP6d5 silenced flies (dsCYP6d5/Actin-GAL4) compared to the two transgenic
parental controls (Actin-GAL4/+, dsCYP6d5/+). This analysis was performed by measuring the relative
intensity of the radiolabelled signal detected in the bodies of male flies of these three genotypes. Bars
represent mean values (±s.e.m). For each metabolite, the statistical differences are indicated by different
letters (ANOVA, n = 4). B- CYP genetic targeting induces specific effect on transcript levels. The comparison
of fold change expression betweenCYP12d1, CYP6a8 andCYP6d5 (measured with RT-qPCR) reveals that
onlyCYP6d5 level was affected in silencedCYP6d5males (dsCYP6d5/Actin-GAL4) (Statistical analysis by
REST, p< 0.01; n = 3). Data are given relatively to normalized expression fold variation compared to
controls. C- Comparison of expression level of CYP6D5 protein in experimental and control genotypes by
western blotting with a CYP6D5 antibody. The Actin antibody was used to provide a control measurement.

doi:10.1371/journal.pone.0117328.g002
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caffeine metabolites induced by radiolabelling [46]. This “human vs Drosophila” variation for
caffeine metabolites is not surprising, given the known inter-mammal differences. The origin
of species-specific differences may be related to the main oxidation pathways that diverges be-
tween human (3-N demethylation), monkeys (7-N demethylation) and rat, mouse and rabbit

Fig 3. Influence of CYP6a8 andCYP12d1 genetic silencing in the metabolism of caffeine and gene
expression. A and C: Comparison of normalized quantity of caffeine metabolites in males with respective
silencing of CYP6a8 andCYP12d1 genes. The relative amount of metabolites was evaluated based on the
intensity of the radiolabelled signal detected in the male bodies of experimental genotypes (dsCYP6a8/+ and
dsCYP12d1/+ combined with Actin-GAL4/+) and transgenic controls. Bars represent mean values (±s.e.m.).
For each metabolite, the statistical differences are indicated by different letters (ANOVA, n = 3). B and D:
Comparison of fold change expression of CYP12d1, CYP6a8 andCYP6d5 in dsCYP6a8/Actin-GAL4 and
dsCYP12d1/Actin-GAL4, respectively, and their transgenic controls. The quantitative variation of transcript
level was measured with RT-qPCR analysis. Data are shown as normalized expression fold variation
compared to controls. Highlighted data indicate statistical differences (p< 0.01; n = 4). For detailed methods
and statistics, please refer to legend of Fig. 2.

doi:10.1371/journal.pone.0117328.g003

Caffeine Metabolism in Drosophila melanogaster

PLOSONE | DOI:10.1371/journal.pone.0117328 February 11, 2015 10 / 15



(C-8 hydroxylation; [26]). Our data suggest that 1-N demethylation is the main Drosophila
pathway leading to the production of 42% theobromine, whereas the secondary “3-N and 7-N
demethylation” pathways lead to 20% paraxanthine and 4% theophylline, respectively.

Our pharmacological and genetic manipulation of Drosophila caffeine metabolism strongly
supports the involvement of CYPs in this process. First, caffeine metabolism was drastically re-
duced in flies treated with metyrapone, a potent pharmacological inhibitor of CYP activity
known to affect insect CYP in relation to hormone synthesis [47] and pheromone catabolism
[35,48].

Second, genetic down-regulation of the expression of three CYP candidates revealed
(i) CYP-specific effect on metabolism and (ii) CYP-CYP interactive regulation.

More precisely, genetic silencing of CYP6d5 pinpoints its key-role in the synthesis of theo-
bromine, but not in the two other identified metabolites. In contrast, CYP6a8 or CYP12d1 si-
lencing induced a reciprocal effect on the level of theobromine that increased along with other
metabolites. This indicates that CYP6d5 and the two latter enzymes act in distinct steps of the
caffeine metabolic pathway. Based on these results, we propose a hypothetical caffeine metabo-
lism pathway in Drosophila (Fig. 4). Currently, we do not know whether another CYP acts
with CYP6d5, as in humans with CYP1A2 [25]. Our genetic manipulation of the three CYPs in-
dicates a possible regulatory interaction between these genes. If the manipulation of either
CYP6d5 or CYP6a8 did not affect the expression of the two other tested enzymes, that of
CYP12d1 induced a 4-fold transcriptional increase in of CYP6a8, suggesting a potential mecha-
nism of transcriptional compensation between these two CYPs (and possibly with other CYPs
not studied here). The non-optimal efficiency of dsCYP12d1 and the transcriptional compensa-
tion between CYP12d1 and CYP6a8 do not allow us to conclude that CYP12d1 is directly impli-
cated in the metabolic transformation of caffeine into M2 metabolite.

The regulation of genes expression by xenobiotic treatments or exposure is a universal
feature of animals. Toxicity can result from genetic deregulation, either induced by the down-
regulation of detoxification enzymes and/or by the up-regulation of enzymes involved in the
bioactivation of xenobiotic compounds. Our transcriptomic screen allowed us to detect a large
set of proteins potentially involved in caffeine catabolism. This includes phase I enzymes
(CYPs), which often exhibited the highest response to the treatment, as well as phase II (GST
and UGT) and phase III (ABC transporter) proteins. Because these proteins control xenobiotic
detoxification, regulatory mechanisms may strongly enhance the kinetics of xenobiotic catabo-
lism. Moreover, Drosophila xenobiotic response can be regulated by CncC (Cap n’ collar iso-
form C), a transcription factor ortholog to Nrf2 (NF-E2-related factor 2), which is activated by
coffee [49] in humans [34]. Nine of the eleven CYP genes induced by caffeine in our study
(CYP12d1-p and -d, CYP6a8, CYP6d5, CYP4p1, CYP28a5, CYP12a5, CYP 6a20, CYP6w1) were
also up-regulated in transgenic flies over-expressing CncC [34]. Similarly, CYP6a18, CYP313a1
and CYP4d21 were down-regulated in CncC transgenic caffeine-fed flies. Furthermore, caf-
feine-induced effects depend on one binding site of CncC located in the promoter region of
CYP6a8 [34]. This strongly suggests that CncC could be a major player in the coordinated re-
sponse to caffeine.

In addition to the fundamental relevance of our study, the response of CYPs to environmen-
tal stress may also represent a reliable marker with regard to the acquisition of resistance in in-
sects repeatedly exposed to xenobiotics or to toxic compounds. One way to assess insect
adaptation (and resistance) to caffeine and to other environmentally stressful molecules may
be provided by the measure of theobromine amount (or other metabolites) after exposure to
these toxic substances. Additionally, as previously successfully demonstrated with other CYPs,
CYP6d5 RNAi silencing could be used to screen for xenobiotic resistance [31]. Furthermore,
given that CYPs are also involved in drug metabolism of vertebrates, the measurement of
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theobromine in Drosophila could offer a suitable tool for therapeutic drug discovery [50] and
provide a simple but robust marker of CYP6D5 activity. For example, CYP6d5 expression is
up-regulated by the drug phenobarbital (barbituric compound), but the involvement of this en-
zyme in drug metabolism is not completely understood [51,52]. In parallel to drug response,
CYP activity could explain the variation in response of Drosophila between mutants or natural
populations, hence the potential adaptive response of their metabolism after caffeine exposure.

We have not studied the potential effect of metabolites—in particular of theobromine—in
Drosophila because this metabolite was shown to induce a weaker effect than caffeine on mor-
tality, female fecundity, and male mating preference [54]. Similar to humans, caffeine and theo-
bromine were shown to differentially affect mood, psychomotor performance and blood
pressure [53].

In summary, using Drosophila, we (i) discovered several products derived from caffeine
metabolism, (ii) partly unrevealed the potential genetic network underlying this process,
(iii) showed similarities between insects and mammals and (iv) demonstrated a high specificity
of CYP6D5 with regard to caffeine degradation. With the current possibility to link the meta-
bolic transformation of a natural compound with the transcriptomic identity of each animal,
our study provides a useful base to design accurate bioassays for the evaluation of metabolic
ability among individuals or between populations.
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