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HÖLDERIAN WEAK INVARIANCE PRINCIPLE UNDER MAXWELL

AND WOODROOFE CONDITION

DAVIDE GIRAUDO

Abstract. We investigate the weak invariance principle in Hölder spaces under some rein-

forcement of the Maxwell and Woodroofe condition.

1. Introduction and main results

Let (Ω, F , µ) be a probability space and let T : Ω → Ω be a measure-preserving bijective and

bi-measurable function. Let M be a sub-σ-algebra of F such that T M ⊂ M. If θ is a measure

preserving operator and f : Ω → R a measurable function, we denote Sn(θ, f) :=
∑n−1

j=0 f ◦ θj

and

W (n, f, θ, t) := S[nt](f) + (nt − [nt])f ◦ θ[nt]. (1.1)

When θ = T we shall often write Sn(f) and W (n, f, t). We denote M∞ the σ-algebra generated

by
⋃

i∈Z
T iM and M−∞ :=

⋂

i∈Z
T iM. We say that the function f ∈ L

1 is regular if f is

M∞-measurable and E[f | M−∞] = 0.

An important problem in probability theory is the understanding of the asymptotic behavior

of the process (n−1/2W (n, f, t), t ∈ [0, 1])n>1. Conditions on the quantities E[Sn(f) | T M] and

Sn(f)−E[Sn(f) | T −nM] have been investigated. The first result in this direction was obtained

by Maxwell and Woodroofe [MW00]: if f is regular, M measurable and

+∞
∑

n=1

‖E [Sn(f) | T M]‖2

n3/2
< ∞, (1.2)

then (n−1/2Sn(f))n>1 converges in distribution to η2N , where N is normally distributed and

independent of η. Then Volný [Vol06] proposed a method to treat the nonadapted case.

Peligrad and Utev [PU05] proved the weak invariance principle under condition (1.2). The

nonadapted case was addressed in [Vol07]. Peligrad and Utev also showed that condition (1.2)

is optimal among conditions on the growth of the sequence (‖Sn(f) | T M‖2)n>1: if

+∞
∑

n=1

an
‖E [Sn(f) | T M]‖2

n3/2
< ∞ (1.3)

for some sequence (an)n>1 converging to 0, the sequence (n−1/2Sn(f))n>1 is not necessarily

stochastically bounded (Theorem 1.2. of [PU05]). Volný constructed [Vol10] an example

satisfying (1.3) and such that the sequence
(

‖Sn(f)‖−1
2 Sn(f)

)

n>1
admits two subsequences

which converge weakly to two different distributions.
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Let us denote by Hα the space of Hölder continuous functions, that is, the functions

x : [0, 1] → R such that ‖x‖Hα
:= sup06s<t61 |x(t) − x(s)| /(t − s)α + |x(0)| is finite. Since

the paths of Brownian motion belong almost surely to Hα for each α ∈ (0, 1/2) as well as

W (n, f, ·), we can investigate the weak convergence of the sequence (n−1/2W (n, f, ·))n>1 in

the the space Hα, for 0 < α < 1/2. The case of i.i.d. sequences and stationary martingale

difference sequences have been adressed respectively by Račkauskas and Suquet (Theorem 1

of [RS03]) and Giraudo (Theorem 2.2 of [Gir15]). In this note, we focus conditions on the

sequences (E[Sn(f) | T M])n>1 and (Sn(f) − E[Sn(f) | T −nM])n>1.

Theorem 1.1. Let p > 2 and f ∈ L
p be a regular function. If

∞
∑

k=1

‖E[Sk(f) | T M‖p

k3/2
< ∞,

∞
∑

k=1

∥

∥Sk(f) − E[Sk(f) | T −kM
∥

∥

p

k3/2
< ∞, (1.4)

then the sequence
(

n−1/2W (n, f)
)

n>1
converges weakly to the process η2W in H1/2−1/p, where

W is the Brownian motion and the random variable η is independent of W .

The expression of η is given in Theorem 1 of [MTK08]. Of course, if f is M-measurable,

all the terms of the second series vanish and we only have to check the convergence of the first

series.

Remark 1.2. If the sequence (f ◦T j)j>0 is a martingale difference sequence with respect to the

filtration (T −iM), then condition (1.4) is satisfied if and only if the function f belongs to L
p,

hence we recover the result of [Gir15]. However, if the sequence (f ◦ T j)j>0 is independent,

(1.4) is stronger than the sufficient condition tpµ {|f | > t} → 0. This can be explained by the

fact that the key maximal inequality (2.7) does not include the quadratic variance term which

appears in the martingale inequality. In Remark 1 after Theorem 1 in [PUW07], a version

of (2.7) with this term is obtained. In our context it seems that it does not follow from an

adaptation of the proof.

Remark 1.3. In [Gir15], the conclusion of Theorem 1.1 was obtained under the condition

∞
∑

i=1

∥

∥E
[

f | T iM
]

− E
[

f | T i+1M
]∥

∥

p
< ∞. (1.5)

Using the contruction given in [DV08,Dur09], in any ergodic dynamic system of positive entropy

one can construct a function satisfying condition (1.4) but not (1.5) and vice versa.

Remark 1.4. For the ρ-mixing coefficient defined by

ρ(n) = sup
{

Cov(X, Y )/(‖X‖2 ‖Y ‖2), X ∈ L
2(σ(f ◦ T i, i 6 0), Y ∈ L

2(σ(f ◦ T i, i > n))
}

,

Lemma 1 of [PUW07] shows that for an adapted process, condition (1.4) is satisfied if
∑∞

n=1 ρ2/p(2n)

converges. However, the conclusion of Theorem 1.1 holds if tpµ {|f | > t} → 0 and
∑∞

n=1 ρ(2n)

converges (see Theorem 2.3, [Gir14]), which is less restrictive.

It turns out that even in the adapted case, condition (1.4) is sharp among conditions on

‖E[Sk(f) | T M‖p in the following sense.
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Theorem 1.5. For each sequence (an)n>1 converging to 0 and each real number p > 2, there

exists a strictly stationary sequence (f ◦ T j)j>0 and a sub-σ-algebra M such that T M ⊂ M,

∞
∑

n=1

an

n3/2
‖E[Sn(f) | T M]‖p < ∞, (1.6)

but the sequence
(

n−1/2W (n, f, t)
)

n>1
is not tight in H1/2−1/p.

Remark 1.6. Using the inequalities in [PUW07] in order to bound ‖E [Sn(f) | T M]‖2, we can

see that the constructed f in the proof of Theorem 1.5 satisfies the classical Maxwell and

Woodroofe condition (1.2) (the fact that p is strictly greater than 2 is crucial), hence the weak

invariance principle in the space of continuous functions takes place.

However, it remains an open question whether condition (1.6) implies the central limit

theorem or the weak invariance principle (in the space of continuous functions).

2. Proofs

The proof of Theorem 1.1 will follow the same strategy as in [PU05]. We start by the adapted

case. We want to approximate the partial sum process (n−1/2W (n, f))n>1 by a similar process

associated to a stationary martingale difference. The approximating martingale is the same

as in Section 2.4 of [PU05], and we have to check that it approximates (n−1/2W (n, f))n>1 in

the sense of the topology of H1/2−1/p. To this aim, we establish a maximal inequality which

allows to control the L
p,∞-norm of the Hölderian norm of the function t 7→ W (n, f, T ). We

then exploit ideas of [KV07] to address the non-adapted case.

Notice that condition (1.4) implies by Theorem 1 of [PUW07] that the sequence (n−1/2Sn(f))n>1

is bounded in L
p, nevertheless the counter-example given in Theorem 2.5 of [Gir14] shows that

we cannot deduce the weak invariance principle from this.

2.1. A maximal inequality. For p > 2, we define

‖h‖p,∞ := sup
A∈F

µ(A)>0

1

µ(A)1−1/p
E[|h| 1A]. (2.1)

This norm is linked to the tail function of h by the following inequalities:

(

sup
t>0

tpµ {|h| > t}
)1/p

6 ‖h‖p,∞ 6
p

p − 1

(

sup
t>0

tpµ {|h| > t}
)1/p

. (2.2)

As a consequence, if N is an integer and h1, . . . , hn are functions, then
∥

∥

∥

∥

max
16j6N

|hj|
∥

∥

∥

∥

p,∞

6
p

p − 1
N1/p max

16j6N
‖|hj |‖p,∞ . (2.3)

For a positive n > 1, a function f : Ω → R and a measure-preserving map θ, we define

M(n, f, θ) := max
06i<j6n

|Sj(θ, f) − Si(θ, f)|
(j − i)1/2−1/p

. (2.4)

By Lemma A.2 of [MSR12], the Hölderian norm of polygonal line is reached at two vertices,

hence

M(n, f, θ) = n1/2−1/p ‖W (n, f, θ, ·)‖H1/2−1/p
(2.5)
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Applying Proposition 2.3 of [Gir15], we can find for each p > 2 a constant Cp depending

only on p such that if (m ◦ T i)i>1 is a martingale difference sequence, then for each n,

‖M(n, m, T )‖p,∞ 6 Cpn1/p ‖m‖p . (2.6)

In the sequel, fix such a constant Cp and define Kp := 4 + 21/p.

The goal of this subsection is to establish the following maximal inequality.

Proposition 2.1. Let r be a positive integer. For each measure-preserving map T : Ω → Ω

bijective and bi-measurable, each sub-σ-algebra M satisfying T M ⊂ M, each M-measurable

function f : Ω → R and each integer n satisfying 2r−1 6 n < 2r,

‖M(n, f, T )‖p,∞ 6 Cpn1/p



‖f − E [f | T M]‖p + Kp

r−1
∑

j=0

2−j/2 ‖E [S2j (f) | T M]‖p



 . (2.7)

The proof is in the same spirit as the proof of Theorem 1 of [PUW07], which is done by

dyadic induction. To do so, we start from the following lemma:

Lemma 2.2. For each positive integer n, each function h : Ω → R and each measure-preserving

map T : Ω → Ω, the following inequality holds:

M(n, h, T ) 6 6 max
06k6n

∣

∣h ◦ T k
∣

∣+
1

21/2−1/p
M
([n

2

]

, h + h ◦ T, T 2
)

. (2.8)

Proof. First, notice that if 1 6 j 6 n, then j = 2
[

j
2

]

or j = 2
[

j
2

]

+ 1, hence

∣

∣

∣Sj(h) − S2[ j
2 ](h)

∣

∣

∣ 6 max
06k6n

∣

∣h ◦ T k
∣

∣ . (2.9)

Similarly, we have
∣

∣

∣
Si(h) − S2[ i+2

2 ](h)
∣

∣

∣
6 2 max

06k6n

∣

∣h ◦ T k
∣

∣ . (2.10)

It thus follows that

M(n, h, T ) 6 4 max
06k6n

∣

∣h ◦ T k
∣

∣+ max
06i<j6n

∣

∣

∣S2[ j
2 ](h) − S2[ i+2

2 ](h)
∣

∣

∣

(j − i)1/2−1/p
. (2.11)

Notice that if j > i + 4, then

1 6

[

j

2

]

−
[

i + 2

2

]

6
j − i

2
, (2.12)

and we derive the bound

max
06i<j6n

∣

∣

∣S2[ j
2 ](h) − S2[ i+2

2 ](h)
∣

∣

∣

(j − i)1/2−1/p
6

1

21/2−1/p
max

06u<v6[ n
2 ]

∣

∣Sv(T 2, h + h ◦ T ) − Su(T 2, h + h ◦ T )
∣

∣

(v − u)1/2−1/p
+

+ max
06i<j6n

j6i+4

∣

∣

∣S2[ j
2 ](h) − S2[ i+2

2 ](h)
∣

∣

∣ .
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Since for j 6 i + 4, the number of terms of the form h ◦ T q involved in S2[ j
2 ](h) − S2[ i+2

2 ](h) is

at most 2, we conclude that

max
06i<j6n

∣

∣

∣S2[ j
2 ](h) − S2[ i+2

2 ](h)
∣

∣

∣

(j − i)1/2−1/p
6

1

21/2−1/p
M
([n

2

]

, h + h ◦ T, T 2
)

+

+ 2 max
06k6n

∣

∣h ◦ T k
∣

∣ .

Combining this inequality with (2.11), we obtain (2.8), which concludes the proof of Lemma 2.2.

�

Now, we establish inequality (2.7) by induction on r.

Proof of Proposition 2.1. We check the case r = 1. Then necessarily n = 1 and the expression

M(n, f, t) reduces to f . Since Cp and Kp are greater than 1, the result is a simple consequence

of the triangle inequality applied to f − E [f | T M] and E [f | T M].

Now, assume that Proposition 2.1 holds for some r and let us show that it takes place for

r + 1. We thus consider an integer n such that 2r 6 n < 2r+1, a function f : Ω → R, for

each measure-preserving map T : Ω → Ω bijective and bi-measurable, and a sub-σ-algebra M
satisfying T M ⊂ M and we have to show that (2.7) holds with r + 1 instead of r. First,

using inequality M(n, f, t) 6 M(n, f − E[f | T M]) + M(n,E[f | T M]) and Lemma 2.2 with

h := E [f | T M], we derive

M(n, f, T ) 6 M (n, f − E [f | T M] , T ) + 6 max
06k6n

∣

∣E [f | T M] ◦ T k
∣

∣+

+
1

21/2−1/p
M
([n

2

]

,E [f | T M] + E [f | T M] ◦ T, T 2
)

, (2.13)

hence taking the norm ‖·‖p,∞, we obtain by (2.2) that

‖M(n, f, T )‖p,∞ 6 ‖M(n, f − E [f | T M] , T )‖p,∞ + 6(n + 1)1/p p

p − 1
‖E [f | T M]‖p +

+
1

21/2−1/p

∥

∥

∥M
([n

2

]

,E [f | T M] + E [f | T M] ◦ T, T 2
)∥

∥

∥

p,∞
. (2.14)

By inequality (2.6) and accounting the fact that 6 · (n + 1)1/pp/(p − 1) 6 Cpn1/p, we obtain

‖M(n, f, T )‖p,∞ 6 Cpn1/p ‖f − E [f | T M]‖p + Cpn1/p ‖E [f | T M]‖p +

+
1

21/2−1/p

∥

∥

∥M
([n

2

]

,E [f | T M] + E [f | T M] ◦ T, T 2
)∥

∥

∥

p,∞
. (2.15)

Since 2r−1 6 [n/2] < 2r, we may apply the induction hypothesis to the integer [n/2], the

function h := E [f | T M]+E [f | T M] ◦ T , the operator T 2 and the σ-algebra T M. This gives

[n

2

]−1/p ∥
∥

∥M
([n

2

]

, h, T 2
)∥

∥

∥

p,∞
6 Cp

∥

∥h − E
[

h | T 3M
]∥

∥

p
+

+ CpKp

r−1
∑

j=0

2−j/2
∥

∥E
[

S2j (T 2, h) | T 3M
]∥

∥

p
. (2.16)
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Notice that
∥

∥h − E
[

h | T 3M
]∥

∥

p
6 2 ‖h‖p 6 4 ‖E[f | T M]‖p, and that S2j (T 2, h) = S2j+1 (E[f |

T M]), hence using the fact that T 3M ⊂ T M, we derive

[n

2

]−1/p ∥
∥

∥M
([n

2

]

, h, T 2
)∥

∥

∥

p,∞
6 4Cp ‖E[f | T M]‖p +

+ CpKp

r−1
∑

j=0

2−j/2 ‖E [S2j+1 (T,E[f | T M]) | T M]‖p

= 4Cp ‖E[f | T M]‖p

+ 21/2CpKp

r
∑

j=1

2−j/2 ‖E [S2j (T,E[f | T M]) | T M]‖p

and we infer

∥

∥

∥M
([n

2

]

, h, T 2
)∥

∥

∥

p,∞
6

(n

2

)1/p

(4 − Kp)Cp ‖E[f | T M]‖p

+ n1/p21/2−1/pCpK
r
∑

j=0

2−j/2 ‖E [S2j (T, f) | T M]‖p . (2.17)

Pluggling this into (2.15), we derive

‖M(n, f, T )‖p,∞ 6 Cpn1/p ‖f − E [f | T M]‖p + Cpn1/p(1 + (4 − Kp)2−1/p) ‖E [f | T M]‖p +

+ n1/pCpKp

r
∑

j=0

2−j/2 ‖E [S2j (T, f) | T M]‖p (2.18)

The definition of Kp implies that 1 + (4 − Kp)2−1/p = 0, hence (2.7) is established. This

concludes the proof of Proposition 2.1.

�

2.2. Martingale approximation. In this section, we recall the construction of the approx-

imating martingale given in [PU05] and we shall derive tightness of (n−1/2W (n, f, T ))n>1 in

H1/2−1/p.

For a fixed positive integer r we define the functions

fr :=

r−1
∑

j=0

f ◦ T j, mr :=
1√
r

(fr − E[fr | T rM]). (2.19)

Notice that E[mr | T rM] = 0, hence the sequence (mr ◦ T ir)i>0 is a strictly stationary

martingale difference sequence for the filtration (T −irM)i>0. Therefore, by Theorem 2.2 of

[Gir15], the process n−1/2W (n, mr, T r) converges in distribution in H1/2−1/p to ηrW , where

ηr is independent of the Wiener process W . By the arguments after equation (12) in [PU05],

the convergence limr→∞

∥

∥

√
ηr − √

η
∥

∥

2
= 0 takes place. Therefore, we have to check in view of

Theorem 4.2 of [Bil68] that

lim
r→∞

lim sup
n→∞

c(r, n) = 0, (2.20)
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where

c(r, n) :=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1√
n

W (n, f, T ) − 1
√

[

n
r

]

W
([n

r

]

, mr, T r
)

∥

∥

∥

∥

∥

∥

H1/2−1/p

∥

∥

∥

∥

∥

∥

∥

p,∞

(2.21)

For each r, n > 1, we have

c(r, n) 6

(

1 −
√

n
[

n
r

]

r

)

1√
n

∥

∥

∥‖W (n, f, T )‖H1/2−1/p

∥

∥

∥

p,∞
+

+
1

√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥W (n, f, T ) − W
([n

r

]

,
√

r · mr, T r
)∥

∥

∥

H1/2−1/p

∥

∥

∥

∥

p,∞

. (2.22)

By Proposition 2.1, we have

(

1 −
√

n
[

n
r

]

r

)

1√
n

∥

∥

∥‖W (n, f, T )‖H1/2−1/p

∥

∥

∥

p,∞
6

6

(

1 −
√

n
[

n
r

]

r

)

Cp



‖f − E[f | T M]‖p + Kp

+∞
∑

j=0

2−j/2 ‖E[S2j (f) | T M]‖p



 , (2.23)

hence it suffices to show that

lim
r→∞

lim sup
n→∞

c′(r, n) = 0, (2.24)

where

c′(r, n) :=
1

√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥W (n, f, T ) − W
([n

r

]

,
√

r · mr, T r
)∥

∥

∥

H1/2−1/p

∥

∥

∥

∥

p,∞

. (2.25)

By (2.19), we have
√

r · mr = fr − E[fr | T rM] hence

c′(r, n) 6
1

√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥W (n, f, T ) − W
([n

r

]

, fr, T r
)∥

∥

∥

H1/2−1/p

∥

∥

∥

∥

p,∞

+

+
1

√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥W
([n

r

]

,E[fr | T rM], T r
)∥

∥

∥

H1/2−1/p

∥

∥

∥

∥

p,∞

=: a(r, n) + b(r, n). (2.26)

We shall use the following elementary lemma several times.

Lemma 2.3. Let p > 2 and let f be a function in L
p. Then

lim
n→∞

n−1/p

∥

∥

∥

∥

max
06k6n

∣

∣f ◦ T k
∣

∣

∥

∥

∥

∥

p,∞

= 0. (2.27)

Proof. Let R > 0 be fixed; then

max
06k6n

∣

∣f ◦ T k
∣

∣ 6 R + max
06k6n

∣

∣(f1 {|f | > R}) ◦ T k
∣

∣ ,

hence using inequality (2.3), we get

n−1/p

∥

∥

∥

∥

max
06k6n

∣

∣f ◦ T k
∣

∣

∥

∥

∥

∥

p,∞

6
R

n1/p
+

p

p − 1

(

n + 1

n

)1/p

‖f1 {|f | > R}‖p,∞ .
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Taking the lim sup as n goes to infinity and using the fact that ‖g‖p,∞ 6 ‖g‖p for any function

g, we infer that

lim sup
n→∞

n−1/p

∥

∥

∥

∥

max
06k6n

∣

∣f ◦ T k
∣

∣

∥

∥

∥

∥

p,∞

6
p

p − 1
‖f1 {|f | > R}‖p .

We conclude by monotone convergence as R is arbitrary. �

• Control of a(r, n): let us define for n > r the sets

I :=

{

i

n
| i ∈ {0, . . . , n}

}

and J :=

{

j
[

n
r

] | j ∈
{

0, . . . ,
[n

r

]}

}

. (2.28)

Notice that the random function W (n, f, T )−W ([n/r] , fr, T r) is piecewise linear, and

the vertices of its graph are at points of abscissa in I ∪ J , hence

a(r, n) =
1

√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥

sup
s,t∈I∪J

s6=t

{
∣

∣W (n, f, T, t) − W
([

n
r

]

, fr, T r, t
)

|s − t|1/2−1/p
−

− W (n, f, T, s) − W
([

n
r

]

, fr, T r, s
)∣

∣

|s − t|1/2−1/p

}∥

∥

∥

∥

∥

p,∞

=: max {a′(r, n), a′′(r, n)} , (2.29)

where in a′(r, n) (respectively a′′(r, n)), the supremum is restricted to the s, t ∈ I ∪ J

such that |t − s| > 1/n (respectively < 1/n), which entails

a′(r, n) 6 2
n1/2−1/p

√

[

n
r

]

r
sup

t∈I∪J

∥

∥

∥
W (n, f, T, t) − W

([n

r

]

, fr, T r, t
)∥

∥

∥

p,∞
. (2.30)

For each i ∈ {0, . . . , n}, we have

∣

∣

∣

∣

W

(

n, f, T,
i

n

)

− W

(

[n

r

]

, fr, T r,
i

n

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

i−1
∑

l=0

f ◦ T l −
[[ n

r ] i
n ]−1
∑

l=0

fr ◦ T lr− (2.31)

−
(

[n

r

] i

n
−
[

[n

r

] i

n

])

fr ◦ T r[[ n
r ] i

n ]
∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∣

i−1
∑

l=r[[ n
r ] i

n ]

f ◦ T l

∣

∣

∣

∣

∣

∣

∣

+ r max
06k6n

∣

∣f ◦ T k
∣

∣ , (2.32)

and since the number of indices in the sum is at most r(1 + 1/n) 6 2r, we derive that

sup
t∈I

∣

∣

∣W (n, f, T, t) − W
([n

r

]

, fr, T r, t
)∣

∣

∣ 6 3r max
06k6n

∣

∣f ◦ T k
∣

∣ . (2.33)

Treating the supremum over J in a similar way, we obtain, in view of (2.30),

a′(r, n) 6 6
√

r · n1/2−1/p

√

[

n
r

]

∥

∥

∥

∥

max
06k6n

∣

∣f ◦ T k
∣

∣

∥

∥

∥

∥

p,∞

, (2.34)
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hence

lim sup
n→∞

a′(r, n) 6 6r lim sup
n→∞

1

n1/p

∥

∥

∥

∥

max
06k6n

∣

∣f ◦ T k
∣

∣

∥

∥

∥

∥

p,∞

. (2.35)

By Lemma 2.3, it follows that

lim sup
n→∞

a′(r, n) = 0. (2.36)

Next, we bound a′′(r, n) by

1
√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥

sup
s,t∈I∪J

|t−s|61/n

|W (n, f, T, t) − W (n, f, T, s)|
|s − t|1/2−1/p

∥

∥

∥

∥

∥

∥

∥

p,∞

+
1

√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥

sup
s,t∈I∪J

|t−s|61/n

∣

∣W
([

n
r

]

, fr, T r, t
)

− W
([

n
r

]

, fr, T r, s
)∣

∣

|s − t|1/2−1/p

∥

∥

∥

∥

∥

∥

∥

p,∞

. (2.37)

Let s, t ∈ I ∪J be such that 0 < t − s < 1/n. Then we either have k 6 ns < nt 6 k + 1

or k − 1 6 ns 6 k < nt < k + 1 for some k ∈ {0, . . . , n − 1}. In the first case,

|W (n, f, T, t) − W (n, f, T, s)|
|s − t|1/2−1/p

= (nt − ns)

∣

∣f ◦ T k
∣

∣

|s − t|1/2−1/p

6 n(t − s)1−(1/2−1/p)
∣

∣f ◦ T k
∣

∣

6 n1/2−1/p max
06j6n

∣

∣f ◦ T j
∣

∣ ,

and in the second one, we have

|W (n, f, t) − W (n, f, s)|
|s − t|1/2−1/p

6
|W (n, f, t) − W (n, f, k/n)|

|t − k/n|1/2−1/p
+

|W (n, f, k/n) − W (n, f, s)|
|k/n − s|1/2−1/p

=
(nt − k)

∣

∣f ◦ T k
∣

∣

|t − k/n|1/2−1/p
+

(k − ns)
∣

∣f ◦ T k−1
∣

∣

(k/n − s)1/2−1/p

6 2n1/2−1/p max
06j6n

∣

∣f ◦ T j
∣

∣ .

As a consequence, the following inequality holds:

1
√

[

n
r

]

r

∥

∥

∥

∥

∥

∥

∥

sup
s,t∈I∪J

|t−s|61/n

|W (n, f, t) − W (n, f, s)|
|s − t|1/2−1/p

∥

∥

∥

∥

∥

∥

∥

p,∞

6
2
√

n
√

[

n
r

]

r

∥

∥

∥

∥

max
06j6n

∣

∣f ◦ T j
∣

∣

∥

∥

∥

∥

p,∞

n−1/p. (2.38)

Using a similar bound for the second term in (2.37), we obtain by Lemma 2.3, that for

each r > 1,

lim
n→∞

a′′(r, n) = 0. (2.39)

By (2.29), (2.36) and (2.39), we finally obtain

lim
r→∞

lim sup
n→∞

a(r, n) = 0. (2.40)
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• Control of b(r, n): by Proposition 2.1, we have the following upper bound:

b(n, r) 6 Cp





2√
r

‖E[Sr(f) | T M]‖p +
Kp√

r

+∞
∑

j=0

2−j/2 ‖E[Sr2j (f) | T M]‖p



 . (2.41)

To conclude, we recall Lemma 2.8 of [PU05]:

Lemma 2.4. Let (Vn)n>1 be a subadditive sequence such that
∑∞

n=1 Vnn−3/2 < ∞.

Then

lim
r→∞

1√
r

+∞
∑

k=0

Vr2k

2k/2
= 0. (2.42)

In particular, Vr/
√

r → 0 as r → ∞.

Since the sequence
(

‖E[Sn(f) | T M‖p

)

n>1
is subadditive, from inequality (2.41)

and Lemma 2.4 we derive

lim
r→∞

lim sup
n→∞

b(n, r) = 0. (2.43)

Combining (2.40) with (2.43), we obtain (2.24).

This concludes the proof of Theorem 1.1 in the adapted case.

2.3. The non-adapted case. In [Vol06], a method to prove the central limit theorem under

the condition

∞
∑

k=1

‖E[Sk(f) | T M‖2

k3/2
< ∞,

∞
∑

k=1

∥

∥Sk(f) − E[Sk(f) | T −kM
∥

∥

2

k3/2
< ∞ (2.44)

is proposed. The idea is the following: one writes f = f ′ + f ′′, where f ′ = E[f | T M] and

applies a transformation V to the process (U if ′′) in such a way that (U iV f ′′) is a adapted

sequence. The mapping V is defined as

V h :=
∑

i∈Z

U−iP0U−ih, (2.45)

where P0(h) := E[h | M] − E[h | T M].

Notice that the operator V is not necessarily a point mapping (see section 3 of [KV07]).

Therefore, deducing the non-adapted case from the adapted one is not immediate.

Volný proved the functional central limit theorem under (2.44) in [Vol07]. The idea is to

write the maximal inequality (5) in [PU05] with the notion of contraction. We follow this

approach and begin by recalling the definition of contraction operators. Let H be a subspace

of Lp for which UH ⊂ H . We associate to the operator U a semigroup of contraction operators

(PT k )k>1 on H which satisfy:

(1) PT k = P k
T for each k > 1;

(2) PT U = I (where I is the identity operator);

(3) if PT f = 0, then (U if)i>0 is a martingale difference sequence.

Writing PT =: P , we are able to write Proposition 2.1 in a more general form.



HÖLDERIAN WEAK INVARIANCE PRINCIPLE UNDER MAXWELL AND WOODROOFE CONDITION 11

Proposition 2.5. There exist constants Cp and Kp depending only on p such that for each

f ∈ H and each n > 1,

‖M(n, f, T )‖p,∞ 6 Cpn1/p





∥

∥f − U−1P (f)
∥

∥

p
+ Kp

[log2 n]
∑

j=1

2−j/2

∥

∥

∥

∥

∥

∥

2j−1
∑

i=0

P if

∥

∥

∥

∥

∥

∥

p



 . (2.46)

The proof can be done in a similar way as that of Proposition 2.1. The later corresponds

to the particular case H = L
p(M), PT (f) = E[Uf | M] and the operator U is then replaced

by U−1. From this, we may deduce the following:

Corollary 2.6. Let f ∈ H be such that

∞
∑

n=1

∥

∥

∑n
i=1 P i

T f
∥

∥

p

n3/2
< ∞. (2.47)

Then the sequence (n−1/2W (n, f, T ))n>1 is tight in H1/2−1/p. In particular, if f ∈ L
p is

M∞-measurable, E[f | M] = 0 and

∞
∑

k=1

∥

∥Sk(f) − E[Sk(f) | T −kM
∥

∥

p

k3/2
< ∞, (2.48)

then the sequence (n−1/2W (n, f, T ))n>1 is tight in H1/2−1/p.

Proof. We define H := {h ∈ L
p(M∞),E[h | M] = 0} and PT k h := U−kh −E[U−kh | M]. It is

checked in the proof of Proposition 2 of [Vol07] that such a PT satisfies the conditions (1)-(2)

and (3) of the definition of a semigroup of contractions. We then conclude in a similar way as

in the adapted case. �

End of the proof of Theorem 1.1. The proof of the convergence of the finite-dimensional dis-

tributions under condition (2.44) is addressed in Theorem 1 of [Vol07]. It remains to check

tightness. We define f ′ := E[f | M] and f ′′ := f − E[f | M] and we have to check that the

sequences (n−1/2W (n, f ′, T ))n>1 and (n−1/2W (n, f ′′, T ))n>1 are tight in H1/2−1/p. Tightness

of the first sequence follows from the results of Subsection 2.2. That of the second sequence is

a consequence of Corollary 2.6. This concludes the proof of Theorem 1.1. �

2.4. Counter-example. We take a similar construction as in the proof of Proposition 1 of

[PUW07]. We consider a non-negative sequence (an)n>1, and a sequence (uk)k>1 of real

numbers such that

u1 = 1, u2 = 2, u
p/2+1
k + 1 < uk+1 for k > 3 and at 6 k−2 for t > uk. (2.49)

Notice that since p > 2, the conditions (2.49) are more restrictive than that of the proof of

Proposition 1 of [PUW07]. If i = uj for some j > 1, then we define pi := cj/u
1+p/2
j and pi = 0

otherwise. Let (Yk)k>0 be a discrete time Markov chain with the state space Z
+ and transition

matrix given by pk,k−1 = 1 for k > 1 and p0,j−1 := pj, j > 1. We shall also consider a random

variable τ which takes its values among non-negative integers, and whose distribution is given

by µ(τ = j) = pj . Then the stationary distribution exists and is given by

πj = π0

∞
∑

i=j+1

pi, j > 1, where π0 = 1/E[τ ]. (2.50)
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We start from the stationary distribution (πj)j>0 and we take g(x) := 1x=0 − π0, where

π0 = µ {Y0 = 0}. We then define f ◦ T j = Xj := g(Yj).

It is already checked in [PUW07] that the sequence (Xj)j>0 satisfies (1.6), where M =

σ(Xk, k 6 j) and Sn =
∑n

j=1 Xj . To conclude the proof, it remains to check that the sequence

(n−1/2W (n, f, T ))n>1 is not tight in H1/2−1/p. To this aim, we define

T0 = 0, Tk = min {t > Tk−1 | Yt = 0} , τk = Tk − Tk−1, k > 1. (2.51)

Then (τk)k>1 is an independent sequence and each τk is distributed as τ and

STk
=

k
∑

j=1

(1 − π0τj) = k − π0Tk. (2.52)

Let us fix some integer K greater than E[τ ]. Let δ > 0 be fixed and n an integer such that

1/n < δ. Then the inequality

1

(nK)1/p
max

06i<j6nK
j−i6nδ

|Sj − Si|
(j − i)1/2−1/p

>
1

(nK)1/p
1 {Tn 6 Kn} ×

× max
16k6n

∣

∣STk
− STk−1

∣

∣

(Tk − Tk−1)1/2−1/p
1 {|Tk − Tk−1| 6 nδ} (2.53)

takes place. By (2.51) and (2.52), this can be rewritten as

1

(nK)1/p
max

06i<j6nK
j−i6nδ

|Sj − Si|
(j − i)1/2−1/p

>
1

(nK)1/p
1 {Tn 6 Kn} ×

× max
16k6n

|1 − π0τk|
τ

1/2−1/p
k

1 {τk 6 nδ} . (2.54)

Defining for a fixed C the event

An(C) :=

{ |1 − π0τ |
τ1/2−1/p

> C(Kn)1/p

}

∩ {τ 6 nδ} , (2.55)

we obtain by the remark before equation (2.52)

µ







1

(nK)1/p
max

06i<j6nK
j−i6nδ

|Sj − Si|
(j − i)1/2−1/p

> C







> 1 − (1 − µ(An(C)))
n − µ {Tn > Kn} . (2.56)

By the law of large numbers, we obtain, accounting K > E[τ ], that

lim sup
n→∞

µ







1

(nK)1/p
max

06i<j6nK
j−i6nδ

|Sj − Si|
(j − i)1/2−1/p

> C







> lim sup
n→∞

1 − (1 − µ(An(C)))n . (2.57)
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We choose C := π0/(2K1/p). Considering the integers n of the form [u
(p+2)/2
j ], we obtain in

view of (2.57) :

lim sup
n→∞

µ







1

(nK)1/p
max

06i<j6nK
j−i6nδ

|Sj − Si|
(j − i)1/2−1/p

>
π0

2K1/p







>

> lim sup
j→∞

1 −
(

1 − µ(A[
u

(p+2)/2
j

](π0/(2K1/p)))

)u
(p+2)/2

j
]

. (2.58)

Since τ > 1 almost surely, the following inclusions take place for n > (2/π0)p:

An(π0/(2K1/p)) ⊃
{

π0τ1/2+1/p − τ−1/2+1/p > π0/(2K1/p)(Kn)1/p
}

∩ {τ 6 nδ}

⊃
{

τ1/2+1/p
>

1 + π0n1/p/2

π0

}

∩ {τ 6 nδ}

⊃
{

τ1/2+1/p > n1/p
}

∩ {τ 6 nδ}

=
{

n2/(p+2) 6 τ 6 nδ
}

.

Consequently, for j large enough,

µ(A[
u

(p+2)/2
j

](π0/(2K1/p))) > µ

{

[

u
(p+2)/2
j

]2/(p+2)
6 τ 6

[

u
(p+2)/2
j

]

δ

}

(2.59)

Since τ take only integer values among ul’s and
[

u
(p+2)/2
j

]

δ < uj+1 (by (2.49)), we obtain in

view of (2.58), that

lim sup
n→∞

µ







1

(nK)1/p
max

06i<j6nK
j−i6nδ

|Sj − Si|
(j − i)1/2−1/p

>
π0

2K1/p







>

> lim sup
j→∞

1 − (1 − µ {τ = uj})

[

u
(p+2)/2
j

]

= 1 − lim inf
j→∞

(

1 − cju
−1−p/2
j

)

[

u
(p+2)/2
j

]

. (2.60)

Noticing that for a fixed J ,

lim inf
j→∞

(

1 − cju
−1−p/2
j

)

[

u
(p+2)/2
j

]

6 lim sup
j→∞

(

1 − cJu
−1−p/2
j

)

[

u
(p+2)/2
j

]

= e−cJ , (2.61)

we deduce that the last term of (2.60) is equal to 1, which finishes the proof of Theorem 1.5.
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