
HAL Id: hal-01211774
https://hal.science/hal-01211774v1

Submitted on 5 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Stream Clustering for Online Anomaly Detection
in Cloud Applications

Carla Sauvanaud, Guthemberg Silvestre, Mohamed Kaâniche, Karama
Kanoun

To cite this version:
Carla Sauvanaud, Guthemberg Silvestre, Mohamed Kaâniche, Karama Kanoun. Data Stream Clus-
tering for Online Anomaly Detection in Cloud Applications. 11th European Dependable Computing
Conference (EDCC 2015), Sep 2015, Paris, France. �hal-01211774�

https://hal.science/hal-01211774v1
https://hal.archives-ouvertes.fr


Data Stream Clustering for Online Anomaly
Detection in Cloud Applications

Carla Sauvanaud∗†‡, Guthemberg Silvestre∗, Mohamed Kaâniche∗, Karama Kanoun∗
∗LAAS - CNRS, 7 avenue du colonel Roche, 31400 Toulouse, France
†INSA Toulouse - 135 avenue de Rangueil, 31400 Toulouse, France

‡Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31400 Toulouse, France
Emails: firstname.name@laas.fr

Abstract—This paper introduces a new approach for the online
detection of performance anomalies in cloud virtual machines
(VMs). It is designed for cloud infrastructure providers to detect
during runtime unknown anomalies that may still be observed
in complex modern systems hosted on VMs. The approach is
drawn on data stream clustering of per-VM monitoring data
and detects at a fine granularity where anomalies occur. It is
design to be independent of the types of applications deployed
over VMs. Moreover it deals with relentless changes in systems
normal behaviors during runtime. The parallel analyses of each
VM makes this approach scalable to a large number of VMs
composing an application. The approach consists of two online
steps: 1) the incremental update of sets of clusters by means of
data stream clustering, and 2) the computation of two attributes
characterizing the global clusters evolution. We validate our
approach over a VMware vSphere testbed. It hosts a typical
cloud application, MongoDB, that we study in normal behavior
contexts and in presence of anomalies.

Keywords—Anomaly detection, Data stream clustering, Cloud
computing, service, MongoDB.

I. INTRODUCTION

Cloud computing is a convenient paradigm emerged for
the delivery of on-demand, automated and self-managed IT
resources. Infrastructure-as-a-Service (IaaS) is an example of
the clouds marketing class delivering support infrastructures.
IaaS allows users to deploy applications while being exempted
from setting and keeping up to date the infrastructure. Virtual
machines (VMs) constitute logical supports supplied by IaaS
providers for the deployment of users’ applications (we call
them system), with regard to the taxonomy in [6]), and
distributed applications may be deployed over several VMs.

The administration of systems deployed according to the
IaaS paradigm is all the more complex for IaaS providers that
their VMs host a broad diversity of systems (i.e., database,
management software...) with different behavioral patterns,
different configurations, and workloads. Additionally, they
usually do not have enough insight into all types of abnormal
behaviors, referred to as anomalies, that may arise in modern
systems and a large panel of them still remains due to systems
complexity [10]. Anomalies may be caused by different types
of faults, such as human-made faults [6] (they can be non-
malicious such as misconfigurations, or malicious when delib-
erately introduced to harm a system runtime such as denial-
of-service attacks), or physical faults [6] due to the aging of
hardware components for instance. Besides, anomalies may
arise from both the infrastructure level and the hosted systems

level. They may propagate from one level to another and may
degenerate into system failures affecting the performance of
both levels. Indeed, we consider that anomalies correspond to
early behaviors potentially leading to a system failure.

As a consequence, anomalies may lead to financial penal-
ties for IaaS providers if service level agreements (SLAs)
with users (notably related to availability and performance
requirements) are not satisfied [14]. Thus, the early detection
of anomalies is critical for IaaS providers.

Machine learning techniques are commonly used to sup-
port anomaly detection [10]. Considering the case of cloud
infrastructures with hundreds of users, VMs behaviors in
normal workload contexts or in presence of anomalies are too
numerous to reasonably be summarized into a labeled data
set (i.e, systems observations sample labeled as anomalous
or not) from which anomalous behaviors could be learned.
Even though methods already exist to reduce the size of large
scale problems training datasets [31], it is still intricate to
forge a training dataset independently of the system type,
configuration, and workload, including labeled samples of all
types of anomalies [13]. To be efficient in cloud environments,
anomaly detection techniques should also be designed to adapt
online to frequent changes in systems behaviors that are
common in such environments. (i.e., they should not raise false
alarm in cases of legitimate changes in systems.

Moreover, when anomalies are detected, it is important for
IaaS providers to be able to perform root cause analysis and
identify potential corrective actions [1]. As a consequence,
anomalies should be detected at a fine granularity, close to the
components where they occur. Accordingly, the system should
not be considered as a single box entity like in [11]. Such
an approach leads to high-dimensional modeling problems
that are tackle with difficulty [28], and it cannot specifically
identify anomalous nodes in the system.

To address these issues, we present an approach to be
used by IaaS providers for the online detection of unknown
performance anomalies in VMs. This approach notably deals
with relentless changes in systems normal behaviors during
runtime. It relies on the collection of VMs monitoring data
and stands on a per-VM analysis of these data. In other words,
the collected VMs data are decomposed into several data
streams, one stream for each VM. Each VM data stream is
then structured into sub streams whose dimensions respectively
correspond to counters related to the monitoring of a VM
component (ex: CPU, disk, memory...). A system alarm is

1



raised when a least one of its VMs has a component detected
as anomalous.

The numerous systems contexts to be considered led us
to process monitoring data streams using clustering, a data-
driven approach. Such an approach is well suited to adapt to
changes in data. Our starting assumption is that anomalous
behavior data are not similar to normal behavior data [10].
Moreover, we assume that normal behavior data are assigned
to clusters located in a close neighborhood, and that anomalous
behavior data will not be assigned to clusters located in this
neighborhood.

Our approach more precisely relies on the use of data
stream clustering algorithms [2], since it is the special branch
of clustering coping with the online management of data
streams. It executes a data stream clustering algorithm on each
sub stream separately. In this study we do not propose a new
version of such an algorithm and select previous methods that
can fit few requirements implementations. The data stream
clustering algorithm is used jointly with a new means of
online characterization of the resulting clusters. It is based on
the evaluation of two attributes to deal with clusters global
evolution (i.e., their creation, and global movement). The
clusters evolution study was introduced in the data stream
clustering algorithm CluStream [3]. We perform global evo-
lution characterization because we consider that individual
clusters might be too numerous and evolving too fast to
handle them individually like in [29]. As far as we are aware
of, our approach combining data stream clustering and the
characterization attributes presented in this paper is original
and has not been explored in previous published work (see
discussion of related work in Section VII).

We validate a simple implementation of our approach
considering a MongoDB1 application deployed on a VMware
based experimental testbed, using injection of anomalies by
software means within VMs. MongoDB is an example of
distributed database application and it is actually the most
popular document store nowadays2. The experimental results
demonstrate that our approach is well suited to detect anoma-
lies. It performs good precision, recall (we can achieve between
99 and 94% precision, and between 99 and 85% recall),
and detection latency (≤ 1min), thus confirming the above
assumption about clusters.

The paper is organized as follows. Our data stream cluster-
ing approach to anomaly detection is described in Section II.
Section III introduces the design of an implementation of this
approach. In Section IV, we present the cloud prototype on
which we carried out our experiments. Section V describes
our validation process. We present experimental results and
discuss them in Section VI. Finally, Section VII presents the
related work, and we conclude our study in Section VIII.

II. ANOMALY DETECTION APPROACH

We hereby present our approach for the case study of a
single VM system. The generalization to a multi-VM system
is describe in Section III.

1http://www.mongodb.org/
2http://db-engines.com/en/ranking

The inputs of our approach are monitoring data. In more
details, monitoring provides units of information about a
system that are called performance counters (referred to as
counters). The actual counters values being collected from a
system are called performance metrics (referred to as metrics).
A vector of metrics collected at a certain timestep corresponds
to a monitoring observation (also referred to as observation)
and an unbounded sequence of observations is called a data
stream.

The approach is generic in that it does not depend on
the specifications of the system encompassing the VM being
monitored. It consists of two online steps to be reiterated upon
the reception of any new VM observation: 1) the incremental
update of sets of clusters by means of data stream clustering,
and 2) the computations of two attributes for the characteri-
zation of the clusters evolution. Both steps are represented in
Figure 1 inside the Anomaly Detection entity (or AD entity).

In subsection II-A, we first present implementation require-
ments for the data stream clustering algorithm to be used.
Indeed, our approach does not impose to use a particular
algorithm but the one to be chosen should observe these
requirements. Then in subsection II-B, we briefly define the
sub stream partitioning for incremental update of clusters per-
formed by the selected algorithm. We describe the computation
of the two characterization attributes in subsection II-C, and
finally present the threshold analysis based on the attributes
values in subsection II-D.

VM Anomaly Detection

VM

Clustering
task

Characterization

(my...mN)

(mx...my-1)

(m1...mx-1)

(m1...mN)

C1

C2

C3

Sub stream1

Sub stream2

Sub stream3

Warning C1

Warning C2

Warning C3

Data stream

Clustering
task

Clustering
task

Characterization

Characterization

+ VM
Warning

Fig. 1. Anomaly detection for 1 VM, N-metrics stream, and 3 categories.

A. Implementation requirements

There is a variety of data stream clustering algorithms
[2]. Our approach requires to select an algorithm that should
conform to our cloud problem statement expressed in the
following requirements:

a) The algorithm should not store observations neither in
disk nor in RAM, since storing data steams that already have
been analyzed online by our approach would not be relevant.

b) The number of data clusters is not fixed a priori to keep
the approach independent of systems specifications.

c) To discern clusters that have been recently updated from
older and obsolete clusters, a fading cluster structure like in
[4] should be used. This structure is provided by means of
fading weights applied to observations (an example is given in
the last paragraph). It is a means to make old observations die
out from the clusters structures.

d) An observation counts is associated to each cluster.
This count is incremented by one when the cluster is being

2



assigned with a new observation. Cluster fading is represented
by applying fading weights on the clusters observation counts
(in this case we call them weighted observations counts) like
in [17].

For a set of clusters, clusters weighted observations counts
are updated upon the reception of a new observation before
any other data processing. Let us denote cntt,i, the weighted
observation count of the ith cluster for the timestep t. With
respect to this notation, the weighted observation count of each
cluster is updated as the following:

cntt+1,i = 2−λ ∗ cntt,i + γt+1, (1)

with λ the decay rate, γt+1 = 1 if the new observation at
t+1 is assigned to the ith cluster, and 0 otherwise.

B. Incremental update by means of data stream clustering

Considering the study of one VM, we divide its data
stream into multiple sub streams of lower dimensions. Lower-
dimensional subspaces are defined according to the specific
components, physical or software, their counters characterize
(ex: CPU, memory, disk,...). We call the different subspaces
categories of counters (referred to as categories).

Then, data stream clustering is performed on each sub
stream whose dimensions correspond to one category, as
presented in Figure 1. We call the incremental update of
a sub stream clusters, a data stream clustering task (often
abbreviated clustering task). Eventually, we obtain as many
sets of clusters as there are counters categories. Figure 1 more
precisely represents the clustering task of each sub stream
category and the corresponding sets of clusters that are named
CX , where X is the name of a category.

C. Characterization of clusters sets evolution

In the following we take the case of a set of clusters, CX ,
resulting from a single sub stream clustering task.

1) Characterization attributes: We characterize the evolu-
tion of clusters in CX and thereby, their movement, by means
of the study of the center of mass (CoM) of the clusters cen-
ters from which we compute two numerical characterization
attributes (also called attributes for short).

The CoM can be interpreted as the position where all
clusters of the set are located at a fixed timestep. From the
CoM position, we record the distance to the closest cluster
center from the CoM, called dist min, and the distance to the
farthest cluster center from the CoM, called dist max. The
characterization attributes are computed as follows:

DtR Attribute. The distance from the CoM to a reference
point, referred to as DtR for Distance to Reference.

A reference point can for instance correspond to the null
(or the origin) vector. In our study, the reference coordinates
are the mean values of observations recorded in a short training
phase (see Section III for further details about the phases of
our approach implementation).

CS Attribute. The difference between dist max and
dist min, referred to as CS for Cluster Spread.

The DtR and CS attributes are respectively represented in
Figure 2 and Figure 3, for a two-dimension case.

DtRt0
DtRtn

dim2

dim1dim1

dim2

CoM

CoM

Reference Reference

At timestep t0 At timestep tn

Fig. 2. The Distance to Reference (DtR) attribute for a 2-dimension case.

dim2

At timestep t0 At timestep tn

dim1dim1

dim2

CSt0

distmax

distmin

distmax

distmax

distmin

distmin

CStn

distmax

distmin

CoM

CoM

Fig. 3. The Cluster Spread (CS) attribute for a 2-dimension case.

2) Evolution of clusters: From this point forward we ex-
plain how the attributes are used in the context of our approach.

Upon the arrival of a new observation from the sub stream,
the set of clusters is first updated, then the CoM, and finally
the attributes are computed. For a fixed timestep (i.e., a time
of update), the CoM is computed according to the following
equation:

CoM(CX) =
1

S

n∑
i=1

cnti ∗ vi, (2)

S =

n∑
i=1

cnti,

where n is the number of clusters in CX , vi the coordinates
of the ith cluster, and cnti the weighted observation count of
the ith cluster (introduced in Equation 1).

Some clusters might encompass observations of anomalous
behaviors. Such clusters are called outlier clusters when they
are detected as anomalous by our approach. This notion of
outlier clusters enables us to cope with the conundrum men-
tioned in [26] for data stream clustering: how to distinguish
the seed of a new cluster from an outlier observation. In our
study, we put all observations in clusters and then attributes
characterize them either as legitimate or outlier clusters. The
outlier clusters are included in the CoM computation.

3) Interpretation: Based on our experiments, both at-
tributes values have a very small standard deviation over time,
while recording a workload that does not change abruptly
(roughly in less than 5min) and observing no anomaly in the
system. Thus, the analysis of the attributes variations enables

3



us to monitor clusters evolution in that we consider that an
abrupt change in attributes values is as an anomaly.

The variations of the CoM position from a reference point,
which are represented by the DtR attribute, indicates the
differences in the clusters global position over time. As clusters
are not studied individually, we do not get insight into the
individual movement of clusters, but into the global evolution
of clusters.

Assuming that clusters representing normal behaviors are
located in a close neighborhood, individual creations, deletions
or shifts of legitimate clusters do not dislocate the CoM enough
to be detected as anomalous events.

The changes in the DtR attribute mean value indicate
modifications in behavior trends. Such modifications can result
from workload changes, anomalies or VM reconfigurations.
For instance, given the upgrade of a VM memory from 1Gb
to 10Gb, clusters computed before the reconfiguration will
be different from clusters computed after the reconfiguration
since metrics change in scales. The corresponding CoMs
will accordingly differ and be at different distances from the
reference point. The changes in the CS attribute mean value
are likely to be provoked, when they are abrupt, by the creation
of a new cluster that is not in the close neighborhood of other
clusters, as it is way farther from the CoM than the last farther
cluster already was. This corresponds to the creation of an
outlier cluster. We consider that anomalies arise more abruptly
in a system than workload changes. The distinction made
by the attributes between workload changes and anomalies is
further discussed in view of results in Section VI.

4) Outlier detection and possible evolution: Outlier clus-
ters are identified as such by both the DtR and the CS attributes
as abrupt changes in their mean value. The growth of the
observation count of an outlier cluster and the creation of
several clusters near this outlier cluster may be observed. In
this case, the CoM moves toward the new group of clusters,
and thereby alters the DtR value, and the CS attribute de-
creases. The CoM may finally stabilize with both attributes.
Old clusters are discarded from the set by their weighted
observation count, and the clusters that were once outliers are
regarded as representative of a new legitimate system behavior.

In our approach, old clusters are pruned on a threshold
basis. A cluster is pruned when its weighted observation count
is less than a threshold we call prune threshold (denoted
tprune). The speed of the CoM shift from the reference point
depends on tprune and λ. The higher these parameters are, the
faster the CoM leans toward new clusters and the faster the
set of clusters evolves so as to represent a new behavior or
a new workload. The clusters evolution consequently depends
on both parameters.

5) Handling workload variation: A large tprune and a
large λ lead to fast discarding of clusters. In this case,
new observations may often be assigned to newly created
clusters, whereas they could have been assigned to recently
discarded clusters. Consequently, the CoM may vary between
a fixed number of recurrent positions. The attributes values
may also steadily oscillate showing the persistent creation of
new clusters. It could potentially lead to the detection of False
Positive (FP) if the anomaly detection based on the attributes
values is parametrized with a variation threshold set too low.

Two methods are conceivable for the calibration of our
approach to well handle workload variations. A first method
consists of using large values for tprune and λ. It reduces
the mean number of clusters in the clusters set and makes the
shift of the CoM toward new clusters quicker. However, it may
lead to the detection of FP since many new clusters would be
repeatedly created and detected as outliers.

Another method consists of selecting really small values
for both parameters so that the set of clusters contains a large
number of clusters representing all types of past behaviors or
workloads. It is relevant considering that the workloads vari-
ations may bring the system into previously seen workloads,
however numerous they might be. Yet, it leads to the increase
of the number of clusters and induces higher computation
costs. As a result, in our validation process we use tprune
and λ that correspond to a trade off between both methods
(see Section VI).

D. From attributes to warnings

A VM warning is raised when an anomaly is detected in
at least one of its sub streams. Anomalies are detected when
attributes values exceed a given threshold for a fixed number
of consecutive timesteps. We call this number of consecutive
timesteps warning count (denoted W). Considering one at-
tribute a and for a given timestep t, the threshold corresponds
to the following equation:

Threshold(a, t) = mean(a, t)± (N ∗ sd(a, t)), (3)

where N is a positive integer called warning coefficient,
mean(a, t) and sd(a, t) are respectively the moving mean
and the moving standard deviation of the attribute values at
timestep t.

The same moving window size (called mw size) is consid-
ered for computing mean(a, t) and sd(a, t) for both attributes.
The moving mean value at t is the mean of the last mw size
attribute values. Expressly, it uses a moving mean with a
mw size offset value, and mw size is expressed in number of
values, i.e., instance of attribute update.

By definition, the moving window introduces a lag behind
the true value of the local mean. The larger mw size is,
the bigger is the lag. On the other hand, a small mw size
enables us not to get a moving mean too much shifted in
time and so, detect anomalies shortly after they occur. Also, a
small mw size does not require to undervalue the old datum
composing the sample window so as to simulate data aging
(see [18] for examples like weighted moving mean). As a
consequence, in our study we will consider small mw size.

We highlight that the clusters relate to the history of the
system (that can be as old as few hours of few days) that
is still relevant at the present time. Our approach has the
advantage to combine the memory of old behaviors of the
system and the runtime awareness needed for fast anomaly
detection. In comparison, an approach that would only use of
a moving window analysis applied to raw observations would
lose relevant insight into the system history as soon as old
observations are not part of the window.

4



III. IMPLEMENTATION

This section presents an implementation of the aforemen-
tioned approach, generalized to the case of a multi-VM system.
It is drawn on a two-phases that we present in subsection III-A.
Subsection III-B describes the overall implementation.

A. Two-phase operation

Our implementation is based on two distinct phases: a
training phase followed by a detection phase.

The training phase takes place while the system runs a
workload that represents one probable use of the system and
reasonably assuming that no fault is activated. During this
phase, we record from all the system VMs a fixed number of
observations that can be as low as few hundreds. Observations
of each VM are partitioned according to counter categories
so as to compute reference points for each category of each
VM: the points coordinates are the respective mean values of
the per-category observations. These points can be later used
for the DtR attribute computation during the detection phase.
This phase also enables us to get an estimation of the mean
and standard deviation of the observation metrics. They are
used for the pre-processing of observations before clustering
tasks. Indeed, it can be valuable for some clustering algorithms
to normalize or even standardize observations (i.e., removing
the mean value and dividing by the standard deviation) before
assigning them to a cluster. It is due to some clustering
algorithm using a fixed threshold to assigned observations to
clusters, with no regard to the data distribution. The training
phase is to be run once, as the system is being deployed.
It may potentially be run after the system undergoes large
reconfigurations or after major anomalies have been located
and removed. Lastly, this phase is short and takes less than
1sec to be executed.

The detection phase performs the anomaly detection during
the rest of the system runtime. It requires the mean and
standard deviation values resulting from the training phase so
as to standardizing the system data streams.

B. Overall functioning

Considering a multi-VMs system, anomaly detection is
performed on a per-VM basis, with each VMs data stream
being independently analyzed. The overall functioning for a
N-VMs system is represented in Figure 4.

System

System Anomaly Detection

Warnings VM2

Warnings VMN

VM1

VM2

VMN

Alarm

Warnings VM1Data stream VM1
Data stream VM2

Data stream VMN
... ...

...

Anomaly Detection VM1

+

Anomaly Detection VMN

Anomaly Detection VM2

Fig. 4. Anomaly detection implementation for a N-VMs system.

Observations are collected by monitoring agents (repre-
sented as black boxes in Figure 4) and are then fed to

the system AD entity. This entity implements the anomaly
detection approach presented in Figure 1. One instance of VM
AD entity is run in parallel for each VM of the system. System
alarms are raised when at least one VM AD entity detects an
anomaly and therefore, raises a warning. When they receive an
alarm, administrators work on the root cause analysis keeping
in mind that they are provided with the specific anomalous
VMs and components. Alarms should be transmitted to the
user in case administrators assume they are only correlated
to the user’s system. The end of a warning may signify that
either the effects of the anomaly are dissipated or the system
remains in a anomalous state, and the AD entities got used to
it. We note that it should be apparent to the administrator that
an anomaly actually persists in the system, since we assumed
that the persistence of anomalies lead to failures and SLAs
violations.

IV. EXPERIMENTAL SETUP

This section describes the testbed on which we set up our
experiments for the case study of a MongoDB system.

A. Infrastructure description

We conducted our experiments on a VMware vSphere 5.1
private platform. The infrastructure is composed of two servers
Dell Inc. PowerEdge R620 with Intel Xeon CPU E5-2660
2.20GHz and 64GB memory. Each server has a VMFS storage
and they also share a NFS storage. One hypervisor hosts all
VMs related to the MongoDB system (referred to as system
host), the other hypervisor is a controller that hosts the monitor
as well as the workload generator for isolation concerns.

B. Case study description

Our case study is MongoDB release 2.4.8. It uses 2
partitions of 3 data replicas (i.e., 6 VMs). Each VM has a
14GB disk, 4 virtual processors, 1Gbps network interface,
and 4GB of RAM. The MongoDB behavior is assessed while
running the Yahoo! Cloud Serving Benchmark [12] workload.

C. Monitoring setup

For the sake of our study, we implement a monitoring entity
centralizing all VMs data streams in a database. It enables us
to store monitoring observations in different datasets collected
from different experiments for later analyses.

We used the Ganglia monitoring system [21] to collect
metrics from our MongoDB system. Ganglia is a general
purpose monitoring tool for distributed systems. We deployed
one monitoring agent on each VM. No specific counter related
to MongoDB is being collected by the agents since we want
to validate our approach with no dependency with the user’s
application type. We study 89 counters that are split according
to five categories: CPU, memory, disk, TCP, and IP. Further
information about the collected counters is available online3.
Metrics are collected every 15sec from each VM.

3https://homepages.laas.fr/csauvana/datasets/counters.txt

5



D. Data stream clustering implementation

In our study, we use the GNU R implementation of the
data stream clustering approach from [17]. It is a simple
implementation of the threshold nearest neighbor algorithm.
It is easy to handle and complies with our assumption that
observations in case of normal behavior are located in a
close neighborhood [10]. Also, this implementation does not
store data in disk or RAM, and does not work with a prior
assumption about the number of clusters to be found in data.
The clustering algorithm makes use of the general weighted
observations counts handling method presented in Equation 1.

Considering a set of clusters, upon reception of a new
observation, weighted observations counts are updated, and
clusters being too old are pruned. At any time, the model is
described by the current clusters centers (in this study we use
centroids), as well as their respective weighted observation
count. Then, the distance between the observation and all
clusters centers is computed. The observation is assigned to the
closest cluster with a distance smaller than a given threshold
we call neighbor threshold or tneighbor. When no cluster is
close enough, a new cluster is created. As a consequence,
the neighbor threshold tempers the local variations of the
observation metrics.

We selected the Euclidean distance for our computations
because it is the most commonly used measure [10] and it is
fast to compute. The observations standardization processed
over system data streams enables us to cope with the great
sensitivity of the Euclidean distance toward the metrics scales.

V. VALIDATION METHOD

Our validation method is twofold. In a first phase we test
the ability of our detection approach to well handle normal
behavior case scenarios. In such scenarios, our approach
should not identify any anomalous behavior, and therefore,
not raise any alarm. We test this ability by means of the FP
ratio quantifying the proportion of false alarms raised while
working on observations of normal behavior workloads.

The second phase consists in testing our approach over
scenarios comprising both normal and abnormal behaviors.
In such scenarios, we validate the ability of our approach
to raise an alarm when detecting an abnormal behavior, i.e.,
an anomaly. Such scenarios are built from the superposition
of a faultload to a normal behavior workload. Faultloads are
scenarios of anomaly injections emulating the effect of faults
activations. We test this ability by means of three measures,
namely precision, recall and detection latency. These measures
qualify the detection power of our anomaly detection approach.
We define the detection latency as the number of updates (i.e.,
observation reception) between the injection of an anomaly
and the corresponding alarm being raised thanks to at least
one sub stream attribute.

We record several datasets from our experimental setup,
and store them in a database so as to enable backward analyses.
There is a broad spectrum of real case workloads and faultloads
and we present the study of six such cases, that we find to be
general cases. Observations from these datasets are fed to the
implementation of our approach incrementally.

A. Normal behavior validation

We record datasets of normal behavior observations from
the 6 VMs of our MongoDB system, while running the system
under four different normal behavior workloads.Datasets (1–4)
are recorded while respectively running each workload.

Workload (1). Running an average rate of 3000 read
operations per second. Without any other administration task
being run on the system host. The dataset encompasses 69,120
observations (i.e., over two working days monitoring).

Workload (2). Running an average rate of 3000 read
operations per second. With additional administration tasks
being run on the system host: a network dump over 20min,
a VM memory reconfiguration allocating a test VM with one
more GB of memory, a VM memory reconfiguration so as
to allocate all the host free memory to a test VM, and a VM
migration from the system host to the controller host. Each task
is separated by 1h from the last task before it. The test VM is
running on the system host and is not part of the MongoDB
system. The dataset encompasses 34,200 observations.

Workload (3). Running an increasing ramp of read opera-
tions rates, from 1000 to 4000 operations per second and each
load lasts 1h. The pattern is repeated 10 times. Without any
other administration task being run on the system host. The
dataset encompasses 57,600 observations.

Workload (4). Running read operations with different
rates, 10min each rate, using the following pattern: (1000,
2000, 3000, 2000, 1000, 3000, 1000, 2000) operations per
second, and the pattern being repeated 10 times. Without any
other administration task being run on the system host. The
dataset encompasses 19,686 observations.

B. Validation in presence of anomaly

Faultloads encompass injections of widespread anomalies
existing in real scenarios of our field. Such anomalies are
supposed to arise from software and hardware faults. We
emulate them by software means. Five types of anomalies are
included in our faultload, namely 1) CPU consumption, 2)
misuse of memory, 3) anomalous number of disk access, 4)
packet loss, and 5) network latency (respectively referred to
as CPU, memory, disk, packet loss, and latency anomalies). In
the following, we present examples of real scenarios leading
to these anomalies, then we describe the different intensity
levels at which the anomalies may be injected into a system
and finally present the implementation of the faultloads.

1) Types of anomalies: We selected anomalies so as to
emulate the following behaviors.

CPU consumption. Anomalous CPU consumptions may
arise from faulty programs encountering impossible termina-
tion conditions leading to infinite loops, busy waits or dead-
locks of competing actions, which are commonplace issues in
multiprocessing and distributed systems.

Memory leaks. Anomalous memory usages are common-
place in programs whose allocated chunks of memory are not
freed after their use. Accumulations of unfreed memory may
lead to memory shortage and system failures.

Anomalous number of disk access. A high number of
disk accesses, or an increase in the number of disk accesses

6



over a short period of time, emulates anomalous disks whose
accesses often fail and lead to an increase in disk access retries.
It may also result from a faulty program in infinite loop of data
writing.

Network anomaly. Network anomalies may arise from
network interfaces or the interconnection of networks. In
this work we emulate packet losses, and latency decreases.
Packet losses may arise from undersized buffers, wrong routing
policies and even firewall misconfigurations. As for latency
anomalies, they may originate from queuing or processing
delays of packets on gateways.

2) Intensity levels: Each anomaly has a range of intensity
levels that we calibrate thanks to prior experimentations (see
our previous work [27]). Regarding the memory, disk and
CPU anomalies, the maximum intensity value of an anomaly
is constrained by the capacity of VMs operating systems.
Considering the remaining types, the maximum intensity value
is set so as not to lead to a VM failure but to be close to.
Intensity levels are described in Table I.

TABLE I. ANOMALY TYPES AND INTENSITIES.

Type Unit Intensity levels
1 2 3 4 5 6 7

CPU consumption % 30 40 50 60 70 80 90
Misuse of memory % 79 82 85 88 91 94 97

Disk access #workers 20 25 30 35 40 45 50
Packet loss % 3.2 4.0 4.8 5.6 6.4 7.2 8.0

Network latency ms. 32 40 48 56 64 72 80

3) Implementation: Faultloads are run at the VM level.
Injections are performed by three programs run on each VM.
They are triggered by means of ssh connexions orchestrated by
a campaign handler. The campaign handler is a configurable
script hosted on the controller host.

We use Dummynet4 for the injection of network latency
and packet loss anomalies, and Stress-ng5 for CPU, disk, and
memory anomalies.

4) Faultloads and datasets: Datasets (4) and (5) are
recorded while running Workload (1), respectively running the
following two faultloads. We make use of Workload (1) as a
common workload.

Faultload (1). All types of anomalies are being injected.
Anomalies of the same type were injected consecutively in
each VM and in increasing order of intensity values. Each
injection of a given intensity was injected 6 times, one time
consecutively in each VM. The injections last 10min. Two
consecutive injections were 20min apart, and triggered in a
different VM. Thus, two consecutive injections in one VM are
2h50 apart. The dataset encompasses 336,000 observations.

Faultload (2). All types of anomalies are being injected
with their respective intensity level 5 but with injections spaced
by 10h. Therefore, it notably differs from Faultload (1) in that
it has a different duration separating two consecutive injec-
tions. We consider that both Faultload (1) and (2) represent
worst case studies since anomalies are very close, and no

4http://info.iet.unipi.it/∼luigi/dummynet/
5http://kernel.ubuntu.com/∼cking/stress-ng/

VM is restarted. Therefore, anomalies might accumulate in
the system. The dataset encompasses 380,000 observations.

For both faultloads, the duration of anomalies was set to
10min. Moreover, as we will expose later, in worst cases, in
worst case scenarios, our approach can take until 4min to detect
an injection after it is triggered, so we do not consider injection
durations less than 4min.

VI. RESULTS AND DISCUSSIONS

We hereby present the results, in terms of FP ratio and
detection power, of the different validations we run over our
6 datasets. For successful validation, we perform parameter
tuning of the six parameters on which our approach depends.
We remind them in the following table, with the section they
were first introduced in this paper:

Parameter description Name Section
Decay rate λ II-A
Prune threshold tprune II-C
Neighbor threshold tneighbor IV-D
Moving window size mw size II-D
Warning count W II-D
Warning coefficient N II-D

We distinguish two sets of parameters. λ, tprune, and
tneighbor are related to the implementation of the data stream
clustering algorithm used in the clustering tasks of our ap-
proach (see II-B). mw size, W , and N are related to the
characterization of the clusters sets by our attributes (see II-C).

Parameter tuning is performed so as to obtain ranges
of parameters values that enhance the detection power and
reduce the FP rates of our implementation. In the following,
we first present the tuning of the first set of parameters in
subsection VI-A. This allows us to set a value for these
parameters, given that they reasonably lead to low FP rates
and good detection power. We then tune the second set of
parameters in subsection VI-B, with respect to the fixed values
selected for the first set. Finally we present three discussions in
subsection VI-C about the time between anomalies to be used
in faultloads, the discernment between anomalies and workload
changes, and about the necessary use of both attributes.

Due to space limitations, we only present the most signif-
icant results and summarize the rest of them.

A. Tuning of parameters related to the clustering algorithm

We discuss the tuning upon λ, tprune and tneighbor with
respect to the study of Datasets (1), (2), (3), (4), and (5)
(wwith (5) encompassing a faultload). We first consider for
each parameter a range from 0.1 to 0.5 by 0.1, and then,
another range with smaller pace, from 0.001 to 0.01 by 0.001.

These three parameters impact the mean number of clusters
in the set of clusters of a sub stream. The mean value of
the number of clusters depends on the sub stream category.
Some sub stream categories appear to be more sensitive to
the thresholds changes (i.e, tprune and tneighbor) than others.
It is explained by both the number of dimensions of the sub
stream categories and the metrics variations. In other words,
sub streams with high dimensions and each metric varying a
lot, tend to lead to a large number of clusters.

7



Considering the discussion in II-C about the impact of
varying tprune and λ, we select trade off values for these pa-
rameters in order to maximize the number of clusters being in
a set and minimize the computation costs. We experimentally
selected parameters λ = 0.1, tprune = 0.1, and tneighbor =
0.001 because they jointly provide good timing performance
for the clustering tasks and characterizations, a low FP rate
for Datasets (1), (2), and, (3), and a good detection power for
Dataset (5). These values are however not adapted to Workload
(4) which encompasses too abrupt and quick variations of the
number of queries per second. The reader should note that
in real case studies, there would be some smoothing in the
variation of the number of queries compared to Workload
(4), so our approach would perform better for real workloads.
Corresponding results for these datasets are presented in the
next subsections which present the tuning of the rest of the
parameters. They lead to sets of clusters with an average
between 5 and 11 ± 3 clusters, depending on the sub stream
category. The update of a set of clusters making use of an
average of 11 ± 3 clusters with 11 dimensions, and after the
corresponding characterization task, is performed in 0.021s.
Note that we applied the same tneighbor values for each sub
stream category for simplicity concerns.

B. Tuning of parameters related to the characterization at-
tributes

We now present the results of the tuning of the second set
of parameters with the first set being (λ, tprune, tneighbor)
= (0.1, 0.1, 0.001). We start with the study of normal behavior
scenarios only and tune parameters so as to minimize the FP
rate of our approach. Then, we study the alarms raised in
presence of faultloads, and tune parameters so as to maximize
the detection power (increase precision and recall, and decrease
detection latency).

1) Study of normal behavior datasets: We first perform a
coarse grain tuning of the window size over the four datasets of
normal behavior workloads. We find that considering a window
size over 40, the attributes means are too much shifted from
the actual value (in other words, the lag is too important), and
the FP rate starts increasing over 10%. Therefore we set the
tuning range of mw size in [8; 40].

Then, we consider the tuning of W for Datasets (1), (2),
and (3). As expected, results show that the FP rate is inversely
proportional to W . However, the larger W is, the worst our
detection power is expected to be during the study of datasets
with faultloads. Indeed, the detection latency is systematically
reduced by the waiting of W updates to raise an alarm (see
next subsection VI-B2). Accordingly, we experimentally find
a range of W values that encompasses the W values that
can achieve a FP rate lower than 15%: [1; 4]. While varying
mw size between 8 and 40 and W for both of its range
endpoints, our approach successfully leads to a small FP rate
between 0 and 4.2% for Dataset (1) and (2), and between 0 and
1.21% for Dataset (3). We note that the larger mw size is, the
more local variations are attenuated. Consequently, it leads to
lower FP rates in cases of stable attributes values. Table II and
Table III, respectively present the FP rates for Datasets (1) and
(3). Each column corresponds to the FP rate of one counter
category. We record similar results for Dataset (2) compared
to Dataset (1).

TABLE II. FALSE POSITIVE RATE (IN %) FOR DATASET (1)
ACCORDING TO COUNTER CATEGORIES FOR N = 4.

W mw size CPU Disk IP Memory TCP

1
8 0 4.2 3.6 1.4 0

20 0 0.8 1.2 0 0
40 0.4 1.0 0.4 0.7 0.7

4
8 0 2.7 2.6 0 0

20 0 0.3 0.8 0 0
40 0 0.1 0.1 0 0

TABLE III. FALSE POSITIVE RATE (IN %) FOR DATASET (3)
ACCORDING TO COUNTER CATEGORIES FOR N = 4.

W mw size CPU Disk IP Memory TCP

1
8 7.4 11.4 12.1 0 0

20 0 0.4 0 0.5 5.6
40 1.5 1.5 1.1 1.1 1.8

4
8 4.0 9.2 8.8 0 0

20 0 0 0 0 4.9
40 0 0 0 0 0

From this point forward, we perform the tuning of N for
Datasets (1), (2), and (3), but only present results for Dataset
(1) as the study of the other two datasets leads to the same
conclusion. We chose the same value of N for both attributes
thresholds (see Equation 3). W = 1 and mw size= 40 both
minimize the FP rate, therefore we select these values while
varying N . Results are presented in Table IV. They show a
coherent decrease of the FP rate as the warning coefficient is
being increased, since the threshold is proportional to N . The
FP rates vary between 70% for N = 1, and 0 for N = 5. We
record that the FP rate is acceptable from N = 3, with a mean
of 3.1%. We should keep in mind that the detection threshold
of attributes (see Equation 3) is proportional to N . Therefore,
its increase will lead to higher False Negative rates in datasets
with faultloads. Thus, we select a trade off value of N = 4.

TABLE IV. FALSE POSITIVE RATE (IN %) FOR DATASET (1)
ACCORDING TO COUNTER CATEGORIES FOR mw size = 40, ANDW = 1.

N CPU Disk IP Memory TCP
1 71 71 66 61.3 60.4
2 17.7 17.5 17.3 17.8 14.8
3 2.7 3.9 2.4 3 2.5
4 0.4 1.0 0.4 0.7 0.7
5 0 0.2 0.1 0 0

Finally, Table V presents the FP rates for the individual
study of Dataset (4), using the aforementioned selected values:
N = 4, mw size = 40, and W = 1. We record that it leads to
higher FP rates, compared to Datasets (1), (2), and (3), with an
FP rate between 6.1% to 22.5%. It is linked to the fast change
in the number of queries sent to our system in this dataset.

TABLE V. FALSE POSITIVE RATE (IN %) FOR DATASET (4)
ACCORDING TO COUNTER CATEGORIES FOR N = 4, mw size = 40, AND

W = 1.

N CPU Disk IP Memory TCP
4 6.1 19.4 22.5 10.9 6.4

2) Study of datasets with faultload: The following presents
the tuning of mw size, with N = 4, W = 1, and mw size
in (8, 20, 40). Figure 5 and Figure 6 respectively present the
precision and recall obtained for Dataset (5), for the detection
of all types of anomalies, and for the sub stream categories
which achieve both a precision and recall higher than 75% for

8



Fig. 5. Precision of detection for Dataset (5) with standard deviation, by sub stream categories, for mw size ∈ (8, 20, 40), with N = 4, and W = 1.

Fig. 6. Recall of detection for Dataset (5) with standard deviation, by sub stream categories, for mw size ∈ (8, 20, 40), with N = 4, and W = 1.

Fig. 7. Detection latency for Dataset (5) with standard deviation, considering a 15sec monitoring period, for mw size ∈ (8, 20, 40), with N = 4, and W = 1.

at least one value of the range of mw size. We record similar
results for Dataset (6). In both datasets, the IP sub stream
category do not perform good enough precision and recall and
it is not represented in the figures. The corresponding detection
latencies are presented in Figure 7.

We observe that our approach enables us to detect all
anomalies thanks to the characterization attributes of at least
one sub stream category. These anomalies are detected with
fair precision and recall, i.e., between 75 and 98%. Globally,
the detection power tends to be better as the mw size decreases,
that is to say it is the opposite tendency of the FP rates
(see subsection VI-B1). For mw size ∈ [8;20], we achieve a
precision between 99 and 94%, and recall between 99 and
85%. Accordingly, we recommend to use a trade off value for
mw size which would be 20.

In more details, we identify that the CPU, disk, and TCP
sub stream categories are sufficient to detect all anomalies

with enough precision and recall. Thus, our approach has the
aptitude to perform without the knowledge of application spec-
ification (here MongoDB), as it does not hinge on monitoring
data directly related to it, but only on OS related counters.

Besides, we also notice that the injection of anomalies of a
given type may be detected by several sub stream categories.
For instance, the injections of memory anomalies are detected
by all sub stream categories. This is due to the escalation of
anomalies effects. In real case scenarios, memory anomalies
may be linked to faulty tasks, either created by the user’s
application or by the OS, that are consuming CPU resources
for instance. Also, an anomaly in a program with network
sockets can potentially result (by error propagation) in bad
packet formations, and thus be detected by the TCP sub stream
category.

With respect to the detection latency, we observe short
latency (≤ 1min) for the detection of injections by the CPU,

9



the memory, and the disk sub stream categories, and also by the
TCP category for memory anomalies, given a 15sec monitoring
period. We record a detection latency between 1 and 2.3min
for latency and packet loss anomalies detected by the TCP
category.

Finally, we observe that the IP counter category cannot
perform sufficient precision nor recall for the detection of any
type of anomaly. Further analysis led us to the conclusion that
the IP counter category has too high variability metrics. The
same point can be noted for the TCP counter category even if it
still performs good enough detection power with the provided
parameters configuration. Indeed, network related metrics has
high variability. Retrospectively considering the tuning of the
first set of parameters, we recommend using a larger tneighbor
(the tolerated threshold for the assignment of an observation
to a cluster) for the specific update of the TCP and IP counter
categories. Since metrics of these categories seem to be highly
changing in short periods of time, a higher tneighbor for
this specific sub stream category should lead to results with a
variability similar to the one of other sub streams.

C. Discussions

1) What recovery time between anomaly injections?: Dur-
ing experimentations, we noticed that after an injection and
without any external recovery action, the metrics values of
the VM being injected are slowly auto-recovering from the
effects of the injection. A certain recovery time is needed to
dissipate the effects of anomalies injected (we remind that we
run experimentation in worst case scenarios with no VM restart
and anomaly injections effects might never totally dissipate).
The recovery time is illustrated in Figure 8. It corresponds to
the time between the end of an injection and the time at which
our attributes stabilize back to a new mean value. Note that
the new mean value of the attributes may not be the same
as before the injection, since we do not restart the VMs after
injections and errors might accumulate.

t

#injection

t

1

0

attribute
value

mean before
injection

mean after
injection

recovery
time

injection

Fig. 8. Recovery time for an attribute value after one injection.

We experimentally find that 110 observations (i.e., 30min
with a 15sec monitoring period) corresponds to the worst
number of instances needed to get either one attribute to
stabilize to a new mean value after an injection. This number
depends on both the type of anomaly and the attribute being
considered. For example, we record that regardless of the injec-
tion duration, it takes around 10 instances for both attributes to
stabilize after the injection of a CPU anomaly but around 110

instances considering a memory anomaly. As a consequence,
in Dataset (5), two consecutive anomalies injected in a single
VM are separated by more than 30min (around 3h apart).

Lastly, our approach raises alarms during the recovery time,
and while validating our approach such alarms are considered
to belong to the same anomaly.

2) How to differentiate workload changes and anomalies?:
While questioning the difference between workload changes
and anomalies, we observed that the characterization attributes
are slower to get back to a stable value after an injection than
when they are altered by variations of queries rates such as
in Workloads (3) and (4). This short stabilization time while
running Workloads (3) and (4) implies few deviations of the
attributes values, and led us to obtain low FP rates for the
corresponding datasets. This is explained by variations in query
rates smoothly and slightly impacting metrics.

Anomalies, on the other hand, greatly impact metrics.
Counters like memory mapping for instance, are greatly im-
pacted by memory anomalies but hardly by query rates varia-
tions. This particular example is due to the fact that query rates
variations do not influence the mapping of the database files
in memory but anomalies do. Indeed, MongoDB automatically
uses all free memory of VMs regardless of the queries rates.
Memory anomalies reduce the free memory space and impact
the MongoDB system behavior.

3) Is one attribute enough for detection?: We tested the
detection power of our approach on Datasets (1) and (5) by
considering respectively the alarm output of the DtR attribute,
the CS attribute, and also their joint alarm output, i.e., a
warning is raised when at least one attribute raises a warning
or when both attributes raise a warning. In terms of detection
latency we find that no injection is detected quicker by an
attribute in particular. Besides, there is no attribute that would
be best suited to the detection of one particular anomaly or to
the detection of anomalies in one particular counter category.
The joint use of both attributes by raising a warning when
either one of the attribute raises a warning provides the best
results.

VII. RELATED WORK

As modern software systems always grow in complexity, it
became all the more complex to get an accurate understanding
of systems during runtime [19], [23]. The dynamic of a system
runtime can be reflected by several means like the systems logs
[20], [32], kernel and file system traces [22], or the monitoring
data [13], [27]. In such a work as Dtrace [8], the authors insert
probes of monitoring data and actions to be executed when
probes are matched, into an application being troubleshooted.
However the probes definition is fastidious and makes such
rule-based efforts unsuited for data driven exploration in large
scale systems. The monitoring of clouds is surveyed in [1].

In order to deal with unknown systems behaviors and
potential anomalies, administrators may used reactive methods
as anomaly detection. Anomaly detection aims at identifying
patterns in data that do not fit an expected behavior [10].
Broadly, the identification of specific data patterns can be
performed by means of supervised or unsupervised methods.
Supervised methods require prior knowledge about systems

10



and labeled training datasets. [11], [24], [28], [32] are such
examples, respectively working on detecting anomalies by
means of Tree-Augmented Bayesian Networks (TAN), Princi-
pal Component Analysis (PCA) associated with decision trees,
Semi-Hidden Markov models, and Two-dependent Markov
models used conjointly with TAN. Another example is our
previous work [27], applying a Support Vector algorithm for
in scale-out storage systems.

Since it is not always possible to acquire samples of anoma-
lous behavior data and label them in a training dataset, such
works as UBL [13] exploit unsupervised methods. With regard
to our consideration that anomalies are early behaviors leading
to failures, UBL well performs the detection of unknown
anomalies in clouds with Self Organizing Map representing
virtualized resources by means of neurons. However, normal
behavior profiles are not easily updated in an online fashion.
In [25], the authors introduce an algorithm for the case of un-
labeled data that learns a single data boundary from a training
dataset representing the normal behavior of a system (i.e., one
class classification). They consider that a data item that lies
outside the boundary that has been learned is anomalous. In
our study, we do not rely on one class classification or methods
as UBL, and propose an approach that tackless during runtime
the dynamic characteristic of systems, whose normal behaviors
in the future depend on unstable environments. Data stream
clustering algorithms are data-driven approaches that can deal
with dynamic systems, and perform clustering on data provided
in an incremental manner. A survey is presented in [2].

It is worth to be mentioned that with a high-dimensional
data space comes a potential sparsity of data [7], i.e., the
difference between two data points is almost null. As a
results, when high-dimensional data spaces are not handled
properly, the relevance of anomaly detection approaches can
decrease [28]. Several approaches deal with reducing data
space dimensionality such as in [16] using PCA, or in [15], by
means of two methods for metric selection and combinations.
These works aim for the enhancement of methods analyzing
large datasets such as anomaly detection. Nevertheless, they
lead to new dimensions which interpretation is fastidious
[5]. Some data stream clustering algorithms tackle the high
dimensional datasets issues in their implementation. In [5] the
authors well tackle high-dimensionality with the data stream
clustering algorithm CLIQUE, by automatically locating high-
density clusters in dimension subspaces. In our study, we do
not use dimension reduction techniques. As in [13], [28] we
divide high-dimensional systems data streams into VMs data
streams, and in comparison we then again partition VMs data
streams into lower-dimension sub streams whose dimensions
respectively correspond to VMs components. In enables us to
ease root cause analysis when anomalies are detected.

In related works, clustering algorithms are often used as a
task for a first pre-processing in other mining processes or clas-
sification problems [33]. In comparison, our approach proposes
an online characterization of clusters based on the evaluation
of two attributes to deal with clusters global evolution, and it
is to be used conjointly with a simple data stream clustering
algorithm. Considering works on the evolution of clusters
movements, the data stream clustering algorithm CluStream [3]
includes a clusters global evolution study in itself. However,
it is processed in an offline component, and it needs prior

knowledge of the number of clusters to be found in data.
Thus, it supposes prior knowledge about system specification.
MovStream [29] is an approach for the study of clusters move-
ments but performed individually. In our study, we assume
that individual clusters might be too numerous and evolving
too fast to handle them individually with individual significant
implication. Examples of algorithms that can be used in our
approach are D-Stream [30] and DenStream [9], two well
known density-based data stream clustering algorithms. They
do not require a parameter corresponding to a number of
clusters. Also, in [17], the authors present an implementation
of threshold nearest neighbor data stream clustering algorithm
that also does not make use of such a parameter.

As for the validation of a large body of data stream
clustering methods, they are performed on synthetic datasets
and real datasets from major fields like charitable donations
(KDD’98) [9], and network intrusion detection (KDD’99) [30].
In comparison, we work on datasets from a virtualized infras-
tructure testbed. To our knowledge, data stream clustering has
not been used by means of global characterization of clusters
evolution for online anomaly detection in virtualized cloud
environment in previous published work.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a new approach for online
anomaly detection based on data stream clustering and the
characterization of the clusters global evolution by means of
two numerical attributes. This approach notably deals with
relentless changes in systems normal behaviors during runtime
and detect unknown anomalies. We presented a simple imple-
mentation of it considering a MongoDB application deployed
on a VMware based experimental testbed, and shown its
performances using injections of anomalies.

The detection is based on the processing of the monitoring
data streams of the VMs composing a system. Such streams
are analyzed separately, and each one is being partitioned
into sub streams of lower dimensions that correspond to
group of counters related to the same VM component. The
parallel clustering of each VM sub streams makes our approach
scalable to systems of any number of VMs. Moreover, our
approach is generic in that it does not require any specification
of the systems being analyzed. This generic functioning, which
is a prerequisite for applications to cloud environments, makes
it applicable to other anomaly detection environments.

Our implementation achieves between 75 and 98% of
precision and recall for the detection of anomalies such as
CPU consumption, memory leak, anomalous number of disk
access, network latency and packet loss, and with detection
latency less than 1min for all our anomalies except latency
anomalies that are detected within a mean of 2min.

As for future work, an extensive study about other types
of MongoDB workloads (write and update queries) should
be carried out. We also intend to apply our approach to the
study of another example of cloud application. Finally, we
aim to work on an entity in charge of correlating the system
VMs warnings depending on which VMs and on which sub
streams anomalies originate. Indeed both VMs roles (router,
data replica...) and anomalous components may be consider to
raise an alarm.

11



ACKNOWLEDGMENTS

This work has been carried out in the context of the Secured
Virtual Cloud project, a French initiative to build a secured and
trustworthy framework for cloud computing.

REFERENCES

[1] G. Aceto, A. Botta, W. de Donato, and A. Pescap, “Cloud monitoring:
A survey,” Computer Networks, vol. 57, no. 9, pp. 2093 – 2115, 2013.

[2] C. C. Aggarwal, “A survey of stream clustering algorithms,” in Data
Clustering: Algorithms and Applications, 2013, pp. 231–258.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, ser.
VLDB ’03. VLDB Endowment, 2003, pp. 81–92.

[4] ——, “A framework for projected clustering of high dimensional data
streams,” in Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30, ser. VLDB ’04. VLDB
Endowment, 2004, pp. 852–863.

[5] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining
applications,” SIGMOD Rec., vol. 27, no. 2, pp. 94–105, Jun. 1998.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” Dependable
and Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33,
2004.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
nearest neighbor meaningful?” in Database Theory ICDT99, ser.
Lecture Notes in Computer Science, C. Beeri and P. Buneman, Eds.
Springer Berlin Heidelberg, 1999, vol. 1540, pp. 217–235.

[8] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 2–2.

[9] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in In 2006 SIAM Conference on
Data Mining, 2006, pp. 328–339.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[11] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase,
“Correlating instrumentation data to system states: a building block for
automated diagnosis and control,” in Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation -
Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX Association,
2004, pp. 16–16.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM symposium on Cloud computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154.

[13] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud
systems,” in Proceedings of the 9th International Conference on
Autonomic Computing, ser. ICAC ’12. New York, NY, USA: ACM,
2012, pp. 191–200.

[14] M. Dhingra, J. Lakshmi, S. Nandy, C. Bhattacharyya, and K. Gopinath,
“Elastic resources framework in iaas, preserving performance slas,” in
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference
on, June 2013, pp. 430–437.

[15] Q. Guan, C.-C. Chiu, Z. Zhang, and S. Fu, “Efficient and accurate
anomaly identification using reduced metric space in utility clouds,” in
Networking, Architecture and Storage (NAS), 2012 IEEE 7th Interna-
tional Conference on, June 2012, pp. 207–216.

[16] Q. Guan, Z. Zhang, and S. Fu, “Proactive failure management by
integrated unsupervised and semi-supervised learning for dependable
cloud systems,” in Availability, Reliability and Security (ARES), 2011
Sixth International Conference on, 2011, pp. 83–90.

[17] M. Hahsler and M. H. Dunham, “remm: Extensible markov model for
data stream clustering in r,” Journal of Statistical Software, vol. 35,
no. 5, pp. 1–31, 7 2010.

[18] A. C. Harvey, Forecasting, structural time series models and the Kalman
filter. Cambridge university press, 1990.

[19] G. Hoffmann, K. Trivedi, and M. Malek, “A best practice guide to
resource forecasting for computing systems,” Reliability, IEEE Trans-
actions on, vol. 56, no. 4, pp. 615–628, Dec 2007.

[20] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” in Dependable
Systems and Networks, 2006. DSN 2006. International Conference on,
June 2006, pp. 425–434.

[21] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation and experience,” Parallel
Computing, vol. 30, p. 2004, 2003.

[22] F. Ryckbosch and A. Diwan, “Analyzing performance traces using
temporal formulas,” Software: Practice and Experience, vol. 44, no. 7,
pp. 777–792, 2014.

[23] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Comput. Surv., vol. 42, no. 3, pp.
10:1–10:42, Mar. 2010.

[24] F. Salfner and M. Malek, “Using hidden semi-markov models for
effective online failure prediction,” in Reliable Distributed Systems,
2007. SRDS 2007. 26th IEEE International Symposium on, Oct 2007,
pp. 161–174.

[25] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul.
2001.

[26] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d.
Carvalho, and J. a. Gama, “Data stream clustering: A survey,” ACM
Comput. Surv., vol. 46, no. 1, pp. 13:1–13:31, Jul. 2013.

[27] G. Silvestre, C. Sauvanaud, M. Kaâniche, and K. Kanoun, “An
anomaly detection approach for scale-out storage systems,” in
26th International Symposium on Computer Architecture and High
Performance Computing, Paris, France, Oct. 2014.

[28] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive performance anomaly prevention for virtualized
cloud systems,” in Distributed Computing Systems (ICDCS), 2012 IEEE
32nd International Conference on, 2012, pp. 285–294.

[29] L. Tang, C. jie Tang, L. Duan, C. Li, Y. xi Jiang, C. qiu Zeng, and
J. Zhu, “Movstream: An efficient algorithm for monitoring clusters
evolving in data streams,” in Granular Computing, 2008. GrC 2008.
IEEE International Conference on, Aug 2008, pp. 582–587.

[30] L. Tu and Y. Chen, “Stream data clustering based on grid density
and attraction,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 3, pp.
12:1–12:27, Jul. 2009.

[31] J. Wang, P. Neskovic, and L. Cooper, “Training data selection for
support vector machines,” in Advances in Natural Computation, ser.
Lecture Notes in Computer Science, L. Wang, K. Chen, and Y. Ong,
Eds. Springer Berlin Heidelberg, 2005, vol. 3610, pp. 554–564.

[32] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 117–132.

[33] Y. Yogita and D. Toshniwal, “Clustering techniques for streaming data-
a survey,” in Advance Computing Conference (IACC), 2013 IEEE 3rd
International, Feb 2013, pp. 951–956.

12


