
HAL Id: hal-01211772
https://hal.science/hal-01211772

Submitted on 5 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tejo: A Supervised Anomaly Detection Scheme for
NewSQL Databases

Guthemberg Silvestre, Carla Sauvanaud, Mohamed Kaâniche, Karama
Kanoun

To cite this version:
Guthemberg Silvestre, Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun. Tejo: A Supervised
Anomaly Detection Scheme for NewSQL Databases. 7th International Workshop on Software Engi-
neering for Resilient Systems (SERENE 2015), Sep 2015, Paris, France. �10.1007/978-3-319-23129-
7_9�. �hal-01211772�

https://hal.science/hal-01211772
https://hal.archives-ouvertes.fr


Tejo: a supervised anomaly detection scheme for
NewSQL databases

Guthemberg Silvestre1,2, Carla Sauvanaud1,3, Mohamed Kaâniche1,2, and
Karama Kanoun1,2

1 CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

3 Univ de Toulouse, INSA de Toulouse, LAAS F-31400 Toulouse, France
{gdasilva,csauvana,mohamed.kaaniche,karama.kanoun}@laas.fr

Abstract. The increasing availability of streams of data and the need
of auto-tuning applications have made big data mainstream. NewSQL
databases have become increasingly important to ensure fast data pro-
cessing for the emerging stream processing platforms. While many archi-
tectural improvements have been made on NewSQL databases to handle
fast data processing, anomalous events on the underlying, complex cloud
environments may undermine their performance. In this paper, we present
Tejo, a supervised anomaly detection scheme for NewSQL databases. Un-
like general-purpose anomaly detection for the cloud, Tejo characterizes
anomalies in NewSQL database clusters based on Service Level Objec-
tive (SLO) metrics. Our experiments with VoltDB, a prominent NewSQL
database, shed some light on the impact of anomalies on these databases
and highlight the key design choices to enhance anomaly detection.

1 Introduction

Big data has transformed the way we manage information. As an unprecedented
volume of data has become available, there is an increasing demand for stream
processing platforms to transform raw data into meaningful knowledge. These
velocity-oriented platforms may rely on cloud databases to provide fast data man-
agement of continuous and contiguous flows of data with horizontal scalability.
Therefore, cloud databases represent an important technology component for a
broad range of data-driven domains, including social media, online advertisement,
financial trading, security services, and policy-making process.
The architecture of row-store-based relational databases has evolved to meet the
requirements of big data on the cloud [19], like elasticity, data partitioning, shared
nothing, and especially high performance. The so-called NewSQL databases offer
high-speed, scalable data processing in main-memory with consistency guarantees
through ACID (atomicity, consistency, isolation, and durability) transactions.
To ensure fast data management, NewSQL databases rely on built-in, fault-
tolerance mechanisms, like data partitioning, replication, redundant network
topologies, load balancing, and failover. Although these mechanisms handle fail-
stop failures successfully, many other cloud performance anomalies may remain
unnoticed [20]. For instance, Do et al. [8] found that a single limping network
interface can cause a three orders of magnitude execution slowdown in cloud



databases. Therefore, we believe that the dependability of NewSQL databases
might be improved by detecting these anomalies.

This paper proposes Tejo, a supervised anomaly detection scheme for NewSQL
databases. We make three specific contributions. First, we introduce a scheme
for analysing performance anomalies using fault injection tools and a supervised
learning model. Second, we shed some light on the impact of performance anoma-
lies in NewSQL databases. Third, we highlight the importance of selecting the
proper features and statistical learning algorithm to enhance the anomaly detec-
tion efficiency on these databases.

In the next section, we lay out the recent trends in data stream processing and
anomaly detection with statistical learning. Following this, in Section 3 we de-
scribe the design of Tejo, in particular its components and its two-phased func-
tioning, namely learning and detection phase. In Section 4 we evaluate VoltDB,
a prominent NewSQL database, using Tejo. In our experimental setup, VoltDB
served two workloads, whose data was partitioned and replicated across a cluster
of virtual machines (VMs). Finally, we discuss the related work in Section 5, and
conclude in Section 6.

2 Background

2.1 Big data stream processing and NewSQL databases

To processing continuous streams of big data, we consider the emerging stream
processing platforms [15], as depicted in Figure 1. In these platforms, streams
of data are processed by two complementary systems: the fast stream processing
system and big archival engine. The former manages high-speed data streams to
provide real-time analytics and data-driven decisioning, providing services like
fraud heuristics, market segmentation, or optimal customer experience; while the
later computes huge volumes of historical data for long-term data analytics, such
as scientific results, seasonal predictions, and capacity planning. Big archival en-
gines are built on data warehouse technologies like Hadoop and column-stores.
In contrast, fast stream processing technologies are still emerging. Among these
technologies are NewSQL databases like VoltDB [23] and S-Store [4]. To sup-
port incremental, stateful ingest of data streams into a scalable system, NewSQL
databases provide low-latency via in-memory distributed processing and a strong
support for transaction management with ACID guarantees. However, as NewSQL
databases are deployed on cloud infrastructures to scale to large clusters, cloud
performance anomalies may undermine their capacity of fast stream processing.

stream sources

real-time
applications,

messages, logs,
image data, IoT, 
click streams,...

fast stream processing system

ingest

real-time
analytics

data-driven
decisioning export

NewSQL 
system

big archival engine

exploratory
analysis

reporting

historical
data

Fig. 1: The emerging stream processing platforms for big data.



2.2 Anomaly detection using statistical learning

Statistical learning has been a widely used technique to predict performance
anomalies in large-scale distributed systems [5]. It makes prediction by processing
feature vector x with a fixed number of dimensions d (x ∈ X ⊂ Rd) from the input
space X . There are two main methods: supervised and unsupervised learning.
The supervised learning method couples each input with a y, a label, from the out-
put space Y. To learn, we have N pairs (x, y) drawn independent and identically
distributed (i.i.d.) from a fixed but unknown joint probability density function
Pr(X,Y ). This method searches for a function f : X → R in a fixed function class
F in the learning dataset. State-of-the-art algorithms, like random forests [2], aim
to find f? in F with the lowest empirical risk f? ∈ arg minf∈F remp(f), where

remp(f) = 1
N

∑N
i=1 I{f(x) 6=yi} is computed over the training set, and I{.} is the

indicator function which returns 1 if the predicate {.} is true and 0 otherwise.
Similarly, an unsupervised learning method relies on N unlabelled samples hav-
ing probability density function Pr(X). Unlike supervised learning, predictions
provide insights into how the data is organized or clustered.
Most of the anomaly detection approaches for distributed systems are based on
a general-purpose, unsupervised learning method [13,14,12]. However, prediction
efficiency remains the main drawback of this method [16]. Results in our previous
work [21] confirm that a supervised learning method overcomes an unsupervised
one in cloud anomaly detection. In this work, we extend our supervised learning
model as a component of Tejo to classify anomalous VMs in four different classes.

3 Approach

Tejo comprises three components, namely a set of fault injection tools, a data
handler, and a learning model. These components interoperate into two distinct
phases: learning and detection phase. While the first phase allows us to evaluate
the performance of a NewSQL database under anomalies, the second permits the
detection of these anomalies. Figure 2 depicts the components and the two-phase
functioning of Tejo.

fault injection 
tools

learning
model

data
handler

NewSQL
database

monitoring
system

workload

training
dataset

performance
reports

Tejoreplayed/
benchmark

SLO

(a) Learning phase.

performance 
and

detection
reports

detection
dataset

alerts

fault injection 
tools

learning
model

data
handler

Tejo

NewSQL
database

monitoring
system

workload

(b) Detection phase.

Fig. 2: Tejo operates in two distinct phases: learning and detection phase.

3.1 The components of Tejo

Fault injection tools. To provoke performance anomalies, this component em-
ulates four categories of faulty events in VMs of a NewSQL database cluster.



Network faults. Communication issues are common in distributed systems. To
analyse their impact, we inject three types of network faults, namely packet loss,
network latency, and limping network. Packet loss and network latency emulates
interconnection issues, such as network partition. Limping network reproduces
anomalies previously observed by Do et al. [8], where the transmission rate of
limping network interface is smaller than the manufacturer’s specification.
Memory faults. As NewSQL databases fit the entire data to the main memory,
they become more vulnerable to anomalies in memory availability. To provoke
such anomalies, we make arbitrary amounts of main memory unavailable. As a
result, the database instance is likely to perform more costly disk I/O operations.
A typical example of this fault is a VM running out of memory due to a miscon-
figuration, memory leaking, overloading, or an unbalanced resource allocation.
Disk faults. Although most NewSQL databases manage data in main memory,
disk-intensive processes may have an impact of its performance. This category of
fault emulates an arbitrary number of jobs performing several disk operations,
including writes, reads, and file syncs.
CPU faults. CPU is a key resource in a virtual machine. As unattended number of
processes compete the database instance to CPU resources, they may undermine
the performance of the database cluster. The CPU fault emulates an arbitrary
number of jobs performing arithmetic operations to overload the VM cores.

The data handler. This component computes data from the monitoring system
(i) to collect the performance counters of a NewSQL database and (ii) to provide
data to characterize performance anomalies.
Collect the performance counters of a NewSQL database. The data handler sam-
ples monitoring data to collect the current state of the NewSQL cluster, as de-
picted in Figure 2. To this end, it frequently communicates with the monitoring
system to fetch raw monitoring data and to convert it into useful, aggregated
information. The content of the resulting aggregated information depends on the
aim of each functioning phase, learning or detection, detailed below.
Providing data to characterize performance anomalies. After aggregating samples
of monitoring data, the data handler organizes this data into feature vectors. These
vectors represent the state of the VMs of the database cluster or the workload.
The vectors are stored in datasets for performance analysis or anomaly detection.

The learning model. The learning model is at the heart of the Tejo scheme.
The purpose of this model, the so-called predictive task, is to characterize the
behaviour of VMs under performance anomalies. Given an i.i.d. sample (x, y),
described in Subsection 2, we model our predictive task as a classification problem,
whose inputs and outputs are defined as follows.
Inputs. We represent the input space x as a VM running a database instance. This
input data corresponds to a feature vector computed by the data handler compo-
nent. The size of the feature vector matters. In general, the higher the dimension
of this vector, the higher the predictive efficiency is. However, an increase in the
input dimension rises the computational cost of predictions.
Outputs. The supervision y associated to each input VM x is based on five possi-
ble classes, Y ∈ {0, 1, 2, 3, 4}, whose labels are normal, network-related anomaly,



memory-related anomaly, disk-related anomaly, and CPU-related anomaly respec-
tively. Depending on the phase of Tejo (detailed below), these labels are assigned
by either computing the training dataset or by a learning algorithm.

3.2 Two-phase functioning

Learning phase. In this phase, Tejo learns the behaviour of the database cluster
under anomalies and reports on its performance.
Requirements. As illustrated in Figure 2a, Tejo relies on an already existing mon-
itoring system to poll performance counters from both VMs and workload. To
measure the cluster-wide performance counters, we assume that the workload can
be replayed or run through a benchmark tool. We consider that Tejo’s analyst
specifies expected SLO metrics, such as average throughput and 99th percentile
latency. The analyst must also specify parameters of the fault campaign and
running experiments, including intensity and duration of each fault, number of
injections, and interval between consecutive fault injections.
Functioning. As the replayed/benchmark workload runs, the fault injection tool
performs a fault injection campaign to emulate performance anomalies. Mean-
while, performance counters from both the workload and VMs running the
database cluster are collected by the monitoring system and computed by the
data handler component. As the data handler computes the monitoring data in
feature vectors, it adds information about injected faults and labels. Labels cor-
respond to output classes of learning model and are added with respect to SLO
metrics. The feature vectors are then stored in the training dataset. After running
the workload and accomplishing the fault injection campaign, the learning model
computes the feature vectors of VMs from the training dataset.
Reports. Besides providing data to learn the behaviour of anomalous VMs, ana-
lysts can observe the impact of anomalies in the throughput and 99th percentile
latency. They may evaluate which anomalies cause SLO violations, gaining more
insight into the efficiency of existing fault-tolerance mechanisms.

Detection phase. In this phase, Tejo reports on the efficiency of the learning
model and performs anomaly detection in VMs at runtime.
Requirements. Similar to the training phase, Tejo relies on an existing monitoring
platform to gather data for predictions. It requires that the learning model has
already been trained as detailed in learning phase described above. We assume
that SLO targets and the workload are the same as those of the learning phase.
Functioning. While the NewSQL database serves the workload, the data handler
gathers the monitoring data and creates feature vectors of VMs in the detection
dataset. As soon as a new feature vector is created, the learning model computes
it to detect performance anomalies whenever they occur.
Reports. Tejo’s learning model predicts labels of incoming feature vectors. Then
alerts are generated about detected anomalies. These alerts may be handled by
the database to trigger recovery procedures. Besides generating alerts, it reports
on the efficiency of the learning model, including comparing different learning
algorithms, ranking performance counters with regard to their importance, calcu-
lating the computational cost, and verifying model over-fitting or under-fitting.



4 Evaluation

We evaluate VoltDB, a NewSQL database, with Tejo. First, we describe our ex-
perimental setup. Second, we measure the impact of performance anomalies in a
VoltDB cluster. Finally, we report on the predictive efficiency of these anomalies.

4.1 Experimental setup

We performed our experiments on a private cloud consisting of two Dell Pow-
erEdge R620 hosts. Each host has two-core Xeon E5-2660 at 2.2 GHz, 64 GB of
memory, and two 130 GB SATA disks. Hosts are connected by Gigabit Ethernet.
We chose VMware as the virtualization technology and ESXi 5.1.0 as hypervisor.
Figure 3 depicts our private cloud, highlighting the consolidation of VMs. Each
VM of the NewSQL database cluster has 4 GB of memory, 4 CPU cores, a disk
of 16 GB, and is connected to a 100Mbps virtual network.

Fig. 3: Experimental setup.

Components of Tejo and monitoring system. As fault injection tools, we
chose Dummynet (v3.0) [3] for network faults and stress-ng (v0.01.30) 4 for disk,
memory, and CPU faults. These tools provide a flexible, easy-to-reproduce way
to inject arbitrary fault intensities. Table 1 lists the parameters of our fault in-
jection campaign. The data handler component was implemented as a collection
of python/shell scripts along with PostgreSQL database for datasets. We im-
plemented our learning model using the Scikit-learn library [17], from which we
evaluated three learning algorithms: random forests [2], gradient boosting [10],
and SVM [7]. We used Ganglia as monitoring system. Our setup required addi-
tional Ganglia plug-ins for collecting performance counters of the workload and
VoltDB. Every 15 seconds, we collected 147 performance metrics of each VM, and
the average throughput and the 99th percentile latency from the served workload.

NewSQL database and workloads. We evaluated VoltDB (v4.x) as NewSQL
database. We set the number of partitions VoltDB to 18 across a cluster of six
VMs with failover mechanisms enabled. We varied the replication degree k from
two to zero (i.e., replication disabled). We evaluated VoltDB with two workloads,
the popular TPC-C benchmark for OLTP 5, and Voter 6, a workload derived from
leaderboard maintenance application for Japanese version of the “American Idol”.

4 stress-ng. http://kernel.ubuntu.com/~cking/stress-ng/
5 TPC-C benchmark (v5.10). http://www.tpc.org/tpcc/
6 Voter. https://github.com/VoltDB/voltdb/tree/master/examples/voter.

http://kernel.ubuntu.com/~cking/stress-ng/
http://www.tpc.org/tpcc/
https://github.com/VoltDB/voltdb/tree/master/examples/voter.


Table 1: The key parameters of Tejo for our fault injection campaign.
Fault Intensity ranges Unit

Light Medium Heavy

Network
Pkt loss 1.6-3.2 4-5.6 6.4-8 %
Latency 8-20 26-38 44-56 ms.
Limping 85-65 56-38 29-11 Mbps

Memory 73-79 82-88 91-97 %
Disk 10-20 25-35 40-50 writers
CPU 19-39 49-69 79-99 %

4.2 Evaluating performance anomalies in VoltDB

We run Tejo in learning mode(Subsection 3.2) to evaluate the impact of faults
in VoltDB. We selected a dataset containing 200,000 samples, including perfor-
mance counters of VMs and the workload. Data was evenly collected across the
two evaluated workloads. Figure 4 shows the impact of faults on the performance
of VoltDB with a replication degree k=2. For each workload, they show the result-
ing performance anomalies on the average throughput and 99th percentile latency,
including mean values without faults, the expected SLO metrics, and 95% confi-
dence interval for performance metrics under fault injection.

Overall, the impact of increasing levels of faults was higher on the 99th percentile
latency than the average throughput. For instance, Figure 4a shows that the 99th

percentile latency of VoltDB serving Voter workload soars under faults, especially
for network and memory faults. Although the mean of the 99th percentile latency
without fault was 25 milliseconds, it reaches 945 milliseconds under memory faults.
Similar results were found as VoltDB served TPC-C workload. However, we no-
ticed that TPC-C has a greater performance degradation under memory faults
(Figure 4c). The reason for that is the main memory usage of each workload.
While Voter uses 25% of main memory from each VM, TPC-C utilises almost
50%. Consequently, TPC-C is more sensitive to memory faults than Voter. Disk
faults had a limited impact of the performance of VoltDB, slightly higher on TPC-
C than Voter due to a greater need to synchronize data from the main memory
to disk (Figure 4c). Surprisingly, CPU faults had no impact on the performance
of both workloads, even under heavy fault intensity (i.e., 99% of CPU usage).

To shed some light on the capacity of data replication to mitigate the impact of
performance anomalies, we varied the replication degree k of VoltDB from two to
zero (i.e., replication disabled). Figure 5 shows a summary of the results of the
impact of faults with medium intensity on VoltDB. In general, our results suggest
that higher the replication degree the worse is the performance. The reason is
that NewSQL databases as VoltDB strive to provide ACID properties both for
concurrent transactions and for replicas. The impact of a fault on a single node
spreads across the replicas on the cluster more easily, worsening its performance.



Mean value 
without fault

SLO

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Light Medium Heavy
Fault intensity

La
te

nc
y 

(m
ill

is
ec

on
ds

)

fault CPU Disk Memory Network

(a) 99th percentile latency w/ Voter.

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

Light Medium Heavy
Fault intensity

T
hr

ou
gh

pu
t (

re
qu

es
ts

 p
er

 s
ec

on
d)

fault CPU Disk Memory Network

(b) Average throughput w/ Voter.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Light Medium Heavy
Fault intensity

La
te

nc
y 

(m
ill

is
ec

on
ds

)

fault CPU Disk Memory Network

(c) 99th percentile latency w/ TPC-C.

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

Light Medium Heavy
Fault intensity

T
hr

ou
gh

pu
t (

re
qu

es
ts

 p
er

 s
ec

on
d)

fault CPU Disk Memory Network

(d) Average throughput w/ TPC-C.

Fig. 4: Performance anomalies in VoltDB as serving Voter and TPC-C, with a
replication degree k=2.

Mean value 
without fault

SLO

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

CPU Disk Memory Network
Fault

La
te

nc
y 

(m
ill

is
ec

on
ds

)

Replication k=2 k=1 k=0

(a) Voter workload.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

CPU Disk Memory Network
Fault

La
te

nc
y 

(m
ill

is
ec

on
ds

)

Replication k=2 k=1 k=0

(b) TPC-C workload.

Fig. 5: Medium fault impact on VoltDB with different k values.



4.3 Predictive efficiency analysis

We evaluated the predictive efficiency of learning model of Tejo with three learning
algorithms, random forests, gradient boosting, and SVM. To this end, we used
data derived from the dataset of Subsection 4.2. The derived data was computed
by the Tejo’s data handler, as described in Subsection 3.2. Each new sample had
147 features (d = 147, as discussed in Subsection 2.2) and a label corresponding to
a class of Tejo’s learning model (see Subsection 3.1). Recall that anomaly-related
labels are only assigned to samples that violated the SLO. The resulting dataset
contained 10,000 samples for each evaluated workload, including 5,000 of samples
representing anomalous events in VMs. To validate the learning model properly,
this dataset was split in two uneven parts: three-fifths of data for training the
model and two-fifths for testing its predictive efficiency. We used two well-known
measures to evaluate the learning model efficiency, precision and F1-score. We
also computed the overhead of predictions with each learning algorithm.

Table 2 summarizes our results. Regardless the learning algorithm, the learning
model of Tejo was able to detect 96% of anomalies properly. It performed better
with random forests algorithm, whose overall score was 0.99 (up to 1) for both
precision and F1-score measures. Random forests also provided the lowest over-
head for anomaly detection, requiring less than 30 microseconds for a prediction.
The SVM algorithm had the worst predictive performance, particularly to detect
memory-related anomalies. SVM also incurred the highest overhead for anomaly
detection with our model, performing two orders of magnitude slower. According
to Friedman [10], this happens because SVM shares the disadvantages of ordi-
nary kernel methods, such as poor computational scalability and inability to deal
with irrelevant features. In contrast, boosting methods, like random forests and
gradient boosting, overcome these issues by using a linear combination of (many)
trees.

Table 2: Anomaly detection performance with different learning algorithms.

Algorithm Class
workload

voter TPC-C
precision F1-score overhead precision F1-score overhead

Random
Forests

Normal 0.99 0.99
23µs

0.98 0.99
26µsNetwork 0.98 0.98 0.99 0.98

Memory 0.99 0.98 0.98 0.99
Disk 0.99 0.98 1.00 1.00

Gradient
Boosting

Normal 0.99 0.99
30µs

0.96 0.98
33µsNetwork 0.99 0.99 0.99 0.96

Memory 0.99 0.99 0.98 0.99
Disk 1.00 1.00 1.00 1.00

SVM
Normal 0.98 0.97

4294µs
0.98 0.98

5441µsNetwork 0.97 0.96 0.99 0.97
Memory 0.85 0.91 0.87 0.93

Disk 1.00 0.97 1.00 1.00



In addition to the predictive efficiency evaluation, Tejo allows us to analyse the
importance of features using boosting methods. Figure 6 plots the importance of
features of the Tejo’s learning model, where the sum of all features importances
is equal to one. Figure 6a shows the 10 most-important features for anomaly de-
tection in VoltDB serving Voter, seven out of 10 corresponding to performance
counters of TCP layer of VMs. This suggests that the peer-to-peer communica-
tion pattern among the VoltDB cluster is key for anomaly detection. To provide
insights into all 147 features, we organized them into seven distinct categories and
measured their grouped importance, as depicted in Figure 6b. Indeed, it confirms
that features from TCP performance counters form the main category, accounting
for more than half the total of importance (0.5345). Surprisingly, the category of
VoltDB features had the lowest importance for the anomaly detection task. This
suggests that the contribution of database-specific features is negligible, therefore
our learning model is likely to have similar predictive performance with different
NewSQL databases. Results for TPC-C workload showed a similar trend.

0.086841
0.084929

0.081898
0.067386

0.055752
0.051982

0.048095
0.041449

0.031489
0.026232

TCP Sack reorder
TCP Syn Recv

TCP md5 unexpected
TCP Sack shifted

IO writes
Memory mapped

TCP resets
TCP conn active

Memory free
TCP PAWS

0.00 0.05 0.10
Feature Importance

(a) The 10 most-important features.

0.5345

0.2326

0.1381

0.0327

0.0271

0.0226

0.0125

TCP (66)

Disk (20)

Memory (12)

Other system (9)

Other network (17)

CPU (5)

VoltDB (18)

0.0 0.2 0.4 0.6 0.8
ImportanceC

at
eg

or
y 

(n
um

be
r 

of
 fe

at
ur

es
)

(b) Importance of features categories.

Fig. 6: Analysis of the importance of features for anomaly detection.

5 Related Work

Fault tolerance in distributed databases. Distributed databases use repli-
cation and advanced request scheduling to improve data availability. Bayou [18]
is data storage that relies on replication to ensure data availability against fail-
stop failures, but they are not able to deal with performance anomalies. Skute [1]
provides an adaptive replication scheme that mitigates the impact of performance
anomalies. However, it does not provide mechanisms to ensure high data availabil-
ity, such as high throughput and bounded latency. Emerging cloud databases, like
VoltDB and MongoDB, offer high data availability using enhanced main memory
data structures [22]. But, our findings of this and previous study [21] show that
performance anomalies on the cloud, including malfunctioning network cards, disk
and main memory, can undermine the performance of cloud databases.
Cake [25] offers a scheduling scheme to enforce high-level data availability re-
quirements for end users. However, Cake was not designed to identify faulty VMs.
Eriksson et al. [9] provide a routing framework that helps cloud operators to mit-
igate the impact of network failures. We believe that our work is complementary



to theirs. Alerts from Tejo about anomalies in network, memory, disk and CPU
of VMs, can contribute to enhance the efficiency of such scheduling mechanisms.
Anomaly detection with statistical learning. Anomaly detection is com-
monly implemented based on an unsupervised learning method. Gujrati et al. [13]
provide prediction models based on event logs of supercomputers to detect
platform-wide anomalies, whereas we are interested in detecting anomalous VMs
based on monitoring data. Chen et al. [6] propose an anomaly detection approach
for large-scale systems that improves the prediction efficiency of an entropy-
based information theory technique by performing a principal component anal-
ysis (PCA) of system inputs. However, this introduces computational overhead
that undermines its scalability and causes a slowdown in anomaly predictions.
While we focus on detecting performance anomalies in NewSQL databases, Lan
et al. [14] provide a general-purpose anomaly detection approach that relies on
features selection to enhance prediction efficiency. Similarly, Guan and Fu [12]
perform feature extraction based on PCA to identify the most relevant inputs for
anomaly detection. Yet, results of our previous work [21] confirm that a supervised
method with all features outperforms a unsupervised one by reducing the num-
ber of false positives by 10%. In this work, we extended our previous supervised
learning model to detect multiple classes of anomalies based on SLO metrics.
Guan et al. [11] implement a probabilistic prediction model based on a supervised
learning method. Although their model allows us to compare the dependability of
virtualized and non-virtualized cloud systems, it suffers from poor prediction effi-
ciency when it is used to predict cloud performance anomalies. Tan et al. [24] pro-
pose general-purpose prediction model to prevent performance anomalies. Their
supervised learning-based model combines 2-dependent Markov chain model with
the tree-augmented Bayesian networks. But, the authors did not provide infor-
mation about the prediction efficiency and the capacity of their approach to gen-
eralize. We show with Tejo that the choice of the learning algorithm and features
contribute to enhance predictive efficiency of performance anomalies.

6 Conclusion

The emerging stream processing platforms rely on NewSQL databases deployed on
the cloud to compute big data with high velocity. However, performance anomalies
caused by faults on the cloud infrastructure, that are likely to be common, may
undermine the capacity of NewSQL databases to handle fast data processing. To
analyse these performance anomalies, we proposed Tejo, a supervised anomaly
detection scheme for NewSQL databases. This scheme allows us to evaluate the
performance of NewSQL database as faults on network, memory, CPU, and disk
occur. Experiments with VoltDB, a prominent NewSQL database, showed that
the 99th percentile latency soars two orders of magnitude as memory and network
faults happen. We showed that Tejo also provides a learning model to detect these
performance anomalies. Our findings suggest that learning algorithms based on
boosting methods are better to detect anomalies on a VoltDB cluster, and features
from the TCP layer of VMs are the best predictors. Results also suggest that the
contribution of VoltDB-specific features is negligible, therefore our learning model
is likely to have similar efficiency with different NewSQL databases.



Acknowledgments

This research is partially funded by the project Secured Virtual Cloud (SVC) of
the French program Investissements d’Avenir on Cloud Computing.

References

1. N. Bonvin, T. G. Papaioannou, and K. Aberer. A self-organized, fault-tolerant and
scalable replication scheme for cloud storage. In SoCC, 2010.

2. L. Breiman. Random forests. Machine learning, 2001.
3. M. Carbone and L. Rizzo. Dummynet revisited. ACM SIGCOMM, 2010.
4. U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A. Pavlo,

M. Stonebraker, E. Sutherland, N. Tatbul, et al. S-store: A streaming newsql system
for big velocity applications. VLDB, 2014.

5. V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
CSUR, 2009.

6. H. Chen, G. Jiang, and K. Yoshihira. Failure detection in large-scale internet services
by principal subspace mapping. TKDE, 2007.

7. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 1995.
8. T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi.

Limplock: Understanding the impact of limpware on scale-out cloud systems. In
SoCC, 2013.

9. B. Eriksson, R. Durairajan, and P. Barford. Riskroute: a framework for mitigating
network outage threats. In CoNEXT, 2013.

10. J. H. Friedman. Recent advances in predictive (machine) learning. Journal of
classification, 2006.

11. Q. Guan, C.-C. Chiu, and S. Fu. Cda: A cloud dependability analysis framework for
characterizing system dependability in cloud computing infrastructures. In PRDC,
2012.

12. Q. Guan and S. Fu. Adaptive anomaly identification by exploring metric subspace
in cloud computing infrastructures. In SRDS, 2013.

13. P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White. A meta-learning failure predictor
for blue gene/l systems. In ICPP, 2007.

14. Z. Lan, Z. Zheng, and Y. Li. Toward automated anomaly identification in large-scale
systems. TPDS, 2010.

15. J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets. Cam-
bridge University Press, 2014.

16. B. C. Love. Comparing supervised and unsupervised category learning. Psychonomic
Bulletin & Review, 2002.

17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in
Python . JMLR, 2011.

18. K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. Bayou: replicated database
services for world-wide applications. In ACM SIGOPS, 1996.

19. K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main memory
database systems. In VLDB, 2012.

20. E. Schurman and J. Brutlag. The user and the business impact of server delays,
additional bytes, and http chunking in web search, 2009.

21. G. Silvestre, C. Sauvanaud, M. Kaâniche, and K. Kanoun. An anomaly detection
approach for scale-out storage systems. In IEEE SBAC-PAD, 2014.



22. M. Stonebraker. Sql databases v. nosql databases. ACM Communications, 2010.
23. M. Stonebraker and A. Weisberg. The voltdb main memory dbms. Data Engineering,

2013.
24. Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan. Prepare:

Predictive performance anomaly prevention for virtualized cloud systems. In ICDCS,
2012.

25. A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake: enabling
high-level slos on shared storage systems. In SoCC, 2012.


	Tejo: a supervised anomaly detection scheme for NewSQL databases

