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Hairpin-like optimal perturbations in plane
Poiseuille flow

Mirko Farano1,2, Stefania Cherubini2,†, Jean-Christophe Robinet2 and
Pietro De Palma1

1DMMM, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
2DynFluid Laboratory, Arts et Metiers ParisTech, 151 Boulevard de l’Hopital, 75013 Paris, France

In this work it is shown that hairpin vortex structures can be the outcome of a
nonlinear optimal growth process, in a similar way as streaky structures can be
the result of a linear optimal growth mechanism. With this purpose, nonlinear
optimizations based on a Lagrange multiplier technique coupled with a direct-adjoint
iterative procedure are performed in a plane Poiseuille flow at subcritical values
of the Reynolds number, aiming at quickly triggering nonlinear effects. Choosing
a suitable time scale for such an optimization process, it is found that the initial
optimal perturbation is composed of sweeps and ejections resulting in a hairpin
vortex structure at the target time. These alternating sweeps and ejections create an
inflectional instability occurring in a localized region away from the wall, generating
the head of the primary and secondary hairpin structures, quickly inducing transition
to turbulent flow. This result could explain why transitional and turbulent shear flows
are characterized by a high density of hairpin vortices.

Key words: instability, nonlinear instability, transition to turbulence

1. Introduction

Due to their long lifetime, coherent structures determine a large part of the mean
properties of transitional and turbulent shear flows, and their generation, instability,
and sustainment mechanisms may be useful to explain many details of the dynamics
of such flows. Two main examples of coherent structures are streaks and hairpin
vortices, which have been observed experimentally and numerically in channel flows,
pipe flows, and boundary-layer flows (Singer 1996; Matsubara & Alfredsson 2001;
Adrian 2007; Wu & Moin 2009).

Streaky structures are observed at different scales in transitional and turbulent
shear flows (Brandt, Schlatter & Henningson 2004; Hwang & Cossu 2010) and their
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origin seems now to be well understood. As conjectured by Landahl (1980) some
decades ago, elongated near-wall zones of low and high momentum are created by
a mechanism of transient growth of the perturbations known as the lift-up effect,
linked to the non-normality of the Navier–Stokes operator (Cherubini, Robinet &
De Palma 2010b). Such a mechanism is based on the transport of the mean shear
by rolls of streamwise vorticity. The quest for the origin of these coherent structures
has stimulated the search for perturbations providing maximum amplification in a
finite ‘target time’, defined as ‘optimal perturbations’. By optimizing the perturbation
energy in a linear framework, several authors have found initial optimal disturbances
corresponding to streamwise-elongated rolls inducing streamwise streaks at target
time (Butler & Farrell 1992; Luchini 2000). The shape of these optimal perturbations
corresponds well to the coherent structures found in transitional and turbulent flows
in a low-to-moderate-disturbance environment (Matsubara & Alfredsson 2001). Thus,
streaky structures can be explained as the projection of flow disturbances onto the
linear optimal flow structure (Luchini 2000).

Also, the mechanism of formation of hairpin vortices has been extensively studied.
Wu & Moin (2009) have analysed the generation of hairpin structures from Λ-shaped
vortex structures induced in a boundary layer by the receptivity process from
large-amplitude free-stream turbulence; Acarlar & Smith (1987) and Henningson,
Lundbladh & Johansson (1993) have studied the formation of hairpin vortices from
localized disturbances in boundary-layer and channel flows, respectively. Suponitsky,
Cohen & Bar-Yoseph (2005) have studied a simple model of interaction between a
localized vortical disturbance and a uniform unbounded shear flow, showing that a
small-amplitude initial disturbance always evolves into a streaky structure, whereas a
large-amplitude one evolves into a hairpin vortex under some conditions. Furthermore,
it is well established that hairpin vortices may appear as the consequence of the
secondary instability and break-up of elongated streaks (Schmid & Henningson 2001).
These and many other studies indicate that, unlike streaky structures, hairpin vortices
are generated through nonlinear interactions (Eitel-Amor et al. 2015). The fact that
they naturally arise in many transitional and turbulent shear flows, as the consequence
of the instability of streaks or induced by other causes (such as roughness elements or
flow injection at wall), suggests the existence of a strong energy growth mechanism
triggered by nonlinearity. Whether the hairpin vortex might be recognized as an
optimal flow structure in a nonlinear energy growth process is the question we want
to address in the present paper.

With this purpose, we perform nonlinear optimizations in a simple parallel shear
flow such as the plane Poiseuille flow. Nonlinear optimizations in parallel shear
flows have been recently performed by Pringle & Kerswell (2010), Monokrousos
et al. (2011), Pringle, Willis & Kerswell (2012), Rabin, Caulfield & Kerswell (2012),
Cherubini & De Palma (2013) for pipe and Couette flow. In both cases, the nonlinear
optimal perturbations were found to induce strongly bent streaks, but hairpin vortices
were never observed. However, in those works, optimizations were performed for
rather long target times, for which the lift-up mechanism dominates the dynamics.
On the other hand, for instance, Karp & Cohen (2014) provide the description of
a nonlinear mechanism generating hairpin vortices acting on a time scale which is
one order of magnitude smaller. In order to focus our optimization analysis on the
generation of the hairpin structure, we choose small target times (O(10h/U), h and
U being the reference length and velocity, respectively) and finite-amplitude initial
perturbations to rapidly trigger nonlinear effects. In particular, the chosen time scale
is typical of the Orr mechanism, much smaller than the typical scale of the lift-up
mechanism.
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The paper is organized as follows: in § 2 we define the problem; then, in § 3, we
discuss the results; finally, in § 4, an outlook is provided.

2. Problem formulation

The Navier–Stokes (NS) equations are solved to compute the flow between two
parallel plates, choosing the non-dimensional variables so that half the distance
between the plates is h= 1 and the centreline velocity of the laminar flow is Uc = 1.
Dirichlet boundary conditions for the three velocity components are imposed at the
upper and lower walls of the computational box; whereas periodicity is prescribed
in the streamwise and spanwise directions (denoted x and z, respectively, whereas
y indicates the wall-normal direction). The streamwise, wall-normal, and spanwise
dimensions of the computational domain are 2π, 2, and π, respectively. The NS
equations are solved by a fractional-step method with second-order accuracy in space
and time (Verzicco & Orlandi 1996), using a staggered grid with 300 × 100 × 120
points, determined by a grid refinement study.

The optimization procedure aims at computing the velocity perturbation u =
(u, v, w)T at t= 0 providing the maximum value of a chosen objective function at a
given target time, Topt. The objective function is the ratio between the energy density
at Topt and the initial (given) one (E(0)= E0), the energy density being defined as:

E(t)= 1
2V

∫
V
(u2 + v2 +w2)(t) dV (2.1)

where V is the volume of the computational domain.
The optimization problem is subject to partial differential constraints, namely

the nonlinear NS equations in perturbative form. The constrained optimization is
performed by a Lagrange multiplier technique coupled with a direct-adjoint iterative
procedure using a gradient-based method. For further details about the optimization
algorithm the reader is referred to Cherubini et al. (2010a, 2011).

3. Results

We perform nonlinear optimizations of finite-amplitude three-dimensional
perturbations for the plane Poiseuille flow, focusing on subcritical values of the
Reynolds number, namely, Re = 2000, 3000, 4000, 5000. In order to find optimal
perturbations rapidly triggering coherent structures generated by nonlinear effects, we
focus on the time scale of the Orr mechanism, preventing the dominant effect of the
lift-up mechanism which acts on a much larger time scale. Butler & Farrell (1992)
found that the lift-up time scale for the Poiseuille flow at Re= 5000 is about equal
to 380. On the other hand, performing several linear two-dimensional optimizations,
we have found that the transient energy growth due to the Orr mechanism peaks
at t ≈ 10 for all of the considered Reynolds numbers. Thus, Topt = 10 has been
chosen for the following nonlinear three-dimensional optimizations. Moreover, using
this short target time, we need a sufficiently large initial energy density in order
to trigger nonlinear mechanisms. Therefore, several nonlinear optimizations have
been performed increasing the value of E0 until, quite suddenly, the initial optimal
perturbation localizes in space and the energy gain increases with respect to a linear
optimization. Such an increment of the energy gain with respect to the linear case
is between 10 % and 30 % for the values of the Reynolds number considered in the
present work. The value of E0 has been successively bisected in order to determine
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FIGURE 1. Scaling law for the initial energy (squares), the transition threshold (circles)
(a), and the energy gain (b) for the short-time nonlinear optimal perturbation at the
nonlinearity threshold.

with an accuracy of two digits the nonlinearity threshold, E0th, i.e. the smallest initial
energy at which the nonlinear optimal localizes and the energy gain increases by
more than 10 % with respect to the linear value. The values of this energy threshold
are shown in figure 1(a) for all of the considered values of Re; they appear well
fitted by the scaling law E0th ∝ Re−2.36. The corresponding energy gain at target
time obtained by nonlinear optimization is provided in figure 1(b). For all of the
considered Reynolds numbers, the energy increases by two order of magnitude in
only 10 time units, increasing with Re following the law Re0.84.

It is noteworthy that the value of the nonlinearity threshold is greater than the
minimal energy capable of inducing transition, as one would anticipate. For example,
we have performed optimizations and bisections for Topt = 50 and Re= 4000, finding
a transition energy threshold of about 2.5 × 10−7 which is one order of magnitude
lower than the energy corresponding to the nonlinearity threshold. On the other hand,
the energy at the nonlinearity threshold is not very high since we have verified that
the linear optimal perturbation rescaled with E0th (see figure 1a) does not lead to
transition. In order to evaluate the distance of the nonlinearity threshold from the
laminar–turbulent boundary for each optimal perturbation, figure 1(a) also provides
the rescaled energy level necessary for placing each optimal perturbation (computed at
the nonlinearity threshold) on the laminar–turbulent boundary. Notice that the scaling
law for the transition threshold (E(0) ∝ Re−2.35, corresponding about to Re−1.2 for
the amplitude) is not far from the value provided by the experimental analysis of
Cohen, Philip & Ben-Dov (2009), who found a scaling law for the transition threshold
amplitude of A∝Re−3/2 using wall-normal flow injection for inducing hairpin vortices.

Figure 2(a) shows the nonlinear optimal perturbation obtained for (Re, E0) =
(4000, 2× 10−6), composed at t= 0 of several thin tubes of counter-rotating vorticity
alternated in the spanwise direction and fully localized in space. The vortices are
characterized by a large streamwise vorticity component and are tilted against the
base flow, confirming the presence of linear energy growth mechanisms such as the
Orr (1907) and the lift-up (Landahl 1980) mechanisms. However, this optimal solution
is strongly different from the linear one computed for the same flow due to: (i) its
strong localization; (ii) its smaller wavelength in the spanwise direction; (iii) the
presence of an inclination of the vortical structures with respect to the streamwise
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FIGURE 2. Isosurfaces of the Q-criterion for the nonlinear optimal perturbation obtained
with Re = 4000, Topt = 10, and E0 = 2 × 10−6: (a) t = 0, Q = 0.01 (Qmax = 0.086;
red/green surfaces for positive/negative streamwise vorticity values) and (b) t= 10, Q= 0.2
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FIGURE 3. Isosurfaces of the three velocity components: (a,d) u, (b,e) v, (c,f ) w (light
grey for positive and black for negative values, u, v,w=±0.01) of the nonlinear optimal
perturbation for Topt = 10: (a,b,c) E0 = 2 × 10−6, Re = 4000; and (d,e,f ) E0 = 1 × 10−5,
Re= 2000.

direction. In particular, figure 2(a) shows three pairs of vortices, all of them having
different streamwise inclination and length, characterized by a streamwise vorticity of
alternating sign. One can observe that the two inner pairs of vortices at the centre of
the structure are very close to each other. When such a structure evolves in time, a
strong interaction of the vortices occurs immediately after the tilting in the streamwise
direction. Therefore, a ‘hot spot’ is created, leading to the formation of the hairpin
vortex at target time t = Topt = 10, as shown in figure 2(b). It is also noteworthy
that, unlike other parallel shear flows, such as Couette flow (Cherubini & De Palma
2013), this nonlinear optimal structure is characterized by a symmetry with respect
to a z = const. plane, which is maintained when the initial energy E0 is increased.
We have verified that the optimal perturbation is characterized by this symmetry only
for small target times; for target times typical of the lift-up mechanism, the optimal
perturbation strongly resembles the one found in Couette flow (Cherubini & De Palma
2013). Figure 3(a–c) clearly shows the symmetry of the streamwise and wall-normal
velocity components, whereas the spanwise component is antisymmetric with respect
to a z-constant axis, recalling the structure of varicose perturbations (Schmid &
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Henningson 2001). Moreover, it is worth noting that the streamwise and wall-normal
components of the velocity clearly show a Λ structure oriented against the flow.
This structure, once tilted by the Orr mechanism, becomes a precursor of the hairpin
vortex. Very similar structures are found for different Reynolds numbers, as shown
in figure 3(d–f ) for Re= 2000, although the latter perturbations are characterized by
larger amplitudes (see the scaling in figure 1a).

Direct numerical simulation (DNS) has been employed to study the time evolution
of the initial optimal perturbation into a hairpin vortex and its subsequent transition
to turbulence. The nonlinear optimal perturbation computed for Re = 4000 with
E0 = 2 × 10−6 has been used to initialize the computation. The results are shown
in figure 4 providing the r.m.s. values of velocity (a) and vorticity (b) versus time.
It appears that all of the velocity and vorticity components grow together until
reaching transition in a relatively short time (at t ≈ 50). It is noteworthy that in
other transition scenarios, such as oblique and streaks instability (see Schmid &
Henningson 2001), the streamwise velocity experiences a much larger growth than
the other components at short times. Snapshots of the time evolution of the vorticity
(green) and of the negative streamwise velocity (black) are provided in figure 5. The
initial vortex tubes are alternated in z and have opposite inclination with respect to
the streamwise direction (see figure 5a), so that the downstream tilting due to the

Orr mechanism has already

y

induced at t = 5 the merging of 

two of these vortices in 
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a tube of spanwise vorticity resembling a hairpin head (see figure 5b,c). Patches of
positive and negative streamwise velocity can be observed in the flow; for t 6 Topt
they appear rather localized in the streamwise direction (figure 5c) and they elongate
in the streamwise direction, creating bent streaks only at times larger than the target
time (figure 5d,e). It appears that the hairpin head is originated by a strong localized
streamwise velocity defect (Adrian 2007), which is already rather large at t= 0. This
defect further increases its amplitude due to the Orr mechanism and to a modified
lift-up mechanism (see Cherubini et al. 2011) driven by the initial vortex tubes, until
inducing local inflection points in the instantaneous velocity profile.

The dynamics of the nonlinear optimal perturbation shares some important features
with the dynamics of the finite-amplitude perturbations analysed by Suponitsky et al.
(2005). In particular, they observed the formation of a single hairpin vortex from
initial Gaussian vortices of maximum vorticity magnitude Ωmax > 1 and streamwise
characteristic length L < 5. Such constraints are satisfied by the nonlinear optimal
perturbations obtained here which are characterized by Ωmax ≈ 1.8 and L≈ 2.5. Thus,
for better analysing the dynamics of the nonlinear optimal perturbation, we have
studied the evolution of the main vortical structures in time following the approach
of Suponitsky et al. (2005). Let us consider the centre of the vortical structure (CVS),
whose coordinates are defined by the following equation:

Xi =

∫
V
Ω2xi dV∫

V
Ω2 dV

, (3.1)

where Ω is the vorticity magnitude, the denominator is the enstrophy integral, and the
index i = 1, 2, 3 represents Cartesian components. To identify the spatial orientation
of the vortical structure centred at Xi, we employ the tensor of enstrophy distribution
(TED), defined as follows:

T ij =
∫

V
Ω2(xi − Xi)(xj − Xj) dV. (3.2)

Since T ij is a symmetric tensor, all its eigenvalues are real. The eigenvector associated
with the largest eigenvalue identifies the direction of the principal axis of the vortex,
along which the vortex has the largest extension. The insets in figure 6(a,b) show
by red lines the principal axis of the vortical structures (represented in green by the
Q criterion surfaces) extracted from the DNS at t = 5 and t = 10, respectively. As
the flow structures are mainly aligned with the principal axis, we evaluate along this
axis the distribution of the streamwise and wall-normal velocity components. The
black lines in figure 6(a,b) show such distributions versus the abscissa s along the
principal axis (s= 0 at the CVS) at two different times. At t= 5 (figure 6a) we can
observe that the velocity components u and v mostly have opposite sign and are equal
to zero for s = 0. This behaviour recalls a fundamental feature of eddy motion in
wall turbulence; namely, fluctuations have higher probability of spending time in the
second (Q2) and fourth (Q4) quadrants of the u–v plane (Adrian 2007), inducing two
kind of events: (i) ejections, characterized by negative streamwise fluctuations lifted
away from the wall by positive wall-normal fluctuations; (ii) sweeps, characterized
by positive streamwise fluctuations being transported toward the wall.

To confirm such a similarity, we have computed the spatial probability density
function (PDF) of the perturbation velocity components at different times. Figure 7
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shows the PDF values (in a logarithmic scale) of the streamwise and wall-normal
components of the velocity perturbation, confirming the presence of ejections and
sweeps already at t = 0 and up to the time of formation of the hairpin vortex. For
instance, in figure 6(a) a sweep is observed upstream of the CVS (s < 0) followed



Hairpin-like optimal perturbations in plane Poiseuille flow

 0
0.2
 0.4
0.6
 0.8
1.0

 0
0.2
 0.4
0.6
 0.8
1.0

1.01.52.02.53.0

1.01.52.02.53.01.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

xxz

y

z

(a) (b)

FIGURE 8. Wall-normal and streamwise components of the velocity vector disturbance
along the principal axis of the TED for the nonlinear optimal with E0= 2× 10−6: (a) t= 0,
(b) t= 14. Isosurface of the Q-criterion ((a) Q= 0.01 with Qmax = 0.086, (b) Q= 4 with
Qmax = 12.05).

by a strong ejection and a weak sweep downstream of the CVS (s > 0). At t ≈ 10,
the hairpin head is formed downstream of the CVS (s > 0), in correspondence with
an ejection, as shown in figure 6(b). This is not surprising since, as found in wall
turbulence for a channel flow, the eddy associated with an ejection has a hairpin
vortex shape (Adrian 2007). Comparing figure 6(a) and figure 6(b), one can observe
that when the hairpin head is formed, the zone of ejection increases its intensity,
while the sweep region enlarges in the streamwise direction, reducing its intensity.
When the evolution of the same initial perturbation is computed by a DNS based
on the solution of the linearized NS equations, the velocity distribution for t > 5 is
characterized by increasing values of u and much lower values of v, as shown by
the red thin lines in figure 6. Therefore, in the linearized case, streaks with larger
intensity will be formed due to the lift-up effect but they will not be associated with
wall-normal velocities of opposite signs, rapidly damping the ejection event that is
responsible for the lifting of the hairpin head, thus preventing the creation of the
hairpin structure.

Figure 8 shows that the alternation of strong sweeps and ejections found at t = 0
is maintained at larger times, thus representing the basic element for the rapid
hairpin formation. Moreover, in figure 8(b) one can observe that the hairpin head
is placed right in the zone of interaction of the stronger ejection with the stronger
sweep, indicating that the formation of the spanwise vortex connecting the initial
quasi-streamwise vortices might be a consequence of an inflectional instability taking
place in this interaction zone. This observation is in agreement with the minimal
flow-element model proposed by Cohen, Karp & Mehta (2014), in which a wavy
spanwise vortex sheet was necessary to provide the inflection points for creating
hairpin vortices from streamwise counter-rotating vortex pairs.

Figure 9(a,b) provides the instantaneous velocity and vorticity profiles at t = 10,
computed solving the nonlinear and the linearized NS equations, respectively, extracted
along a vertical axis passing through the hairpin head obtained in the nonlinear
case. In figure 9(a) one can observe an inflection point, located at the ordinate
corresponding to the peak of vorticity coinciding with the hairpin head (at y ≈ 0.7),
in the outer zone of the velocity profile; whereas, in the near-wall region, at y≈ 0.15,
one can observe the deformation of the velocity profile induced by the formation
of a negative streak. Inflection points are observed in the linearized case as well
(figure 9b), but are placed closer to the wall (y≈ 0.4), consistent with a shear layer
instability induced by a streak. In the nonlinear case, the vorticity peak moves in
time towards the centre of the channel, reaching in 10 time units an amplitude
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FIGURE 9. Streamwise velocity (solid lines) and vorticity magnitude (dashed lines)
profiles at t= 5 along a wall-normal line passing through the hairpin head computed by
the DNS (a) and by the linearized DNS (b), initialized with the nonlinear optimal for
E0 = 2× 10−6. Circles indicate inflection points.
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FIGURE 10. Time evolution of the nonlinear optimal perturbation obtained for Topt = 10
and E0 = 2 × 10−6 on the plane z = 2. Isosurfaces of the Q-criterion (Q = 0.1,
green), isolines of the streamwise velocity disturbance (red positive, black negative), and
contours of the wall-normal velocity disturbance (white positive, black negative). Qmax =
0.61, 3.88, 21.52 for (a) to (c), respectively. (a) t= 4, (b) t= 10, (c) t= 16.

almost twice that of the linearized case. When the head of the hairpin is pushed by
the wall-normal perturbation toward the centre of the channel, it is advected by the
base flow at a higher velocity with respect to the part near the wall, stretching the
whole vortical structure in the streamwise direction. Then, due to conservation of
circulation, stretching provides a further growth of the vorticity, sustaining the hairpin
vortex and allowing secondary hairpin structures to be created (Adrian 2007).

The time evolution of the hairpin structure is shown in figure 10, providing DNS
snapshots showing isosurfaces of the Q-criterion (green), isolines of the streamwise
velocity disturbance (red for positive and black for negative), and contours of the
wall-normal velocity (white for positive and black for negative). One can notice the
alternation of patches of u and v with different signs, spread all over the domain,
and their effect on the lifting and stretching of the hairpin structure. Nonlinear effects
are crucial to sustain the alternation of the u and v perturbation components as well
as the vortical structures. This can be clearly inferred by comparing figure 10 with
figure 11, showing the time evolution of the nonlinear optimal perturbation obtained
by a linearized DNS.

4. Outlook

Nonlinear optimal perturbations having the shape of hairpin vortices at target
time have been computed for plane Poiseuille flow, using small target times and
finite initial energies. The corresponding initial optimal perturbations are localized in
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FIGURE 11. Same as figure 10 but for a linearized DNS. Qmax = 0.79, 0.25, 0.05 for (a)
to (c), respectively. (a) t= 5, (b) t= 10, (c) t= 15.

space and composed of spanwise-alternated thin vorticity tubes inclined with respect
to the streamwise direction and placed around regions of large streamwise and
wall-normal perturbations of opposite sign, resembling localized sweeps and ejections.
The streamwise alternation of sweeps and ejections induces strong streamwise velocity
defects which generate an inflection point in the velocity profile. Inflectional instability
thus creates a spanwise vorticity tube that is lifted and stretched, generating the hairpin
head. Transition is triggered suddenly and occurs in a very localized region, already
inducing the formation of a hairpin structure at target time (t = 10). The initial flow
structure able to create a hairpin vortex in a very short time (t≈ 10), rapidly leading
the flow to turbulence, may be considered as a hairpin precursor, characterized by
alternated sweeps and ejections of energy varying with Re−2.36. It appears that, when
nonlinear effects are damped, the wall-normal velocity component is not maintained in
time, while the streamwise component greatly increases due to the lift-up mechanism,
hampering the creation of the hairpin vortex and the subsequent fast transition to
turbulence.

In this work we have shown that, for plane Poiseuille flow, a suitable combination
of localized sweeps and ejections is capable of maximizing the energy growth in
a short time interval, generating a hairpin structure transitioning towards turbulence.
Thus, hairpin vortex structures can be the outcome of a nonlinear optimal growth
process, in a similar way as streaky structures are linked to a linear optimal growth
mechanism. This nonlinear optimal growth process could explain why the final stages
of transition to turbulence and turbulent shear flows are characterized by a high density
of hairpin structures. Future work will aim at extending these findings to different
shear flows, as well as to noisy or turbulent environments.

References

ACARLAR, M. S. & SMITH, C. R. 1987 A study of hairpin vortices in a laminar boundary layer.
Part 2. Hairpin vortices generated by fluid injection. J. Fluid Mech. 175, 43–48.

ADRIAN, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
BRANDT, L., SCHLATTER, P. & HENNINGSON, D. S. 2004 Transition in boundary layers subject to

free-stream turbulence. J. Fluid Mech. 517, 167–198.
BUTLER, K. M. & FARRELL, B. F. 1992 Three-dimensional optimal perturbations in viscous shear

flow. Phys. Fluids 4 (8), 1637–1650.
CHERUBINI, S. & DE PALMA, P. 2013 Nonlinear optimal perturbations in a couette flow: bursting

and transition. J. Fluid Mech. 716, 251–279.
CHERUBINI, S., DE PALMA, P., ROBINET, J.-CH. & BOTTARO, A. 2010a Rapid path to transition

via nonlinear localized optimal perturbations. Phys. Rev. E 82, 066302.
CHERUBINI, S., DE PALMA, P., ROBINET, J.-C. & BOTTARO, A. 2011 The minimal seed of turbulent

transition in the boundary layer. J. Fluid Mech. 689, 221–253.
CHERUBINI, S., ROBINET, J.-C. & DE PALMA, P. 2010b The effects of non-normality and non-

linearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble.
Phys. Fluids 22 (1), 014102.



M. Farano, S. Cherubini, J.-C. Robinet and P. De Palma

COHEN, J., KARP, M. & MEHTA, Y. 2014 A minimal flow-elements model for the generation of
packets of hairpin vortices in shear flows. J. Fluid Mech. 747, 30–43.

COHEN, J., PHILIP, J. & BEN-DOV, G. 2009 Aspects of linear and nonlinear instabilities leading to
transition in pipe and channel flows. Phil. Trans. R. Soc. A 367 (1888), 509–527.

EITEL-AMOR, G., ORLU, R., SCHLATTER, P. & FLORES, O. 2015 Hairpin vortices in turbulent
boundary layers. Phys. Fluids 27, 025108.

HENNINGSON, D. S., LUNDBLADH, A. & JOHANSSON, A. V. 1993 A mechanism for bypass
transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250,
169–207.

HWANG, Y. & COSSU, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys.
Rev. Lett. 105 (4), 044505.

KARP, M. & COHEN, J. 2014 Tracking stages of transition in couette flow analytically. J. Fluid
Mech. 748, 896–931.

LANDAHL, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid
Mech. 98 (02), 243–251.

LUCHINI, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface:
optimal perturbations. J. Fluid Mech. 404, 289–309.

MATSUBARA, M. & ALFREDSSON, P. H. 2001 Disturbance growth in boundary layers subjected to
free-stream turbulence. J. Fluid Mech. 430, 149–168.

MONOKROUSOS, A., BOTTARO, A., BRANDT, L., DI VITA, A. & HENNINGSON, D. S. 2011
Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys.
Rev. Lett. 106 (13), 134502.

ORR, W. M’F. 1907 The stability or instability of the steady motions of a perfect liquid and
of a viscous liquid. Part ii: a viscous liquid. In Proceedings of the Royal Irish Academy,
pp. 69–138. JSTOR.

PRINGLE, C. C. T. & KERSWELL, R. R. 2010 Using nonlinear transient growth to construct the
minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.

PRINGLE, C. C. T., WILLIS, A. P. & KERSWELL, R. R. 2012 Minimal seeds for shear flow
turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702,
415–443.

RABIN, S. M. E., CAULFIELD, C. P. & KERSWELL, R. R. 2012 Triggering turbulence efficiently in
plane couette flow. J. Fluid Mech. 712, 244–272.

SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and Transition in Shear Flows, vol. 142.
Springer.

SINGER, B. A. 1996 Characteristics of a young turbulent spot. Phys. Fluids 8 (2), 509–521.
SUPONITSKY, V., COHEN, J. & BAR-YOSEPH, P. Z. 2005 The generation of streaks and hairpin

vortices from a localized vortex disturbance embedded in unbounded uniform shear flow.
J. Fluid Mech. 535, 65–100.

VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible
flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402–414.

WU, X. & MOIN, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-
gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41.


	Hairpin-like optimal perturbations in plane Poiseuille flow
	Introduction
	Problem formulation
	Results
	Outlook
	References


	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 

	ikona: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 

	TooltipField: 


