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Hölderian weak invariance principle under Maxwell and

Woodroofe condition

Introduction and main results

Let (Ω, F , µ) be a probability space and let T : Ω → Ω be a measure-preserving bijective and bi-measurable map. Let M be a sub-σ-algebra of F such that T M ⊂ M. If f : Ω → R a measurable function, we denote S n (T, f ) := n-1 j=0 f • T j and W (n, f, T, t) := S [nt] (T, f ) + (nt -[nt])f • T [nt] .

(1.1)

We shall write S n (f ) and W (n, f, t) for simplicity, except when T is replaced by T 2 . An important problem in probability theory is the understanding of the asymptotic behavior of the process (n -1/2 W (n, f, t), t ∈ [0, 1]) n 1 . Conditions on the quantities E[S n (f ) | T M] and S n (f )-E[S n (f ) | T -n M] have been investigated. The first result in this direction was obtained by Maxwell and Woodroofe [MW00]: if f is M-measurable and

+∞ n=1 E [S n (f ) | M] 2 n 3/2 < +∞, (1.2) 
then (n -1/2 S n (f )) n 1 converges in distribution to η 2 N , where N is normally distributed and independent of η. Then Volný [Vol06] proposed a method to treat the nonadapted case. Peligrad and Utev [PU05] proved the weak invariance principle under condition (1.2). The nonadapted case was addressed in [Vol07]. Peligrad and Utev also showed that condition (1.2) is optimal among conditions on the growth of the sequence (

E [S n (f ) | M] 2 ) n 1 : if +∞ n=1 a n E [S n (f ) | M] 2 n 3/2 < ∞ (1.3)
for some sequence (a n ) n 1 converging to 0, the sequence (n -1/2 S n (f )) n 1 is not necessarily stochastically bounded (Theorem 1.2. of [PU05]). Volný constructed [START_REF]Martingale approximation and optimality of some conditions for the central limit theorem[END_REF] an example satisfying (1.3) and such that the sequence S n (f ) -1 2 S n (f ) n 1 admits two subsequences which converge weakly to two different distributions.

Let us denote by H α the space of Hölder continuous functions, that is, the functions x : [0, 1] → R such that x Hα := sup 0 s<t 1 |x(t) -x(s)| /(t -s) α + |x(0)| is finite. Since the paths of Brownian motion belong almost surely to H α for each α ∈ (0, 1/2) as well as W (n, f, •), we can investigate the weak convergence of the sequence (n -1/2 W (n, f, •)) n 1 in the the space H α , for 0 < α < 1/2. The case of i.i.d. sequences and stationary martingale difference sequences have been addressed respectively by Račkauskas and Suquet (Theorem 1 of [RS03]) and Giraudo (Theorem 2.2 of [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF]). In this note, we focus on conditions on the sequences

(E[S n (f ) | M]) n 1 and (S n (f ) -E[S n (f ) | T -n M]) n 1 . Theorem 1.1. Let p > 2 and f ∈ L p . If +∞ k=1 E[S k (f ) | M p k 3/2 < +∞, +∞ k=1 S k (f ) -E[S k (f ) | T -k M p k 3/2 < +∞, (1.4)
then the sequence n -1/2 W (n, f ) n 1 converges weakly to the process √ ηW in H 1/2-1/p , where W is the Brownian motion and the random variable η is independent of W and is given by η = lim n→+∞ E S n (f ) 2 | I /n (where I is the σ-algebra of invariant sets and the limit is in the L 1 sense).

Of course, if f is M-measurable, all the terms of the second series vanish and we only have to check the convergence of the first series.

Remark 1.2. If the sequence (f • T j ) j 0 is a martingale difference sequence with respect to the filtration (T -i M), then condition (1.4) is satisfied if and only if the function f belongs to L p , hence we recover the result of [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF]. However, if the sequence (f • T j ) j 0 is independent, (1.4) is stronger than the sufficient condition t p µ {|f | > t} → 0. This can be explained by the fact that the key maximal inequality (2.9) does not include the quadratic variance term which appears in the martingale inequality. In Remark 1 (after the proof of Theorem 1) in [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF], a version of (2.9) with this term is obtained. In our context it seems that it does not follow from an adaptation of the proof.

Remark 1.3. In [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF], the conclusion of Theorem 1.1 was obtained for an M-measurable f under the condition

∞ i=1 E f | T i M -E f | T i+1 M p < ∞, (1.5) 
which holds as soon as

+∞ k=1 E f • T k | M p k 1/p < +∞, (1.6)
while (1.4) holds as soon as

+∞ k=1 E f • T k | M p √ k < +∞. (1.7)
Therefore, (1.7) gives a better sufficient condition than (1.6) if we seek for conditions relying only on

E f • T k | M p k 1 .
However, (1.5) gives the existence of a martingale approximation in the following sense: there exists a martingale difference m ∈ L p (M) such that

W (n, f ) -W (n, m) H 1/2-1/p p,∞ = o( √ n).
(1.8) Indeed, define for an integrable function h and a non-negative integer i, P i (h

) := E h | T i M - E h | T i+1 M . If f satisfies (1.5), then we set m := i 0 P 0 U i f . Then for any K 1, the equality f -m = K i=0 P i (f ) -P 0 U i f + +∞ i=K+1 P i (f ) -P 0 U i f holds. Since K i=0 P i (f ) -P 0 U i f
may be written as (I -U )g K , where g K is such that t p µ {|g K | > t} → 0 as t goes to infinity, we get, by inequalities (2.4) and (2.5) of [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF] that

lim sup n→+∞ 1 √ n W (n, f ) -W (n, m) H 1/2-1/p p,∞ i K+1 lim sup n→+∞ 1 √ n W (n, P i (f ))) H 1/2-1/p p,∞ + W n, P 0 U i (f ) H 1/2-1/p p,∞ .
We conclude by Proposition 2.3 of [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF].

The following condition (in the spirit of Maxwell and Woodroofe's one) is sufficient for a martingale approximation in the sense of (1.8):

+∞ k=1 E[S k (f ) | M p k 1+1/p < +∞.
(1.9) Indeed, Theorem 2.3 of [CM14] gives a martingale differences sequence m • T i i 0 such that lim n→+∞ n -1/p S n (f -m) p = 0. Using Serfling arguments (see [Ser70]), we get that (1.9) implies

lim n→+∞ n -1/p max 1 i n |S i (f -m)| p = 0.
(1.10)

Note that for a function h, by Lemma A.2 of [START_REF] Markevičiūtė | Functional central limit theorems for sums of nearly nonstationary processes[END_REF],

n -1/2 W (n, h) H 1/2-1/p p,∞
2n -1/p max 1 j n |S j (f )| p,∞ , hence by (1.10), the martingale approximation (1.8) holds. Furthermore, using the construction given in [DV08,Dur09], in any ergodic dynamical system of positive entropy one can construct a function satisfying condition (1.4) but not (1.5) and vice versa.

Remark 1.4. For the ρ-mixing coefficient defined by

ρ(n) = sup Cov(X, Y )/( X 2 Y 2 ), X ∈ L 2 (σ(f • T i , i 0), Y ∈ L 2 (σ(f • T i , i n)) ,
Lemma 1 of [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF] shows that for an adapted process, condition (1.4) is satisfied if the series

∞ n=1 ρ 2/p (2 n ) converges. However, the conclusion of Theorem 1.1 holds if t p µ {|f | > t} → 0 and ∞ n=1 ρ(2 n ) converges (see Theorem 2.3, [Gir16a]), which is less restrictive.
It turns out that even in the adapted case, condition (1.4) is sharp among conditions on E[S k (f ) | M p in the following sense.

Theorem 1.5. For each sequence (a n ) n 1 converging to 0 and each real number p > 2, there exists a strictly stationary sequence (f

• T j ) j 0 and a sub-σ-algebra M such that T M ⊂ M, ∞ n=1 a n n 3/2 E[S n (f ) | M] p < ∞, (1.11) but the sequence n -1/2 W (n, f, t) n 1 is not tight in H 1/2-1/p .
Remark 1.6. Using the inequalities in [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF] in order to bound E [S n (f ) | T M] 2 , we can see that the constructed f in the proof of Theorem 1.5 satisfies the classical Maxwell and Woodroofe condition (1.2) (the fact that p is strictly greater than 2 is crucial), hence the weak invariance principle in the space of continuous functions takes place. However, it remains an open question whether condition (1.11) implies the central limit theorem or the weak invariance principle (in the space of continuous functions).

Proofs

We may observe that condition (1.4) implies by Theorem 1 of [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF] that the sequence (S n (f )/ √ n) n 1 is bounded in L p ; nevertheless the counter-example given in Theorem 2.6 of [Gir16a] shows that we cannot deduce the weak invariance principle from this.

We shall rather work with a tighness criterion. The analogue of the continuity modulus in

C[0, 1] is ω α , defined by ω α (x, δ) = sup 0<|t-s|<δ |x(t) -x(s)| |t -s| α , x : [0, 1] → R, δ ∈ (0, ]. Define H o α [0, 1] := {x ∈ H α [0, 1], lim δ→0 ω α (x, δ) = 0}.
We shall essentially work with the space H o α [0, 1] which, endowed with

• α : x → ω α (x, 1) + |x(0)|, is a separable Banach space (while H α [0, 1] is not). Since the canonical embedding ι : H o α [0, 1] → H α [0, 1] is continuous, each convergence in distribution in H o α [0, 1] also takes place in H α [0, 1].
Let us state the tighness criterion we shall use (Theorem 13 of [Suq99]).

Proposition 2.1. Let α ∈ (0, 1). A sequence of processes (ξ n ) n 1 with paths in H o α [0, 1] and such that ξ n (0) = 0 for each n is tight in H o α [0, 1] if and only if ∀ε > 0, lim δ→0 sup n→+∞ µ {ω α (ξ n , δ) > ε} = 0. (2.1)
In order to prove the weak convergence in H o α [0, 1], it suffices to prove the convergence of the finite dimensional distributions and establish tighness in this space.

A maximal inequality. For p > 2, we define

h p,∞ := sup A∈F µ(A)>0 1 µ(A) 1-1/p E[|h| 1 A ]. (2.2)
This norm is linked to the tail function of h by the following inequalities (see Exercice 1.1.12 p. 13 in [Gra14]):

sup t>0 t p µ {|h| > t} 1/p h p,∞ p p -1 sup t>0 t p µ {|h| > t} 1/p . (2.3)
As a consequence, if N is an integer and h 1 , . . . , h n are functions, then max

1 j N |h j | p,∞ p p -1 N 1/p max 1 j N |h j | p,∞ .
(2.4)

For a positive n 1, a function f : Ω → R and a measure-preserving map T , we define

M (n, f, T ) := max 0 i<j n |S j (T, f ) -S i (T, f )| (j -i) 1/2-1/p . (2.5) By Lemma A.2 of [MSR12]
, the Hölderian norm of a polygonal line is reached at two vertices, hence

M (n, f, T ) = n 1/2-1/p W (n, f, T, •) H 1/2-1/p (2.6) Applying Proposition 2.3 of [Gir16b],
we can find for each p > 2 a constant C p depending only on p such that if (m • T i ) i 1 is a martingale difference sequence, then for each n,

1 √ n W (n, m, T, •) H 1/2-1/p p,∞ C p m p .
(2.7)

In the sequel, fix such a constant C p that we shall choose greater than 6 • 2 1/p p/(p -1). We denote by U the Koopman operator associated with T , that is, for each f : Ω → R and each

ω ∈ Ω, (U f )(ω) = f (T ω).
Definition 2.2. Let H be a closed subspace of L p . Let P be a linear operator from H to itself.

We say that (H, P ) satisfies condition (C) if (1) the inclusion U -1 H ⊂ H holds (respectively the inclusion U H ⊂ H holds);

(2) P is power bounded on H, that is, for each h ∈ H,

K(P ) := sup n 1 sup h∈H\{0} P n h p h p < +∞ ;
(2.8)

(3) if h ∈ H is such that P h = 0, then the sequence (h • T i ) i 0 is a martingale difference sequence with respect to the filtration T -i M i 0 (respectively

T -i-1 M i 0 ); (4) P U -1 f = f for each f ∈ H (respectively P U f = f for each f ∈ H).
Let us give two examples of subspace H and operator P satisfying condition (C).

(1) Let H be the subspace of L p which consists of M-measurable functions and

P h := E [U h | M].
Then (H, P ) satisfies condition (C).

(2) Let H be the subspace of L p which consists of functions h such that E [h | M] = 0 and

P h := U -1 h -E U -1 h | M . Then (H, P ) satisfies condition (C).
The goal of this subsection is to establish the following maximal inequality.

Proposition 2.3. Let T : Ω → Ω be a bijective and bi-measurable measure-preserving map.

Let H be a closed subspace of L p . Let r be a positive integer. For each , operator P from H to itself such that (H, P ) satisfies condition (C), each f ∈ H and each integer n satisfying

2 r-1 n < 2 r , M (n, f, T ) p,∞ C p n 1/p   (1 + K (P )) f p + K p r-1 j=0 2 -j/2 2 j -1 i=0 P i f p   , (2.9)
where

K p = 2 1/p-1/2 + 2 1/2 (1 + K(P )).
If H is a closed subspace of L p and P : H → H an operator such that (H, P ) satisfies condition (C), we define for f ∈ H the quantity (2.11)

f MW(p,P ) := +∞ j=0 2 -j/2 2 j -1 i=0 P i f p (2.
Note that MW(p, P ) endowed with • MW(p,P ) is a Banach space. Combining Proposition 2.3 and (2.6), we derive the following bound for the Hölderian norm of the partial sum process.

Corollary 2.4. Let H be a closed subspace of L p and let P be an operator from H to itself such that (H, P ) satisfies the condition (C). Then there exists a constant C = C(p, P ) such that for each n, and each h ∈ H,

1 √ n W (n, h) H 1/2-1/p p,∞ C h MW(p,P ) (2.12)
The proof of Proposition 2.3 is in the same spirit as the proof of Theorem 1 of [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF], which is done by dyadic induction. To do so, we start from the following lemma: Lemma 2.5. For each positive integer n, each function h : Ω → R and each measure-preserving map T : Ω → Ω, the following inequality holds:

M (n, h, T ) 6 max 0 k n h • T k + 1 2 1/2-1/p M n 2 , h + h • T, T 2 .
(2.13)

Proof. First, notice that if 1 j n, then j = 2 j 2 or j = 2 j 2 + 1, hence

S j (h) -S 2[ j 2 ] (h) max 0 k n h • T k . (2.14) Similarly, we have S i (h) -S 2[ i+2 2 ] (h) 2 max 0 k n h • T k . (2.15) It thus follows that M (n, h, T ) 4 max 0 k n h • T k + max 0 i<j n S 2[ j 2 ] (h) -S 2[ i+2 2 ] (h) (j -i) 1/2-1/p . (2.16)
Notice that if j i + 4, then

1 j 2 - i + 2 2 j -i 2 ,
(2.17) and we derive the bound max

0 i<j n S 2[ j 2 ] (h) -S 2[ i+2 2 ] (h) (j -i) 1/2-1/p 1 2 1/2-1/p max 0 u<v [ n 2 ] S v (T 2 , h + h • T ) -S u (T 2 , h + h • T ) (v -u) 1/2-1/p + + max 0 i<j n j i+4 S 2[ j 2 ] (h) -S 2[ i+2 2 ] (h) .
Since for j i + 4, the number of terms of the form h

• T q involved in S 2[ j 2 ] (h) -S 2[ i+2 2 ] (h) is at most 2, we conclude that max 0 i<j n S 2[ j 2 ] (h) -S 2[ i+2 2 ] (h) (j -i) 1/2-1/p 1 2 1/2-1/p M n 2 , h + h • T, T 2 + + 2 max 0 k n h • T k .
Combining this inequality with (2.16), we obtain (2.13), which concludes the proof of Lemma 2.5. Now, we establish inequality (2.9) by induction on r.

Proof of Proposition 2.3. We first assume that P U -1 = Id and U -1 H ⊂ H. We check the case r = 1. Then necessarily n = 1 and the expression M (n, f, t) reduces to f . Since C p and K p are greater than 1, the result is a simple consequence of the triangle inequality applied to f -U -1 P f and U -1 P f . Now, assume that Proposition 2.3 holds for some r and let us show that it takes place for r + 1. We thus consider an integer n such that 2 r n < 2 r+1 , a function f ∈ H, a measurepreserving map T : Ω → Ω bijective and bi-measurable, and a sub-σ-algebra M satisfying T M ⊂ M, a closed subspace H of L 2 such that U -1 H ⊂ H and an operator P : H → H such that (H, P ) satisfies condition (C) with P U -1 = Id and we have to show that (2.9) holds with r + 1 instead of r. First, using inequality M (n, f ) M (n, f -U -1 P f ) + M (n, U -1 P f ) and Lemma 2.5 with h := U -1 P f , we derive

M (n, f, T ) M n, f -U -1 P f, T + 6 max 0 k n U -1 P f • T k + + 1 2 1/2-1/p M n 2 , (I + U )U -1 P f, T 2 , (2.18)
hence taking the norm • p,∞ , we obtain by (2.4) that

M (n, f, T ) p,∞ M (n, f -U -1 P f, T ) p,∞ + 6(n + 1) 1/p p p -1 U -1 P f p + + 1 2 1/2-1/p M n 2 , (I + U )U -1 P f, T 2 p,∞ . (2.19)
By inequality (2.7) and accounting the fact that 6 • (n + 1) 1/p p/(p -1) C p n 1/p , we obtain

M (n, f, T ) p,∞ C p n 1/p f -U -1 P f p + C p n 1/p P f p + + 1 2 1/2-1/p M n 2 , (I + U )U -1 P f, T 2 p,∞ . (2.20) Since 2 r-1
[n/2] < 2 r , we may apply the induction hypothesis to the integer [n/2], the function h := (I + U -1 )P f , T 2 instead of T and P 2 instead of P . This gives

n 2 -1/p M n 2 , h, T 2 p,∞ C p 1 + K P 2 h p + + C p K p r-1 j=0 2 -j/2 2 j -1 i=0 P 2i I + U -1 P f p , (2.21)
where K p = 2 1/p-1/2 + 2 1/2 1 + K(P 2 ) . Notice that h p 2 P f p , and by item 4 of Definition 2.2, it follows that

2 j -1 i=0 P 2i I + U -1 P f = 2 j -1 i=0 P 2i+1 f + P 2i f = 2 j+1 -1 i=0 P i f.
(2.22)

Accounting the inequality K P 2 K (P ) and K p K p , we have

n 2 -1/p M n 2 , h, T 2 p,∞ 2 (1 + K (P )) C p P f p + C p K p r-1 j=0 2 -j/2 2 j+1 -1 i=0 P i f p = 2 (1 + K (P )) C p P f p + 2 1/2 C p K p r j=1 2 -j/2 2 j -1 i=0 P i f p and we infer M n 2 , h, T 2 p,∞ n 2 1/p 2 (1 + K (P )) -K p √ 2) C p P f p + n 1/p 2 1/2-1/p C p K p r j=0 2 -j/2 2 j -1 i=0 P i f p . (2.23)
Pluggling this into (2.20), we derive

M (n, f, T ) p,∞ C p n 1/p (1 + K (P )) f p + n 1/p C p K p r j=0 2 -j/2 2 j -1 i=0 P i f p + + C p n 1/p 1 + 2 1-1/p (1 + K(P )) -2 1/2-1/p K p P f p . (2.24)
The definition of K p implies that 2 1/p-1/2 -√ 2(1 + K(P )) -K p = 0, hence (2.9) is established. This concludes the proof of Proposition 2.3 in the case P U -1 = Id.

When P U = Id and U H ⊂ H we do the same proof, but replacing each occurrence of U -1 by U . This ends the proof of Proposition 2.3. 2.2. Proof of Theorem 1.1. Since the convergence of the finite dimensional distributions is contained in the main result of [Vol07], the only difficulty in proving Theorem 1.1 is to establish tightness. To this aim, we shall proceed as in the proof of Theorem 5.3 in [START_REF] Cuny | Limit theorems under the Maxwell-Woodroofe condition in Banach spaces[END_REF].

Proposition 2.6. Let T be a measure preserving map, H a closed subspace of L p (p > 2) and let P be an operator from H to itself such that (H, P ) satisfies condition (C). Assume that h is an element of H such that h MW(p,P ) < +∞ Then the sequence (n

-1/2 W (n, h)) n 1 is tight in H 1/2-1/p . Proof. Let us define V n := n-1 i=0 P i . Using V n V k p K(P ) min k V n p , n V k p , we
derive that for each f ∈ MW(p, P ),

V 2 n f MW(p,P ) 2 n K(P )    V 2 n f p 2 n/2 + k n+1 V 2 k f p 2 k/2    (2.25)
which goes to 0 as n goes to infinity. If m 1 is an integer and if n is such that

2 n m < 2 n+1 , then V m f MW(p,P ) m K(P ) m n k=0 V 2 k f MW(p,P ) K(P ) m n k=0 2 k ε k , (2.26)
where (ε k ) k 1 is a sequence converging to 0. This entails that the operator P is mean-ergodic on MW(p, P ). Furthermore, since P has no non trivial fixed points on the Banach space MW(p, P ), • MW(p,P ) , we derive by Theorem 1.3 p.73 of [Kre85] that the subspace (I -P )MW(p, P ) is dense in MW(p, P ) for the topology induced by the norm • MW(p,P ) .

Let h ∈ H be such that h MW(p,P ) < +∞ and x > 0. We can find f ∈ (I -P )MW(p, P ) such that h -f MW(p,P ) < x. Consequently, using Corollary 2.4, we derive that for each positive ε and δ,

µ ω 1/2-1/p 1 √ n W (n, h), δ > 2ε ε -p x + µ ω 1/2-1/p 1 √ n W (n, f ), δ > ε . (2.27)
Now, since the function f belongs to (I -P )MW(p, P ), we can find

f ′ ∈ MW(p, P ) such that f = f ′ -P f ′ . If P U -1 = Id, then we write f = f ′ -U -1 P f ′ + (U -1 -I)f ′ and if P U = Id, then f = f ′ -U P f ′ + (U -I)f ′ .
In other words, f admits a martingale-coboundary decomposition in L p (since f ′ belongs to L p ). Consequently, by Corollary 2.5 of [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF], the sequence (n -1/2 W (n, f )) n 1 is tight in H 1/2-1/p . By Proposition 2.1 and (2.27), we derive that for each positive ε and x,

lim δ→0 lim sup n→+∞ µ ω 1/2-1/p 1 √ n W (n, h), δ > 2ε ε -p x.
(2.28)

Since x is arbitrary we conclude the proof of (2.6) by using again Proposition 2.1.

Proof of Theorem 1.1.

Writing f = E [f | M] + f -E [f | M],
the proof reduces (as mentioned in the begining of the section) to establish tightness in

H o 1/2-1/p [0, 1] of the sequences (W n ) n 1 := n -1/2 W (n, E [f | M]) n 1 and (W ′ n ) n 1 := n -1/2 W (n, f -E [f | M]) n 1 . • Tightness of (W n ) n 1 . We define P (f ) := E [U f | M] and H := {f ∈ L p , f is M-measurable} .
(2.29)

Then (H, P ) satisfies condition (C). Since

n-1 i=0 P i (E [f | M]) = E [S n (f ) | M] ,
(2.30) the convergence of the first series in (1.4) is equivalent to f ∈ MW(p, P ) (by Lemma 2.7 of [PU05]). By Proposition 2.6, we derive that the sequence (

W n ) n 1 is tight in H o 1/2-1/p [0, 1]. • Tightness of (W ′ n ) n 1 . We define P (f ) := U -1 f -E U -1 f | M and H := {f ∈ L p , E [f | M] = 0} .
(2.31)

Since for each f ∈ H and each k 1, P k f p 2 f p , (H, P ) satisfies condition (C) (see the proof of Proposition 2 in [Vol07] for the other conditions). Since

P (E [f | M]) = 0, we have n i=1 P i (f -E [f | M]) = n i=1 P i f = U -n S n (f ) -E S n (f ) | T -n M , (2.32)
hence the convergence of the second series in (1.4) implies that f belongs to MW(p, P ) (by Lemma 37 of [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF]). By Proposition 2.6, we derive that the sequence (W

′ n ) n 1 is tight in H o 1/2-1/p [0, 1]
. This ends the proof of Theorem 1.1. 2.3. Proof of Theorem 1.5. We take a similar construction as in the proof of Proposition 1 of [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF]. We consider a non-negative sequence (a n ) n 1 , and a sequence (u k ) k 1 of real numbers such that

u 1 = 1, u 2 = 2, u p/2+1 k + 1 < u k+1 for k 3 and a t k -2 for t u k .
(2.33)

Notice that since p > 2, the conditions (2.33) are more restrictive than that of the proof of Proposition 1 of [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF]. If i = u j for some j 1, then we define p i := cj/u 1+p/2 j and p i = 0 otherwise. Let (Y k ) k 0 be a discrete time Markov chain with the state space Z + and transition matrix given by p k,k-1 = 1 for k 1 and p 0,j-1 := p j , j 1. We shall also consider a random variable τ which takes its values among non-negative integers, and whose distribution is given by µ(τ = j) = p j . Then the stationary distribution exists and is given by

π j = π 0 ∞ i=j+1 p i , j 1, where π 0 = 1/E[τ ].
(2.34)

We start from the stationary distribution (π j ) j 0 and we take g(x) := 1 x=0 -π 0 , where π 0 = µ {Y 0 = 0}. We then define f • T j = X j := g(Y j ).

It is already checked in [PUW07] that the sequence (X j ) j 0 satisfies (1.11), where M = σ(X k , k j) and S n = n j=1 X j . To conclude the proof, it remains to check that the sequence n -1/2 W (n, f, T ) n 1 is not tight in H o 1/2-1/p , which will be done by disproving (2.1) for a particular choice of ε. To this aim, we define

T 0 = 0, T k = min {t > T k-1 | Y t = 0} , τ k = T k -T k-1 , k 1.
(2.35)

Then (τ k ) k 1 is an independent sequence and each τ k is distributed as τ and

S T k = k j=1 (1 -π 0 τ j ) = k -π 0 T k . (2.36)
Let us fix some integer K greater than E[τ ]. Let δ ∈ (0, 1) be fixed and n an integer such that 1/n < δ. Then the inequality

1 (nK) 1/p max 0 i<j nK j-i nδ |S j -S i | (j -i) 1/2-1/p 1 (nK) 1/p 1 {T n Kn} × × max 1 k n S T k -S T k-1 (T k -T k-1 ) 1/2-1/p 1 {|T k -T k-1 | nδ} (2.37)
takes place. By (2.35) and (2.36), this can be rewritten as Since τ 1 almost surely, the following inclusions take place for n > (2/π 0 ) p :

1 (nK) 1/p max 0 i<j nK j-i nδ |S j -S i | (j -i) 1/2-1/p 1 (nK) 1/p 1 {T n Kn} × × max 1 k n |1 -π 0 τ k | τ 1/2-1/p k 1 {τ k nδ} .
A n (π 0 /(2K 1/p )) ⊃ π 0 τ 1/2+1/p -τ -1/2+1/p π 0 /(2K 1/p )(Kn) 1/p ∩ {τ nδ} ⊃ τ 1/2+1/p 1 + π 0 n 1/p /2 π 0 ∩ {τ nδ} ⊃ τ 1/2+1/p n 1/p ∩ {τ nδ} = n 2/(p+2) τ nδ .

Consequently, for j large enough, we deduce that the last term of (2.44) is equal to 1. Since 1 (nK) 1/p max 0 i<j nK j-i nδ

µ
|S j -S i | (j -i) 1/2-1/p ω 1/2-1/p 1 √ nK W (nK, f ), δ , (2.46)
we derive that (2.1) does not hold with ε = π 0 /(2K 1/p ). This finishes the proof of Theorem 1.5.

  10) and the vector space MW(p, P ) := f ∈ H | f MW(p,P ) < +∞ .
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 1 (2.38) Defining for a fixed C the eventA n (C) := |1 -π 0 τ | τ 1/2-1/p C(Kn) 1/p ∩ {τ nδ} , (2.39)we obtain by independence of (τ k ) 1/p max0 i<j nK j-i nδ |S j -S i | (j -i) 1/2-1/p C    1 -(1 -µ(A n (C))) n -µ {T n > Kn} . (2.40)By the law of large numbers, we obtain, accountingK > E[τ ](1 -µ(A n (C))) n . (2.41)We choose C := π 0 /(2K 1/p ). Considering the integers n of the form u 1/p max 0 i<j nK j-i nδ |S j -S i | (j -i) 1/2-1/p

  |S j -S i | (j -i) 1/2-1/p 1 -µ {τ = u j })

  A u (p+2)/2Since τ takes only integer values among u l 's and u

								(p+2)/2 j	δ < u j+1 (by (2.33) and the fact
	that δ < 1), we obtain in view of (2.42), that			
	lim sup n→∞	µ	  	1 (nK) 1/p max 0 i<j nK j-i nδ					
				j	π 0 2K 1/p	µ u	(p+2)/2 j	2/(p+2)	τ	u	(p+2)/2 j	δ .	(2.43)
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