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Range and critical generations of a random walk on
Galton-Watson trees

Pierre Andreoletti∗ , Xinxin Chen†

October 5, 2015

In this paper we consider a random walk in random environment on a tree and focus on the frontier

case for the underlying branching potential. We study the range Rn of this walk up to time n and obtain

its correct asymptotic in probability which is of the order of n/ log n. This result is a consequence of the

asymptotical behavior of the number of visited sites at generations of order (log n)2, which turn out to

be the most visited generations. Our proof which involves a quenched analysis gives a description of

the typical environments responsible for the behavior of Rn.

1 Introduction

Let us consider a random walk with a random environment given by a branching random walk. This

branching random walk is governed by a point process L := {A1, A2, · · · , AN} on the real line, where

N is also random in N∪{∞}. The initial ancestor (i.e. the root), denoted by φ, gives birth to N children

with displacements A1, A2, · · · , AN they form the first generation. Then, for any integer n ≥ 1, each

individual in the n-th generation gives birth independently of all others to its own children in the

(n + 1)-th generation. Their displacements are given by independent copies of L.

We thus obtain a genealogical tree, denoted by T, which is a Galton-Watson tree with offspring N.

For each vertex (individual or site) z ∈ T, A(z) denotes its displacement and V(z) its position. If y is

the parent of z, write←−z = y, also if y is an ancestor of z, write y < z. V can then be written as

V(z) = ∑
φ<y≤z

A(y),

with V(φ) = 0. In particular L = {V(z), |z| = 1}, with |z| the generation of z.
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The branching random walk (V(z), z ∈ T), serves as a random environment E (also called random

potential). Conditionally on the environment E = (V(z), z ∈ T), a random walk (Xn, n ∈N∗, X0 = φ)

starting from the root and taking values on the vertices of T can be defined, with probabilities of

transition:

pE (z, u) =


e−V(u)

e−V(z)+∑v:←−v =z e−V(v) , if u is a child of z,

e−V(z)

e−V(z)+∑v:←−v =z e−V(v) , if u is parent of z.
(1.1)

For convenience, we add a parent
←−
φ to the root and assume that (1.1) holds also for z = φ with

pE (
←−
φ , φ) = 1.

Let P be the probability measure of the environment and P∗, the probability conditioned on the

survival set of the tree T (which is assumed to be supercritical, see (1.2) below). Let PE , the quenched

probability measure of this random walk and P() :=
∫

PE(w)()P(dw) the annealed probability mea-

sure. Similarly we also define P∗ with respect to P∗. In this paper we focus on the boundary case of

the environment (in the sense of Biggins-Kyprianou [8]):

(1.2) E [N] > 1, E

[
∑
|z|=1

e−V(z)

]
= 1, E

[
∑
|z|=1

V(z)e−V(z)

]
= 0.

Also we need additional hypothesis given below : there exists θ > 0 such that

(1.3) E

( ∑
|z|=1

(1 + |V(u)|)e−V(u)

)2
+ E

[
∑
|z|=1

e−(1+θ)V(z)

]
+ E

[
∑
|z|=1

eθV(z)

]
< ∞.

It is proved in [12] that the random walk X is null recurrent under (1.2). Moreover in this case X is very

slow, indeed Y. Hu and Z. Shi [14] (see also [13] with G. Faraud ) proved that the largest generation

visited up to time n, X∗n := maxk≤n |Xk| behaves in (log n)3. One of the questions raised by the authors

at this time was : is (log n)3 the typical fluctuation of this walk, that is of |Xn| for example ? If we

now look at the largest generation entirely visited Mn := max{k ≥ 1 : {|z| = k} ⊂ {Xi; 0 ≤ i ≤ n}},
then it is of order log n as shown in P. Andreoletti and P. Debs [4], and we could also ask here the

same question. It turns out that neither of the two is the good answer. A first result in that direction is

obtained in the work of [5]. For any z ∈ T, define

(1.4) Tz = T1
z := inf{m ≥ 1 : Xm = z} and Tk

z := inf{m ≥ Tk−1
z : Xm = z}, ∀k ≥ 2.

Then for any generation ` ≥ 1, the number of sites visited at this generation up to time n is given by

Nn(`) := ∑
|z|=`

1Tz<n.

We also introduce the same variable stopped at the n-th return to the root:

Kn(`) := NTn
φ
(`).
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It is proved in [5] that the typical generations which maximise the number of distinct visited sites

are of the order (log n)2 :

(1.5) lim
n→+∞

E
(
Kn((log n)2)

)
E (Kn((log n)1+ζ))

= ∞, ∀ζ 6= 1 and E
(
Kn((log n)2)) � n/ log n 1.

They also notice that only the sites such that, along their shortest paths from the root, the branching

potentiel V(·) is high enough (typically larger than log n) are of importance. That is to say produce

the main contribution for E
(
Kn((log n)2)

)
, conversely the sites with low potential are mostly visited

but there are very few of them (typically of order n/(log n)2 compared to n/(log n)). More recently, in

[16], it is proved that (log n)2 is actually the right normalisation for the generation of X at the instant

n, and in [15] that the walk can in fact reach height of potential of order (log n)2.

We now return to our main purpose, the number of distinct visited sites. The main lack in the

paper [5] is first that nothing precise is said on the behavior in probability of Nn (neither for Kn), and

that their annealed results say nothing on the typical behavior of the potentials leading to this critical

(log n)2-th generation. Our results here bring answers to these points.

We have split our results into three parts, the first subsection below deals with the normalization

for the number of distinct visited sites per critical generation as well as for the total number of distinct

visited sites up to time n. The second subsection is devoted to a quenched results making a link

between the range of X and the behavior of the environment. Finally the third subsection is about the

convergence of key random variables, depending only on the random environment E .

1.1 Annealed results

Our first theorem shows that the behavior in probability of the number of distinct sites visited at critical

generations is of order n/(log n)3.

Theorem 1.1. For any integers ` = `(n) such that limn→+∞
`

(log n)2 = γ > 0, there exists a positive constant
λ(γ) > 0 such that as n→ ∞,

(1.6)
(log n)3

n
Nn(`)

in P∗−−−→ λ(γ)σ2

4
,

where σ2 := E
[
∑|x|=1 V2(x)e−V(x)

]
∈ (0, ∞) by (1.3).

The function λ(γ) can be written explicitly but we postpone its definition to Section 1.3 as it is

related to the convergence of variables depending only on the environment. This theorem is the con-

sequence of the behavior of Kn and of the local time at the root. To be more precise, let us introduce

the derivative martingale (Dm, m) given by

Dm := ∑
|z|=m

V(z)e−V(z),(1.7)

1In [5] the lower bound obtained is actually a little smaller than n/ log n.
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and denote its almost sure limit by D∞ (see [8] for its existence and [11] for its positivity under P∗). The

behavior in probability of Kn is given by

Theorem 1.2. For any ` = `(n) such that limn→+∞
`

(log n)2 = γ > 0,

(1.8)
(log n)2

n
Kn(`)

in P∗−−−→ λ(γ)pE (φ,
←−
φ )D∞.

If we compare this results with the behavior in mean (see (1.5) and also the more precise Lemma

4.1), a multiplicative (log n) appears. It comes from the behavior of the branching potential which

typically remain positive in probability (see Section 4).

Also the main difference between Nn(`) and Kn(`) comes from the normalisation. The additional log n
which appears above for Kn(`) comes from the local time of X at the root of the tree studied in [16]:

Proposition 1.3 ([16]).

(1.9)
Tn

φ

n log n
in P∗−−−→ 4D∞ pE (φ,

←−
φ )/σ2.

Instead of one critical generation, we now turn to consider the total number of visited sites, in other

words, the range of the random walk:

Rn := ∑
z∈T

1Tz≤n.

Following (1.5) and Theorem 1.1 we can ask wether or not critical generations contribute mainly to

Rn ? The answer is yes : Proposition 1.4 below states that for non-critical generations, the total number

of visited sites contributes to something negligible compared to n/ log n, while the range Rn is of order

n/ log n in probability, as stated in Theorem 1.5.

Proposition 1.4. For any δ > 0,

lim
ε→0

lim sup
n→∞

P

 ∑
m≤ε(log n)2

1Tz≤n + ∑
m≥(log n)2/ε

1Tz≤n

 ≥ δn/ log n

 = 0.

So as the main contribution comes from generations of order (log n)2, we have that with high

probability, Rn ≈ ∑ε(log n)2≤`≤(log n)2/ε Nn(`) with ε ↓ 0. As a consequence we obtain the following

result for the range of X :

Theorem 1.5. We have

(1.10)
log n

n
Rn

in P∗−−−→ σ2

4
Λ,

where Λ :=
∫ ∞

0 λ(γ)dγ ∈ (0, ∞).

These first results give a quantitative description of the number of visited sites and of the generations

involved, but no description of the underlying environment is given. In the following section we

discuss what we have learnt about the typical behavior of the potential that leads to the above behavior

of Rn.
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1.2 A quenched point of view

Like we said in the first part of the introduction, Andreoletti-Debs [5] observe that the sites where

the potential remains small (always lower than log n) have a negligible contribution for the number of

visited sites. One of the reasons for this is the fact that the number of such sites is actually negligible on

the tree (see their Proposition 1.3). Intuitively these sites are easily accessible as the potential remains

low, but the set of these sites still has a low conductance.

Here we give some more details of the sites that the random walk is inclined to visit, i.e. the sites

that contribute importantly to the range.

For sites y, z ∈ T, recall that y ≤ z means that y belongs to the shortest path from the root φ to z.

Let V(z) := maxφ<y≤z V(y). Define for any a0 > 1,

A1 :=
{

z ∈ T :
log n

a0
≤ max

φ<y≤z

(
V(y)−V(y)

)
≤ log n + g(n)

}
,

where {g(n), n} is a positive increasing function such that limn→+∞(g(n)− log log n) = +∞. More-

over, for any a1 > 0, let

A2 :=
{

z ∈ T : log n + log log n ≤ V(z) ≤ a1 log n
√

log log n
}

,

and

A3 :=

z ∈ T : V(z) > max
y≤z;

|y|≤|z|−|z|1/3

V(y)

 .

Let us introduce a notation for truncated versions of Kn, Rn and their quenched mean : if A is an event

depending only on the environment E , then for any ` ≥ 1,

KA
n (`) := ∑

|z|=`

1Tz<Tn
φ
1z∈A, RA

Tn
φ

:= ∑
m≥0

KA
n (m),(1.11)

KA
n (`) := EE

(
KA

n (`)
)

, RA
Tn

φ
:= EE

(
RA

Tn
φ

)
.(1.12)

Notice that the above means are easily computable (see section 2), but we are not interested in their

expressions for now. The following result proves tightness of the range up to Tn
φ minus the truncated

quenched mean of RTn
φ
: RA1∩A2∩A3

n , this makes appear favorite environments described by potential

V.

Proposition 1.6. For any η > 0, there exists a1 > 0 such that

lim
a0→+∞

lim sup
n→+∞

P∗
(

1
n

∣∣∣RTn
φ
−RA1∩A2∩A3

Tn
φ

∣∣∣ ≥ η

)
= 0.

From this result together with the well known fact about the potential : P(infz∈T V(z) ≥ −α) ≥
1 − e−α, we are able to draw a typical trajectory of potential that maximises the number of visited
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a1 log n
√

log log n

V(z)

≤ `1/3

|z| = ` ∼ γ(log n)2

log n/a0 ≤ ≤ log n + g(n)

log n + log log n

Figure 1: Typical accessible environments within time n

sites (see Figure 1). We finish this subsection by giving the expression of a truncated version of the

quenched mean of Kn. For any event B ⊆ {z ∈ T : V(z) ≥ log n + log log n} depending only on the

environment (see Section 4)

KB
n (`) = EE

[
∑
|z|=`

1Tz<Tn
φ
1z∈B

]
∼ n ∑

|z|=`

az1z∈B =: K̃B
n (`),(1.13)

where

az := PE (Tz < Tφ) =
pE (φ,

←−
φ )

∑φ<x≤z eV(x)
.(1.14)

Notice in particular that KA1∩A2∩A3
n (`) ∼ K̃A1∩A2∩A3

n (`). The following subsection concerns conver-

gence of `K̃B
n /n for well chosen B. This leads to the expressions of constants λ and Λ which appear in

the theorems.

1.3 Definitions of λ, Λ and results for the environment

The constants λ(.) are obtained from the convergence of functionals of one-dimensional random walk,

which is related to the branching potential by the following Biggins-Kyprianou [9] identity usually

called many-to-one Lemma :

Lemma 1.7. In the boundary case (1.2), there exists a sequence of i.i.d. real-valued random variables (Si −
Si−1, i ≥ 0) with S0 = 0 such that for any m ≥ 1 and any Borel function g : Rm → R+,

(1.15) E

[
∑
|x|=m

g
(

V(xi), 1 ≤ i ≤ m
)]

= E
[
eSm g(Si; 1 ≤ i ≤ m)

]
.
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It immediately follows from (1.2) and (1.3) that the sequence (Sn, n ≥ 0) is a centered random walk

of finite variance σ2 := E[∑|z|=1 V(z)2e−V(z)]. For notational simplicity, let

Sm := min
1≤i≤m

Si, Sm := max
1≤i≤m

Si.

Let us also denote by R(·) the renewal function associated with the strict descending ladder heights

of (Si, i), it can be expressed as

(1.16) R(u) =
∞

∑
k=0

P(Sk < Sk−1, Sk ≥ −u), ∀u ≥ 0.

It is known (see [1]) that the following joint convergence in law holds

(1.17)

{( Sbntc√
σ2n

, t ∈ [0, 1]
)

;
n

∑
i=0

e−Si |Sn > 0

}
=⇒ {(mt, t ∈ [0, 1]),H∞},

where (mt, t ∈ [0, 1]) is a Brownian meander independent of H∞ ∈ [1, ∞). In fact, in the sense of [6],

the associated random walk conditioned to stay positive, denoted (ζn, n ≥ 0), is a Markov chain with

probabilities of transition p(x, dy) := R(y)
R(x)1y>0Px(S1 ∈ dy), with P(ζ0 = 0) = 1. ConsequentlyH∞ can

be defined as

H∞ :=
∞

∑
j=0

e−ζ j .

Also we denote

c+1 := lim
n→∞

√
nP(Sn ≥ 0), c+2 := lim

n→∞

√
nP(Sn > 0),(1.18)

and the renewal theorem implies the existence of c0 ∈ (0,+∞) such that

c0 := lim
u→+∞

R(u)
u

.(1.19)

We also introduce two functions which appears in the definition of λ(·). The first one involves the

discrete random walk (Sj, j). For any j ≥ 1 and x ≥ 1, define

Gj(x) := E

[
eSj

x + ∑1≤i≤j eSi
; Sj ≤ 0

]
, with G0(x) :=

1
x

.(1.20)

The second function depends on Brownian meander (ms, 0 ≤ s ≤ 1). Let ms := sup0≤t≤s mt and m[s,1] :=

inf0≤t≤s mt for any s ∈ [0, 1]. Take a ≥ 0 and b ≥ 0, for any (x, h) ∈ R2
+, let

Ψa,b(x, h) := c+2 P
(

σm1 > (
√

2b− x) ∨ h, σ(m1 − m1) ≤ (
√

2a− h)+ ∧ x, max
0≤s≤1

σ(ms − m[s,1]) ≤
√

2a
)

.
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Finally, let

Ca,b := 2c+1 c+2 E
(

Ψa,b(σm1, σ(m1 − m1)); max
0≤s≤1

σ(ms − ms) ≤
√

2a
)

, and(1.21)

Ca,b := Ca,b

+∞

∑
j=0

E
[
Gj(H∞)

]
.(1.22)

Ca,b is well defined positive and finite. Note also that Gj(x) ≤ Gj := E[eSj1Sj≤0] for any j ≥ 1 and x ≥ 1

so Ca,b is finite [see (A.14)]. We are now ready to define λ, for any γ > 0,

λ(γ) := c0
Cγ−1/2,γ−1/2

γ
.

The integrability of λ is stated in Lemma A.1 of the Appendix, so Λ in Theorem (1.5) is well defined,

i.e.

(1.23) Λ =
∫ +∞

0
λ(x)dx ∈ (0, ∞).

In what follows we state two results which involve only the environment, and which are used later in

the proofs of the theorems. Let us define the following variable, for any a, b ≥ 0, define for any m ≥ 0

Wm(Fa
√

m+am,b
√

m+bm
) := ∑

|z|=m
e−V(z)Fa

√
m+am,b

√
m+bm

(z)

where

Fa
√

m+am,b
√

m+bm
(z) :=

√
m

eV(z)

∑φ<y≤z eV(y)
1V(z)≥b

√
m+bm

1maxφ<y≤z(V(y)−V(y))≤a
√

m+am
,(1.24)

with am = o(
√

m) and bm = o(
√

m).

Wm(Fa
√

m+am,b
√

m+bm
) is related to our problem in the following way. Recalling the truncated variable

defined in (1.13), one sees that for ` ∼ γ(log n)2,

`

n
K̃{z∈T:V(z)≥log n+log log n, maxy≤z(V(y)−V(y))≤log n+g(n)}

n (`) = pE (φ,
←−
φ )
√
`W`(Fa

√
`+a`,b

√
`+b`

),

with a = b = γ−1/2. This is why the understanding of the asymptotical behavior of
√

mWm(Fa
√

m+am,b
√

m+bm
)

is an important point in the behavior of the range. We now state a result about W

Proposition 1.8.

(1.25)
√

mWm(Fa
√

m+am,b
√

m+bm
)

in P∗−−→ c0Ca,bD∞.

Note that the variable Wm(Fa
√

m+am,b
√

m+bm
) looks like, in some ways, to the additive martingale

Wm := ∑|z|=m e−V(z) (so we call it martingale-like variable). However, as Fa
√

m+am,b
√

m+bm
is not simply

a bounded functional of the rescaled trajectory (V(y)√
n , φ < y ≤ z), we can not use the result of Madaule
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[17] in order to get the correct asymptotic of this martingale-like variable. Nevertheless, we can still

borrow some of the ideas of [3] to obtain the convergence.

In addition, note that Ca,b is continuous and monotone on (a, b) ∈ R2
+ and that Wm(Fa

√
m,b
√

m) is

also monotone on (a, b) ∈ R2
+. It follows that (1.25) holds uniformly for Wm(Fa

√
m,b
√

m) in (a, b) ∈ R2
+

in the following sense: for any ε > 0,

(1.26) lim
n→∞

P∗
(

sup
a≥0,b≥0

∣∣∣√mWm(Fa
√

m,b
√

m)− c0Ca,bD∞

∣∣∣ ≥ ε

)
= 0.

This induces the following corollary.

Corollary 1.9. For any β ≥ 0, define

W∗m(β) := ∑
|z|=m

1
∑φ<y≤z eV(y)

1maxφ<y≤z(V(y)−V(y))≤β1V(z)≥β,

then

(1.27) lim
β→∞

∞

∑
m=1

W∗m(β) = ΛD∞, in P∗-probability.

Notice that W∗m(β) = Wm(Fβ,β)/
√

m. This corollary still holds if we replace 1V(z)≥β by 1V(z)≥β±O(log β)

in the definition of W∗m(β), it is used in the proof of of Theorem 1.5.

1.4 Final remarks

(1.26) suggests that uniformity may also occur in probability for Kn(`), meaning that the ”for any `”

in Theorem 1.1 could actually be placed inside the probability. Unfortunately, this uniformity can not

be obtained by the way of our proofs and we believe in fact that this is not true and that the right

normalisation for max` Nn(`) could be different from n/(log n)3.

The rest of the paper is organized as follows :

In Section 2 we use results of Sections 3 and 4 to give the main steps of the proofs of theorems and

propositions stated in Section 1.1.

In Section 3 we focus on the environment and show Proposition 1.8 and Corollary 1.9. This section

is independent of the other sections using only the Appendix.

In Section 4 we compute the annealed mean of Kn and give an upper bound for the mean of the

quenched variance. Also we prove lemmata used in section 2 and finish with the proof of Proposition

1.6.
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In the Appendix we collect and prove many estimations for centered random walk (Sn, n ≥ 0).

In this paper, we use c or c′ for constants which may change from line to line. We write c(x) when

that constant depends on some parameter x.

2 Proof of the theorems

This section is devoted to proving Theorems 1.2 and 1.5, i.e. the convergence in probability of Kn(`).

Theorem 1.1 follows immediately from Theorems 1.2 and Proposition 1.3, so we feel free to omit its

proof.

Our arguments are based on the study of truncated versions of Kn. This decomposition of Kn

appears naturally when computing the mean of Kn as well as the mean of its quenched variance. We

therefore start with this decomposition.

2.1 Quenched expectation and truncated versions of Kn

The quenched mean of Kn, i.e. its expectation given the environment E , can be easily given by the

following nice expression:

Kn(`) : = EE
[

∑
|z|=`

1Tz<Tn
φ

]
= ∑
|z|=`

PE (Tz < Tn
φ ) = ∑

|z|=`

(1− (1− az)
n),

with, recall, az = pE (φ,
←−
φ )(∑φ<y≤z eV(y))−1.

To exclude the sites that make few contribution to Kn, we add restrictions for the potentials on the

above sum. First it is known (see [2]) that P(infu∈T V(u) < −α) ≤ e−α. So for any ε > 0, we can choose

α > 0 such that

(2.1) P
(

inf
u∈T

V(u) < −α

)
≤ e−α ≤ ε.

Let V(z) := minφ<y≤z V(y), it is then natural to consider the set

B1 := {z ∈ T : V(z) ≥ −α}.

Secondly, in [16], a reflecting barrier is introduced, for any r > 0, let

Lr :=
{

z ∈ T : ∑
φ<u≤z

eV(u)−V(z) > r, max
φ<y<z ∑

φ<u≤y
eV(u)−V(y) ≤ r

}
.

This reflecting barrier allows to reduce the number of interesting sites for the walk in the following

sense : let f be a positive increasing function such that limn→+∞ f (n) = +∞, then

lim
n→+∞

P

(
∃k ≤ Tn

φ , Xk ∈ L n f (n)
log n

)
= 0.(2.2)
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The above result is a direct consequence of Theorem 2.8 (in [16]) together with Proposition 1.3. Follow-

ing this idea, we introduce the following sets

B2 :=

{
z ∈ T : max

φ<y≤z
∑

φ<u≤y
eV(u)−V(y) ≤ n

}
=: {z ∈ T : z < Ln},

then according to (2.2)

lim
n→+∞

P
(
∀k ≤ Tn

φ , Xk ∈ B2

)
= 1.

Also, for any δ > 0 let sn := n(log n)−1−δ and

Bδ
2 :=

{
z ∈ T : max

φ<y≤z
∑

φ<u≤y
eV(u)−V(y) ≤ sn

}
= {z ∈ T : z < Lsn}.

We will see that for our specific problem, we can restrict the set B2 to Bδ
2 for chosen δ. We also denote

B := B1 ∩ B2 and Bδ := B1 ∩ Bδ
2, and finally introduce the last restriction over the values of V, let

B3 := {z ∈ T : V(z) ≥ log n + log log n}.

Recall the definitions given in (1.11), because of (2.1) and (2.2), one sees that with high probability,

Kn(`) ∼ KB
n (`). The following lemma shows that we can also add B3 to the restrictions,

Lemma 2.1. For ` = `(n) such that limn→+∞
`

(log n)2 = γ > 0, we have

E
[
KB\B3

n (`)
]
= o

(
n

(log n)2

)
.(2.3)

Also, arguments presented later show that E[KB∩B3
n (`)] = Θ( n

(log n)2 ), which implies that mainly

sites in B∩ B3 count. We postpone the proof of this lemma to Section 4. Now we only need to consider

KB∩B3
n (`). For convenience, let C := B ∩ B3 and Cδ := Bδ ∩ B3.

Here is our strategy to obtain Theorem 1.1. We first show that for suitable δ > 0, with high prob-

ability, Kn(`) ≈ KC
n (`) ≈ KCδ

n (`), while the last quantity can be approached by its quenched mean by

bounding its quenched variance. We stress on the fact that replacement of C by Cδ helps to correctly

bound the quenched variance, it appears that the price of this replacement is negligible (as shown

in the Lemma 2.2). Then the study of the quenched variable KCδ

n (`) = EE
[
KCδ

n (`)
]

can be found in

Proposition 1.8.

Lemma 2.2. For ` = `(n) such that limn→+∞
`

(log n)2 = γ > 0 and for any δ > 0, we have

(2.4) E[KC
n (`)− KCδ

n (`)] = o
(

n
(log n)2

)
.
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The next step is to approach KCδ

n (`) by its quenched mean KCδ

n (`). Observe that for any z ∈ B3,

az ≤ e−V(z) ≤ 1
n log n , so 1− (1− az)n ∼ naz. Similarly as (1.12), for any event A defined from the

environment only, let

K̃A
n (`) := ∑

|z|=`

naz1z∈A.(2.5)

So in particular KCδ

n (`) and K̃Cδ

n (`) are close. Then KCδ

n can be approached by K̃Cδ

n in the following

way

Proposition 2.3. For any η > 0 and δ > 3,

lim
n→+∞

P

(
|KCδ

n (`)− K̃Cδ

n (`)| ≥ η
n

(log n)2

)
= 0.(2.6)

We prove this proposition in Section 4.

2.2 Convergence of Kn(`) and Rn

We now turn to the proof of Theorems 1.2 and 1.5. Recall that sn = n(log n)−1−δ. Observe that on

B1 = {infu∈T V(u) ≥ −α},

Cδ ⊂ {z ∈ T : max
φ<y≤z

(V(y)−V(y)) ≤ log sn, V(z) ≥ log n + log log n}

and that

{z ∈ T : max
φ<y≤z

(V(y)−V(y)) ≤ log sn − log |z|, V(z) ≥ log n + log log n} ⊂ Cδ.

Recalling the definition of F in (1.24), one sees that on B1,

(2.7)
n√
`

W`(Flog sn−log `,log n+log log n) ≤
K̃Cδ

n (`)

pE (φ,
←−
φ )
≤ n√

`
W`(Flog sn,log n+log log n).

This implies that `
n K̃Cδ

n (`) ∼ pE (φ,
←−
φ )
√
`W`(Fγ−1/2

√
`+a`,γ−1/2

√
`+b`

). So as a consequence of Proposition

1.8, for ` = `(n) such that limn→+∞
`

(log n)2 = γ > 0 and for any η, α > 0,

(2.8) lim sup
n→∞

P
(∣∣∣ (log n)2

n
K̃Cδ

n (`)− pE (φ,
←−
φ )λ(γ)D∞

∣∣∣ ≥ η

)
≤ P

(
inf
u∈T

V(u) < −α

)

with λ(γ) = c0
C

γ−1/2,γ−1/2

γ > 0.

We are now ready to prove Theorem 1.2: it suffices to show that for any η > 0,

(2.9) lim
n→+∞

P
(∣∣∣ (log n)2

n
Kn(`)− λ(γ)pE (φ,

←−
φ )D∞

∣∣∣ ≥ η
)
= 0.
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Proof of (2.9). Let pn := P
(∣∣∣ (log n)2

n Kn(`)− λ(γ)pE (φ,
←−
φ )D∞

∣∣∣ ≥ η
)

. Observe that

pn ≤ P
(

inf
u∈T

V(u) < −α

)
+ P

(
n⋃

i=1

{Xi ∈ Ln}
)
+ P

(∣∣∣ (log n)2

n
KB

n (`)− λ(γ)pE (φ,
←−
φ )D∞

∣∣∣ ≥ η

)
.

By (2.1) and (2.2), for any ε > 0, we can choose α > 0 such that

(2.10) lim sup
n→∞

pn ≤ ε + lim sup
n

P
(∣∣∣ (log n)2

n
KB

n (`)− λ(γ)pE (φ,
←−
φ )D∞

∣∣∣ ≥ η
)

.

It then follows from (2.3) and (2.4) that

lim sup
n→∞

pn ≤ ε + lim sup
n

P
(∣∣∣ (log n)2

n
KCδ

n (`)− λ(γ)pE (φ,
←−
φ )D∞

∣∣∣ ≥ η/2
)

,

so by Proposition 2.3,

lim sup
n→∞

pn ≤ ε + lim sup
n

P
(∣∣∣ (log n)2

n
K̃Cδ

n (`)− λ(γ)pE (φ,
←−
φ )D∞

∣∣∣ ≥ η/4
)

.

Applying (2.8) with the same α > 0 chosen in (2.10), one sees that

lim sup
n→∞

pn ≤ 2ε.

Letting ε ↓ 0 concludes (2.9).

It remains to show the convergence of the range Rn. Once again by Proposition 2.2, we only need

to demonstrate that

(2.11)
RTn

φ

n
in P∗−−−→ Λp(φ,

←−
φ )D∞,

with RTn
φ
= ∑∞

m=0 Kn(m). First, we say that only the critical generations really count in this sum, and

that the truncated versions of (Kn(m), m) gives the main contribution.

Lemma 2.4. We have

(2.12) lim
ε↓0

lim sup
n→∞

1
n

E

 ∑
m≤ε(log n)2

KB
n (m)

+ E

 ∑
m≥(log n)2/ε

KB
n (m)

 = 0,

And for any ε > 0,

lim
n→∞

1
n

E

 (log n)2/ε

∑
m=ε(log n)2

KB\B3
n (m)

+ E

 (log n)2/ε

∑
m=ε(log n)2

KC\Cδ

n (m)

 = 0.(2.13)

Notice here that Proposition 1.4 follows from (2.12) and Proposition 1.3. As non-critical generations

are negligible, we can borrow the previous arguments for Kn(`) to show the convergence for RTn
φ
.
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Proof of Theorem 1.5 (i.e. (2.11)). For any η > 0, let us consider P
(
|RTn

φ
−ΛpE (φ,

←−
φ )D∞n| ≥ ηn

)
. For

any α > 0,

P
(
|RTn

φ
−ΛpE (φ,

←−
φ )D∞n| ≥ ηn

)
≤ P

(
inf
u∈T

V(u) < −α

)
+ P

(⋃
k≤n

{Xk ∈ Ln}
)

+ P

(∣∣∣ ∞

∑
m=0

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn

)
.

Again by (2.1) and (2.2),

(2.14) lim sup
n→∞

P
(
|RTn

φ
−ΛpE (φ,

←−
φ )D∞n| ≥ ηn

)
≤ e−α+

lim sup
n→∞

P

(∣∣∣ ∞

∑
m=0

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn

)
.

Here we only need to consider the generations of order (log n)2. In fact, for any ε > 0,

P

(∣∣∣ ∞

∑
m=1

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn

)

≤P

 ∑
m≥(log n)2/ε,
or m≤ε(log n)2

KB
n (m) ≥ ηn/2

+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn/2

 ,

where the first probability on the right hand side is negligible because of (2.12). For the second proba-

bility, we consider only the sites z ∈ Cδ and obtain that

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn/2

 ≤ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KB\B3
n (m)

∣∣∣ ≥ ηn/6

+

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/6

+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KC\Cδ

n (m)
∣∣∣ ≥ ηn/6

 .

In view of (2.13), we obtain that

(2.15) lim sup
n→∞

P

(∣∣∣ ∞

∑
m=1

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn

)
≤ oε(1)+

lim sup
n→∞

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/6

 .
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Recall that the quenched mean of KCδ

n (m) is denoted KCδ

n (m). Then,

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn
6

 ≤ P

 (log n)2/ε

∑
m=ε(log n)2

∣∣∣KCδ

n (m)−KCδ

n (m)
∣∣∣ ≥ ηn/12


+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/12

 .

On the one hand, by Markov inequality,

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−KCδ

n (m)
∣∣∣ ≥ ηn

12

 ≤ 144
η2n2 E

( (log n)2/ε

∑
m=ε(log n)2

∣∣∣KCδ

n (m)−KCδ

n (m)
∣∣∣)2
 ,

which by Cauchy-Schwartz inequality is bounded by

144
η2n2

(log n)2/ε

∑
m=ε(log n)2

1
(log n)2/ε

∑
m=ε(log n)2

E
(

VarE (KCδ

n (m))
)

and applying Lemma 4.5 with δ > 5 to this term implies that

lim sup
n→∞

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−KCδ

n (m)
∣∣∣ ≥ ηn/12

 = 0.

On the other hand, replacing KCδ

n by K̃Cδ

n (see (2.5)), one sees that

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/12


≤P

 (log n)2/ε

∑
m=ε(log n)2

∣∣∣KCδ

n (m)− K̃Cδ

n (m)
∣∣∣ ≥ ηn/24

+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24


≤P

 (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m) ≥ ηn log n/24

+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24

 ,

where the last inequality follows from the fact that 0 ≤ K̃Cδ

n (m)− KCδ

n (m) ≤ K̃Cδ

n (m)/ log n. Conse-

quently,

(2.16) P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

KCδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/6

 ≤ on(1)+

P

 (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m) ≥ ηn log n/24

+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24

 .
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Moving back to (2.15), we deduce that

(2.17) lim sup
n→∞

P

(∣∣∣ ∞

∑
m=1

KB
n (m)−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn

)
≤ oε(1)+

lim sup
n→∞

P

 (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m) ≥ ηn log n
24

+ P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24

 .

Now, observe that

P

 (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m) ≥ ηn log n
24

 ≤P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24


+ P

(
ΛpE (φ,

←−
φ )D∞ ≥ η(log n− 1)/24

)
=P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24

+ on(1).

So in view of (2.14) and (2.17), we have

(2.18) lim sup
n→∞

P
(
|RTn

φ
−ΛpE (φ,

←−
φ )D∞n| ≥ ηn

)
≤ e−α + oε(1)

+ 2 lim sup
n→∞

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24

 .

We are left to prove that

(2.19) lim sup
ε↓0

lim sup
n→∞

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn/24

 ≤ e−α,

which together with (2.18), letting α→ ∞ yields lim supn→∞ P
(
|RTn

φ
−ΛpE (φ,

←−
φ )D∞n| ≥ ηn

)
= 0.

For (2.19), we have

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn
24

 ≤ P
(

inf
u∈T

V(u) < −α

)
+

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

∑
|z|=m

naz1V(z)≥log n+log log n,z<Lsn
−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn/48

 ,

where the first term on the right hand side is bounded by e−α. Again by Lemma 2.4, we have

P

∣∣∣ (log n)2/ε

∑
m=ε(log n)2

K̃Cδ

n (m)−ΛpE (φ,
←−
φ )D∞n

∣∣∣ ≥ ηn
24

 ≤ e−α + on,ε(1)+

P

(∣∣∣ ∞

∑
m=1

∑
|z|=m

naz1V(z)≥log n+log log n,z<Lsn
−ΛpE (φ,

←−
φ )D∞n

∣∣∣ ≥ ηn/96

)
.
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As ∑|z|=m naz1V(z)≥log n+log log n,z<Lsn
= npE (φ,

←−
φ )W∗m(log n + log log n), (2.19) follows immediately

from Corollary 1.9 .

3 Convergence of martingale-like variables Wm(Fa
√

m+am,b
√

m+bm
)

This section is devoted to proving Proposition 1.8 and Corollary 1.9 which only concern the environ-

ment. The main idea is borrowed from [3], on the Seneta-Heyde norm of the additive martingale Wm

in the boundary case (1.2). To do so, we need to introduce a change of measure and the corresponding

spinal decomposition.

3.1 Lyons’ change of measures and spinal decomposition

For α > 0, define the truncated variables adapted to {Fn := σ((z, V(z)); |z| ≤ n); n ≥ 0}, the natural

filtration of the branching random walk:

W(α)
n (F) := ∑

|z|=n
e−V(z)Fa

√
m+am,b

√
m+bm

(z)1V(z)≥−α,

D(α)
n := ∑

|z|=n
R(α + V(z))e−V(z)1V(z)≥−α, ∀n ≥ 0.

See (1.24) for the definition of F. For any a ∈ R, let Pa be the probability measure such that Pa({V(z), z ∈
T} ∈ ·) = P({a + V(z), z ∈ T} ∈ ·). For a ≥ −α, we introduce the change of measure as follows:

(3.1) Q(α)
a |Fn :=

D(α)
n

R(α + a)e−a Pa|Fn .

The fact that D(α)
n is a non-negative martingale which converges a.s. to some limit D(α)

∞ has been

proved by Biggins and Kyprianou [8]. So Q(α)
a is well define. Following their spirits, we present a

spinal decomposition of the branching random walk under Q(α)
a : we start with one individual w0 (i.e.,

the root φ ), located at V(w0) = a. Then for any n ≥ 0,

1. in the n-th generation, each individual u except wn, gives birth independently of all others to

its children of the n + 1-th generation whose positions constitute a point process distributed as

(V(z), |z| = 1) under PV(u);

2. wn produces independently its children in the n + 1-th generation, whose positions are given by

a point process distributed as (V(z), |z| = 1) under Q(α)
V(wn)

;

3. Among the children of wn, wn+1 is chosen to be z with probability proportional to

R(α + V(z))e−V(z)1V(z)≥−α.

In this description, the infinite ray (wn, n ≥ 0) is call the spine under Q(α)
a . For simplicity, we write

Q(α) for Q(α)
0 .
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Fact 3.1 ([8]). Assume (1.2). Let α ≥ 0. For any n ≥ 1 and |z| = n,

(3.2) Q(α)(wn = z|Fn) =
R(α + V(z))e−V(z)1V(z)≥−α

D(α)
n

.

The spine process (V(wn), n ≥ 0) under Q(α) is distributed as the random walk (Sn, n ≥ 0) under P conditioned
to stay above −α. In other words, for any n ≥ 1 and any measurable function g : Rn → R+,

(3.3) EQ(α)

[
g(V(wk), 1 ≤ k ≤ n)

]
=

1
R(α)E

[
g(Sk, 1 ≤ k ≤ n)R(α + Sn); Sn ≥ −α

]
.

In our case, min|z|=n V(z) → ∞ a.s. As a consequence of (1.19), D(α)
∞ = c0D∞ on {infz∈T V(z) ≥

−α}. The L1 convergence of D(α)
n is assured because of (1.3) (see [8] and [11]).

3.2 Convergence in probability of W(α)
n (F)

D(α)
n

under Q(α)

Following the arguments of Section 5 in [3], as D∞ > 0 under P∗, Q(α) is absolutely continuous with

respect to P, so we only need to prove the following convergence under Q(α),

(3.4)
√

n
W(α)

n (Fa
√

n+an,b
√

n+bn
)

D(α)
n

−→ Ca,b, in probability,

and focus on the cases when a > 0 and b > 0 (when a = 0 or b = 0, it is trivial by first moment

estimation). The proof is based on the computations of the first and second moments of this random

variable. However, as F is not a bounded functional, we have to add some restrictions to the sites. Let

us first introduce some notations. For any |z| = n and 0 ≤ m ≤ n, let zm be the ancestor of z in the

m-th generation and define

υz := inf{k : V(zk) = V(z) = min
y≤z

V(y)},

Υz := inf{k : V(zk) = V(z) = max
y≤z

V(y)}, V(z[m,n]) := min
m≤k≤n

V(zk).

Similarly, we also define υS, ΥS and S[m,n] for one-dimensional random walk (Sk, k). Take n0 := bn−
n1/3c, define

G+(z) :=
√

n
eV(z)

∑φ<y≤z eV(y)
1{Υz>n0,V(z)≥b

√
n+bn,maxy≤z(V(y)−V(y))≤a

√
n+an}, G(z) := G+(z)1V(z[Υz ,n])≥b

√
n/2.

Moreover, following [3], let us introduce the events Ez
n for |z| = n as follows. Let Ω(y) := {u ∈ T :

u 6= y,←−u =←−y } be the collection of brothers of y. If (kn, n) is a positive sequence such that kn = o(n1/2)

and (log n)6 = o(kn), let

Ez
n := Ez

n,1 ∩ Ez
n,2 ∩ Ez

n,3,
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where

Ez
n,1 = {k1/3

n ≤ V(zkn) ≤ kn} ∩
n⋂

i=kn

{V(zi) ≥ k1/6
n };

Ez
n,2 =

n⋂
i=kn

{ ∑
y∈Ω(zi+1)

[1 + (V(y)−V(zi))+]e−[V(y)−V(zi)] ≤ eV(zi)/2};

Ez
n,3 = {

n

∑
i=kn

∑
y∈Ω(zi+1)

∑
|u|=n,u≥y

R(α + V(u))e−V(u)1V(u)≥−α ≤
1
n2 }.

In particular, for wn, write En (resp. En,i) instead of Ewn
n (resp. Ewn

n,i ). Let H(z) := G(z)1Ez
n
, and notice

that 0 ≤ H(z) ≤ G(z) ≤ G+(z) ≤ F(z). We use F instead of Fa
√

n+an,b
√

n+bn
for convenience. Similarly

as W(α)
n (F), we write also W(α)

n (G), W(α)
n (G+) and W(α)

n (H).

The convergence (3.4) follows from the following lemma.

Lemma 3.2. Let α ≥ 0, we have

lim
n

√
nEQ(α)

[W(α)
n (H)

D(α)
n

]
= lim

n

√
nEQ(α)

[W(α)
n (F)

D(α)
n

]
= Ca,b,(3.5)

lim
n

nEQ(α)

[(W(α)
n (H)

D(α)
n

)2]
= C 2

a,b.(3.6)

3.2.1 First moment estimate: proof of (3.5)

(3.5) follows from the following lemma.

Lemma 3.3.

lim
n

√
nEQ(α)

[W(α)
n (G+)

D(α)
n

]
=Ca,b,(3.7)

lim
n

√
nEQ(α)

[W(α)
n (F− G)

D(α)
n

]
=0,(3.8)

lim
n

√
nEQ(α)

[W(α)
n (G− H)

D(α)
n

]
=0.(3.9)

Proof. By (3.2), one sees that

(3.10) EQ(α)

[ F(wn)

R(α + V(wn))

∣∣∣Fn

]
=

W(α)
n (F)

D(α)
n

.

This identity holds for H, G, G+ and will be used several times in the sequel.
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Proof of (3.8): For any |x| = n, define

h1(x) :=
√

n
eV(x)

∑φ<y≤x eV(y)
1{Υx≤n0,V(x)≥b

√
n+bn, maxy≤x(V(y)−V(y))≤a

√
n+an},

h2(x) :=
√

n
eV(x)

∑φ<y≤x eV(y)
1{Υx>n0,V(x)≥b

√
n+bn,V(x[Υx ,n])≤b

√
n/2, maxy≤x(V(y)−V(y))≤a

√
n+an}.

It is clear that 0 ≤ F− G ≤ h1 + h2. So to obtain (3.8), it suffices to show that for i = 1, 2,

(3.11) EQ(α)

[W(α)
n (hi)

D(α)
n

]
=

on(1)√
n

.

For h1, by (3.3), EQ(α)

[
W(α)

n (h1)(D(α)
n )−1

]
equals

EQ(α)

[ √
neV(wn)

R(α + V(wn))∑1≤j≤n eV(wj)
1Υwn≤n0,V(wn)≥b

√
n+bn,maxj≤n(V(wj)−V(wj))≤a

√
n+an

]
=

1
R(α)E

[ √neSn

∑1≤j≤n eSj
; ΥS ≤ n0, Sn ≥ b

√
n + bn, max

j≤n
(Sj − Sj) ≤ a

√
n + an, Sn ≥ −α

]
.

Partitioning on the values of ΥS implies that

EQ(α)

[W(α)
n (h1)

D(α)
n

]
=

n0

∑
k=0

1
R(α)E

[ √neSn

∑1≤j≤n eSj
1ΥS=k,Sn≥b

√
n+bn,maxj≤n(Sj−Sj)≤a

√
n+an,Sn≥−α

]
≤

n0

∑
k=0

√
n

R(α)E
[
eSn−Sk1ΥS=k,Sk≥−α

]
.

By Markov property at time k,

EQ(α)

[W(α)
n (h1)

D(α)
n

]
≤

n0

∑
k=0

√
n

R(α)P
(

Sk ≥ −α, Sk = Sk

)
E
[
eSn−k1Sn−k≤0

]
,

which by (A.4) and (A.14) gives that

EQ(α)

[W(α)
n (h1)

D(α)
n

]
≤

n0

∑
k=0

√
n

R(α)
c(1 + α)

(k + 1)(n− k)3/2 ≤
1

n2/3 .

Thus (3.11) holds for i = 1.

For h2, similarly, by (3.10) and (3.3), one has

EQ(α)

[W(α)
n (h2)

D(α)
n

]
≤ 1
R(α)E

[ √neSn

∑1≤j≤n eSj
; ΥS > n0, S[ΥS,n] ≤ b

√
n/2, Sn ≥ b

√
n + bn, Sn ≥ −α

]
≤
√

n
R(α)

n

∑
k=n0+1

P
[
ΥS = k, S[k,n] ≤ b

√
n/2, Sk ≥ b

√
n + bn, Sk ≥ −α

]
.
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Applying Markov property at time k implies that

EQ(α)

[W(α)
n (h2)

D(α)
n

]
≤
√

n
R(α)

n

∑
k=n0+1

P
[
Sk ≥ −α, Sk = Sk

]
P
(

Sn−k ≤ −b
√

n/2− bn

)
which by (A.4) and then (A.18) is bounded by ∑n−1

k=n0+1
c(1+α)

k e−c′
√

n = cn−1/6e−c′n1/2
. So (3.11) holds

also for i = 2. This completes the proof of (3.8).

Proof of (3.7): It follows from (3.10) and (3.3) that

EQ(α)

[W(α)
n (G+)

D(α)
n

]
=

√
n

R(α)E
[ eSn

∑1≤j≤n eSj
; ΥS > n0, Sn ≥ b

√
n + bn, max

j≤n
(Sj − Sj) ≤ a

√
n + an, Sn ≥ −α

]
.

Arguing over the value of ΥS yields that EQ(α)

[
W(α)

n (G+)

D(α)
n

]
=

√
n

R(α) ∑n
k=n0+1 σk where

σk := E
[ eSn

∑1≤j≤n eSj
; ΥS = k, Sn ≥ b

√
n + bn, max

j≤n
(Sj − Sj) ≤ a

√
n + an, Sn ≥ −α

]
.

Let Ti = Si+k − Sk, then

σk = E
[ eTn−k

∑1≤j≤k eSj−Sk + ∑1≤j≤n−k eTj
; Sk−1 < Sk, Sk ≥ b

√
n + bn, Sk ≥ −α,

Tn−k ≥ (−α− Sk) ∨ (−a
√

n− an), Tn−k ≤ 0, max
i≤k

(Si − Si) ≤ a
√

n + an

]
.

In the next steps we prove that σk can be approximated by σ′k which is defined as follows

σ′k := E
[ eTn−k

∑1≤j≤k eSj−Sk + ∑1≤j≤n−k eTj
; Sk−1 < Sk, Sk ≥ b

√
n + bn, Sk ≥ −α,

Tn−k ≤ 0, max
i≤k

(Si − Si) ≤ a
√

n + an

]
.

Observe that 0 ≤ σ′k − σk ≤ P(Sk−1 < Sk, Sk ≥ −α, Tn−k ≤ (−a
√

n − an) ∨ (−α − b
√

n − bn)). By

independence of S and T,

σ′k − σk ≤P
(
Sk ≥ −α, Sk = Sk

)
P
(
Tn−k ≤ (−a

√
n− an) ∨ (−b

√
n− bn)

)
≤ c(1 + α)

k
e−c′

√
n,

because of (A.4) and (A.18). Hence, ∑n−1
k=n0+1(σ

′
k − σk) =

on(1)
n . This implies that

(3.12) EQ(α)

[W(α)
n (G+)

D(α)
n

]
=

√
n

R(α)
n

∑
k=n0+1

σ′k +
on(1)
n1/2 .
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By independence of S and T again,

σ′k = E
[
Gn−k( ∑

1≤j≤k
eSj−Sk); Sk−1 < Sk, Sk ≥ b

√
n + bn, Sk ≥ −α, max

i≤k
(Si − Si) ≤ a

√
n + an

]

where G.(x) is defined in (1.20). By (A.13), for n− n1/3 < k ≤ n, σ′k =
Ca,bR(α)E[Gn−k(H∞)]

k + on(1)
n . Further,

as |Gn−k(x)− Gn−k(y)| ≤ Gn−k| 1x −
1
y |, uniformly on k ∈ (n− n1/3, n] ∩Z,

σ′k =
Ca,bR(α)E[Gn−k(H∞)]

n
+

on(1)
n

.

Plugging it into (3.12) implies that for sufficiently large n,

EQ(α)

[W(α)
n (G+)

D(α)
n

]
=
Ca,b√

n

∞

∑
j=0

E[Gj(H∞)] +
on(1)√

n
=

Ca,b√
n
+

on(1)√
n

,

which ends the proof of (3.7).

Proof of (3.9): by (3.10), we only need to prove that

(3.13) LHS := EQ(α)

[ √
nG(wn)

R(α + V(wn))
1Ec

n

]
= on(1).

First, we have

LHS ≤nEQ(α)

[ eV(wn)−V(wn)1Ec
n

R(α + V(wn))
; Υwn > n0, V(wn) ≥ b

√
n + bn, V(w[Υwn ,n]) ≥ b

√
n/2

]
≤LHS1 + LHS2 + LHS3

where

LHS1 :=nEQ(α)

[ eV(wn)−V(wn)1Ec
n,1

R(α + V(wn))
; Υwn > n0, V(wn) ≥ b

√
n + bn, V(w[Υwn ,n]) ≥ b

√
n/2

]
,

LHS2 :=nEQ(α)

[ eV(wn)−V(wn)1En,1∩Ec
n,2

R(α + V(wn))
; Υwn > n0, V(wn) ≥ b

√
n + bn, V(w[Υwn ,n]) ≥ b

√
n/2

]
,

LHS3 :=nEQ(α)

[ eV(wn)−V(wn)1En,1∩En,2∩Ec
n,3

R(α + V(wn))
; Υwn > n0, V(wn) ≥ b

√
n + bn, V(w[Υwn ,n]) ≥ b

√
n/2

]
.

Each term LHSi, i = 1, 2, 3, are treated separately.

For LHS1, we have

LHS1 ≤
n
R(α)E[eSn−Sn ; Skn ∈ [k1/3

n , kn], S[kn,ΥS]
≤ k1/6

n , ΥS > n0, Sn ≥ −α]

+
n
R(α)E[eSn−Sn ; Skn /∈ [k1/3

n , kn], ΥS > n0, Sn ≥ −α] =: ξ1 + ξ ′1.
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By Markov property at ΥS = k,

ξ1 ≤
n
R(α)

n

∑
k=n0+1

E
[
eSn−k1Sn−k≤0

]
P
(

Skn ∈ [k1/3
n , kn], S[kn,k] ≤ k1/6

n , Sk > Sk−1, Sk ≥ −α
)

≤ n
R(α)

n

∑
k=n0+1

c
(n− k + 1)3/2 P

(
Skn ∈ [k1/3

n , kn], S[kn,k] ≤ k1/6
n , Sk > Sk−1, Sk ≥ −α

)
,(3.14)

where the second inequality holds because of (A.14). It remains to obtain an upper bound for P
(

Skn ∈

[k1/3
n , kn], S[kn,k] ≤ k1/6

n , Sk > Sk−1, Sk ≥ −α
)

. One sees that by (A.22), for any n0 < k ≤ n,

P
(

Skn ∈ [k1/3
n , kn], S[kn,k] ≤ k1/6

n , Sk > Sk−1, Sk ≥ −α
)

≤P
(

min
k/2<j≤k

Sj ≤ k1/6
n , Sk > Sk−1, Sk ≥ −α

)
+ P

(
S[kn,k/2] ≤ k1/6

n , S(k/2,k] > k1/6
n , Sk > Sk−1, Sk ≥ −α

)
=

on(1)
n

+ P
(

S[kn,k/2] ≤ k1/6
n < S(k/2,k], Sk > Sk−1, Sk ≥ −α

)
.

By (3.14), to conclude that ξ1 = on(1), it suffices to show that uniformly on k ∈ [n0, n] ∩Z,

P
(

S[kn,k/2] ≤ k1/6
n < S(k/2,k], Sk > Sk−1, Sk ≥ −α

)
=

on(1)
n

.

Considering the first hitting time of Sk which should be before k/2, one has

P
(

S[kn,k/2] ≤ k1/6
n < S(k/2,k], Sk > Sk−1, Sk ≥ −α

)
≤ ∑

0≤j≤k/2
P
(

S[kn,k/2] ≤ k1/6
n , Sk > Sk−1, Sj−1 > Sj = Sk ≥ −α

)
.(3.15)

For any kn/2 ≤ j ≤ k/2 and n0 ≤ k ≤ n, by Markov property at time j,

∑
kn/2≤j≤k/2

P
(

S[kn,k/2] ≤ k1/6
n , Sk > Sk−1, Sj−1 > Sj = Sk ≥ −α

)
≤ ∑

kn/2≤j≤k/2
P
(

Sj−1 > Sj ≥ −α
)

P
(

Sk−j ≥ 0, Sk−j = Sk−j

)

which by (A.8) and (A.4) is bounded by ∑kn/2≤j≤k/2
c(1+α)2

j3/2n = on(1)
n . Also when j ≤ kn/2, applying

Markov property at time 2k/3 then at time j implies that

P
(

S[kn,k/2] ≤ k1/6
n , Sk > Sk−1, Sj−1 > Sj = Sk ≥ −α

)
≤P
(

S[kn,k/2] ≤ k1/6
n , Sj−1 > Sj = S2k/3 ≥ −α

)
P
(

Sk/3 > Sk/3−1

)
≤P
(

Sj−1 > Sj ≥ −α
)

P
(

S7k/12 ≥ 0, S[kn/2,k/2] ≤ k1/6
n

)
P
(

Sk/3 > Sk/3−1

)
.
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By time reversal together with (A.2), P
(

Sk/3−1 < Sk/3

)
≤ c/

√
k/3. Also, in view of (A.8) and (A.17),

for any n0 ≤ k ≤ n,

∑
j≤kn/2

P
(

S[kn,k/2] ≤ k1/6
n , Sk > Sk−1, Sj−1 > Sj = Sk ≥ −α

)
≤ ∑

j≤kn/2

c(1 + α)2k1/6
n

(j + 1)3/2nk1/2
n

=
on(1)

n
.

Going back to (3.15),

P
(

S[kn,k/2] ≤ k1/6
n < S(k/2,k], Sk > Sk−1, Sk ≥ −α

)
=

on(1)
n

,

which leads to ξ1 = on(1).

For ξ ′1, applying Markov property at time ΥS = k,

ξ ′1 ≤
n
R(α)

n

∑
k=n0+1

E[eSn−k ; Sn−k ≤ 0]P
(

Skn /∈ [k1/3
n , kn], Sk ≥ −α, Sk = Sk

)
,

which again by Markov property at time kn yields that

ξ ′1 ≤
n
R(α)

n

∑
k=n0+1

E[eSn−k ; Sn−k ≤ 0]E
(

PSkn

(
Sk−kn

≥ −α, Sk−kn = Sk−kn

)
, Skn
≥ −α, Skn /∈ [k1/3

n , kn]
)

,

and recall that Pu is for the distribution of the random walk starting from u. By (A.4), PSkn

(
Sk−kn

≥

−α, Sk−kn = Sk−kn

)
≤ c(1 + α + Skn)/(k− kn). This together with (A.14) yields

ξ ′1 ≤
cn
R(α)

n

∑
k=n0+1

1
(n− k + 1)3/2 E

[ (1 + α + Skn)

k− kn
; Skn
≥ −α, Skn /∈ [k1/3

n , kn]
]
.

We now split the above expectation into two terms, first by Markov’s inequality,

E
[ (1 + α + Skn)

k− kn
; Skn
≥ −α, Skn ≥ kn

]
≤ c

n(1 + α + kn)3 E
[
(1 + α + Skn)

4
]
≤ c

nkn
,

and also by (A.3)

E
[ (1 + α + Skn)

k− kn
; Skn
≥ −α, Skn ≤ k1/3

n

]
≤

k1/3
n

∑
l=−α

E
[ (1 + α + Skn)

k− kn
; Skn
≥ −α, Skn ∈ [l, l + 1]

]
≤

k1/3
n

∑
l=−α

c(1 + α + l)
n

P
(

Skn
≥ −α, Skn ∈ [l, l + 1]

)
≤ c

nk1/2
n

.

These two inequalities gives ξ ′1 = on(1).

For LHS3, let G∞ be the sigma-field generated by the spine and all siblings of the spine. We know

from ([3] eq. (4.9)) that

Q(α)
(

En,1 ∩ En,2 ∩ Ec
n,3

∣∣∣G∞

)
≤ O(n3e−k1/6

n /3),
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wich implies that

LHS3 ≤nEQ(α)

[ eV(wn)−V(wn)

R(α + V(wn))
×Q(α)

(
En,1 ∩ En,2 ∩ Ec

n,3

∣∣∣G∞

)]
≤O(n4e−k1/6

n /3) = on(1).

For LHS2, we follow the same lines as in ([3] page 18, below (4.8)) using the same notations.

LHS2 ≤c
n

∑
i=kn

nEQ(α)

[ eV(wn)−V(wn)

R(α + V(wn))
h(V(wi))1En,1 ; Υwn > n0, V(w[Υwn ,n]) ≥ b

√
n/2

]
,

where h(x) := 1
x3(x+α+1) (this inequality holds because of (1.3)). Applying (3.3) then partitioning on

the values of ΥS yields that

LHS2 ≤c

(
n

∑
k=n0+1

k

∑
i=kn

+
n

∑
k=n0+1

n

∑
i=k+1

)
n
R(α)E[eSn−Sk h(Si)1Si≥k1/6

n
; ΥS = k, S[k,n] ≥ b

√
n/2, Sn ≥ −α]

=:ξ2 + ξ ′2.

For the first sum, applying Markov property at time i then at k and using (A.4) yields that

ξ2 ≤
cn
R(α)

n

∑
k=n0+1

k

∑
i=kn

E
[
eSn−k ; Sn−k ≤ 0

]
E
[

h(Si)1{Si≥−α}∩{Si≥k1/6
n }PSi

(
Sk−i ≥ −α, Sk−i = Sk−i

)]
≤ cn
R(α)

n

∑
k=n0+1

k

∑
i=kn

1
(n− k + 1)3/2

E[h(Si)(1 + α + Si)1{Si≥−α}∩{Si≥k1/6
n }]

k− i + 1

By (A.3), E[h(Si)(1 + α + Si)1{Si≥−α}∩{Si≥k1/6
n }] = on(1)/i3/2. We hence deduce that ξ2 = on(1)/

√
kn

For ξ ′2, observe that h(Si) ≤ h(b
√

n/2) ≤ c/n. Applying Markov property at time k then using

(A.14) and (A.4) implies that

ξ ′2 ≤c
n

∑
k=n0+1

n

∑
i=k+1

n
R(α)E[eSn−k /n; Sn−k ≤ 0]P[Sk = Sk ≥

√
n, Sk ≥ −α]

≤c
n

∑
k=n0+1

1
(n− k + 1)3/2k

= on(1).

Collecting all the estimations for the LHSi, this ends the proof of (3.9).

3.2.2 Second moment estimate: proof of (3.6)

Recall the definitions of H and G Section 3.2. In view of (3.5), it suffices to show that

(3.16) lim sup
n→∞

EQ(α)

[(√nW(α)
n (H)

D(α)
n

)2
]
≤ C 2

a,b.
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By (3.10),

LHS(3.16) :=EQ(α)

[(√nW(α)
n (H)

D(α)
n

)2
]
= EQ(α)

[√
nW(α)

n (H)

D(α)
n

×
√

nH(wn)

R(α + V(wn))

]

≤EQ(α)

[√
nW(α)

n (G)

D(α)
n

×
√

nH(wn)

R(α + V(wn))

]
.

For convenience, let

W(α),[kn,n]
n (G) : = e−V(wn)G(wn)1V(wn)≥−α +

n−1

∑
i=kn

∑
y∈Ω(wi+1)

∑
|z|=n,z≥y

e−V(z)G(z)1V(z)≥−α,

W(α),[0,kn)
n (G) : =

kn−1

∑
i=0

∑
y∈Ω(wi+1)

∑
|z|=n,z≥y

e−V(z)G(z)1V(z)≥−α,

with Ω(ωi+1) = {|x| = i + 1 : ←−x = ωi, x 6= ωi+1}. In the similar way, we define D(α),[0,kn)
n and

D(α),[kn,n]
n . With such a decomposition, one sees that

LHS(3.16) ≤ EQ(α)

[√
nW(α),[kn,n]

n (G)

D(α)
n

×
√

nH(wn)

R(α + V(wn))

]
+EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α)
n

×
√

nH(wn)

R(α + V(wn))

]
.

For the first expectation above, as H ≤
√

n1V(wn)≥b
√

n/21En and W(α),[0,kn)
n (G) ≤

√
nD(α),[0,kn)

n ,

EQ(α)

[√
nW(α),[kn,n]

n (G)

D(α)
n

×
√

nH(wn)

R(α + V(wn))

]
≤EQ(α)

[
nD(α),[kn,n]

n

D(α)
n

× n
R(α + b

√
n/2)

1En

]
≤ c√

n
,

since En,3 = {D(α),[kn,n]
n ≤ 1/n2} and EQ(α) [(D(α)

n )−1] = R(α)−1 ≤ 1. Recall also that R(u) = Θ(u + 1).

For the second expectation,

EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α)
n

×
√

nH(wn)

R(α + V(wn))

]
≤ EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α),[0,kn)
n

×
√

nG(wn)1En

R(α + V(wn))

]

≤EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α),[0,kn)
n

× 1{V(wkn )∈[k
1/3
n ,kn]}

]
× sup

u∈[k1/3
n ,kn]

EQ(α)

[ √
nG(wn)1En

R(α + V(wn))

∣∣∣V(wkn) = u
]

=: RHS1 × sup
u∈[k1/3

n ,kn]

RHS2(u)

where the second inequality follows from Markov property at kn. Next we are going to show that

lim sup
n→∞

RHS1 ≤ Ca,b, and(3.17)

lim sup
n→∞

sup
u∈[k1/3

n ,kn]

RHS2(u) ≤ Ca,b.(3.18)
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For RHS1, note that by Markov property

RHS1 × inf
u∈[k1/3

n ,kn]
Q(α)(En|V(wkn) = u) ≤ EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α),[0,kn)
n

× 1En

]
.

It is proved in Lemma 4.7 of [3] that for sufficiently large n,

(3.19) inf
u∈[k1/3

n ,kn]
Q(α)(En|V(wkn) = u) = 1 + on(1),

therefore,

RHS1 ≤(1 + on(1))EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α),[0,kn)
n

× 1En

]

≤(1 + on(1))EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α),[0,kn)
n

× 1En1D(α)
n ≥n−3/2

]
+ 2nQ(α)

(
(D(α)

n )−1 > n3/2
)

,

since W(α),[0,kn)
n (G) ≤

√
nD(α),[0,kn)

n . Again by Markov inequality with EQ(α) [(D(α)
n )−1] = R(α)−1 ≤ 1,

RHS1 ≤(1 + on(1))EQ(α)

[√
nW(α),[0,kn)

n (G)

D(α)
n

× 1En1D(α)
n ≥n−3/2

]
+

2√
n

≤(1 + on(1))EQ(α)

[√
nW(α)

n (F)

D(α)
n

]
+

2√
n

.

So (3.17) follows from (3.5).

It remains to prove (3.18). Let m := n − kn and m0 := n0 − kn, for any u ∈ [k1/3
n , kn], RHS2(u) is

bounded by

EQ(α)

[
n

R(α + V(wm))

eV(wm)

∑0<j≤m eV(wm)
1Υwn>m0,V(wm)≥b

√
n+bn,maxk≤n(V(wk)−V(wk))≤a

√
n+an

∣∣∣V(w0) = u

]

which by Markov property and (3.3) is less than

n
R(α + u)

E

[
eSm

∑1≤j≤m eSm
; max

i≤m
(Si − Si) ≤ a

√
n + an, ΥS > m0, Sm ≥ b

√
n + bn − u, Sm ≥ −α− u

]
.

By considering υS = inf{j ≤ m : Sj = Sm} the first hitting time of Sm, we get that

RHS2(u) ≤
n

R(α + u)

m

∑
k=m0+1

m

∑
l=0

E
[

eSm

∑1≤j≤m eSm
; ΥS = k, υS = l,

max
i≤m

(Si − Si) ≤ a
√

n + an, Sm ≥ b
√

n + bn, Sm ≥ −α− u
]

.
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We decompose the above double sum into three parts,

m

∑
k=m0+1

m

∑
l=0
· · · =

m

∑
k=m0+1

k6
n−1

∑
l=0
· · ·+

m

∑
k=m0+1

k−1

∑
l=k6

n

· · ·+
m

∑
k=m0+1

m

∑
l=k
· · · =: Ξ1(u) + Ξ2(u) + Ξ3(u),

and deal with them separately. For Ξ2, observe that

Ξ2(u) ≤
n

R(α + u)

m

∑
k=m0+1

k−1

∑
l=k6

n

E
[

eSm−Sk ; ΥS = k, υS = l, Sm ≥ −α− u
]

,

which by Markov property at k then at l is less than

n
R(α + u)

m

∑
k=m0+1

k−1

∑
l=k6

n

P(Sl = Sl ≥ −α− u)P(Sk−l ≥ 0, Sk−l = Sk−l)E[eSm−k ; Sm−k ≤ 0].

By (A.8), (A.4) and (A.14), we obtain that for any u ∈ [k1/3
n , kn],

Ξ2(u) ≤cn(1 + α + u)
m

∑
k=m0+1

k−1

∑
l=k6

n

1
l3/2(k− l)(m− k + 1)3/2 ≤

c
k2

n
.

For the third sum Ξ3, by Markov property at Υ = k then at υS = l,

Ξ3(u) ≤
n

R(α + u)

m

∑
k=m0+1

m

∑
l=k

P
[

ΥS = k, υS = l, Sm ≥ −α− u, Sm ≥ b
√

n + bn

]
≤ n
R(α + u)

m

∑
k=m0+1

m

∑
l=k+1

P
(

Sk ≥ −α− u, Sk = Sk

)
P
(

Sl−k ≤ −b
√

n− bn

)
P
(

Sm−l ≥ 0
)

,

so by (A.18) and (A.2),

Ξ3(u) ≤
n

R(α + u)

m

∑
k=m0+1

m

∑
l=k

c(1 + α + u)
k(m− l + 1)1/2 e−cn1/2

= on(1).

From the upper bounds of Ξ2 and Ξ3, we deduce that

sup
u∈[k1/3

n ,kn]

RHS2(u) ≤ sup
u∈[k1/3

n ,kn]

Ξ1(u) + on(1),

and we now treat the first term Ξ1. By Markov property at time vS = l,

Ξ1(u) ≤
n

R(α + u)

k6
n−1

∑
l=0

P(Sl < Sl−1, Sl ≥ −α− u)×

m

∑
k=m0+1

E
[ eSm−l

∑1≤j≤m−l eSj
; max

i≤m−l
(Si−Si) ≤ a

√
n+ an, ΥS > m0− l, Sm−l ≥ b

√
m− l + bn− kn, Sm−l ≥ 0

]
.

Following the same arguments for ∑k σk, one obtains that for all u ∈ [k1/3
n , kn],

Ξ1(u) ≤
∑k6

n−1
l=0 P(S`−1 > Sl ≥ −α− u)

R(α + u)
(Ca,b + on(1)) ≤ Ca,b + on(1),

which completes the proof of (3.18) and conclude (3.16).
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3.3 Proof of Corollary 1.9

In this subsection, we show that as β→ ∞,

(3.20)
∞

∑
m=1

∑
|z|=m

1
∑φ<y≤z eV(y)

1maxφ<y≤z(V(y)−V(y))≤β,V(z)≥β±O(log β)

in P∗probability−−−−−−−−→ ΛD∞.

Proof. Note that

W∗m(β) = ∑
|z|=m

1
∑φ<y≤z eV(y)

1maxφ<y≤z(V(y)−V(y))≤β,V(z)≥β
= Wm(Fβ,β)/

√
m.

In fact, only those m that are comparable to β2 really contribute to the sum. First, because of (2.12), we

claim that for any η > 0,

lim
b→0

lim sup
n→∞

P

 ∑
m≤bβ2

W∗m(β) ≥ η

 = 0(3.21)

lim
B→∞

lim sup
n→∞

P

 ∑
m≥Bβ2

W∗m(β) ≥ η

 = 0.(3.22)

For any B > b > 0 fixed, by (1.26), as β→ ∞,

∑
bβ2≤m≤Bβ2

W∗m(β) = ∑
bβ2≤m≤Bβ2

Wm(Fβ,β)√
m

=c0D∞ ∑
bβ2≤m≤Bβ2

1
m

Cβ/
√

m,β/
√

m + oP∗(1),

where oP∗(1) denotes a term such that limβ→∞ oP∗(1) = 0 in P∗-probability. On the other hand, by

change of variables m = γβ2,

∫ Bβ2

bβ2
Cβ/

√
m,β/

√
m

dm
m

=
∫ B

b
Cγ−1/2,γ−1/2

dγ

γ
.

As Ca,b is continuous and monotone, we get that

∑
bβ2≤m≤Bβ2

1
m

Cβ/
√

m,β/
√

m =
∫ B

b
Cγ−1/2,γ−1/2

dγ

γ
+ oβ(1).

When B→ ∞ and b→ 0,
∫ B

b Cγ−1/2,γ−1/2
dγ
γ → Λ/c0 because of Lemma A.1. In view of (3.21) and (3.22),

we conclude that in P∗-probability,

lim
β→∞

∞

∑
m=1

W∗m(β) = ΛD∞.
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Note that if we replace Wm(Fβ,β) by Wm(Fβ,(1±ε)β) with β ∈ (0, 1), these arguments still work. By

monotonicity of F, we have

∞

∑
m=1

Wm(Fβ,(1−ε)β) ≤
∞

∑
m=1

∑
|z|=m

1
∑φ<y≤z eV(y)

1maxφ<y≤z(V(y)−V(y))≤β,V(z)≥β±O(log β) ≤
∞

∑
m=1

Wm(Fβ,(1+ε)β).

By integrability and continuity of C , as β→ ∞,
∞

∑
m=1

Wm(Fβ,(1−ε)β) = (Λ + oε(1))D∞ + oP∗(1).

Consequently, the convergence (3.20) holds.

4 Mean, variance of Kn and secondary results

In this section, we complete the proof of the main theorems by proving Lemmata 2.1, 2.2, 2.4 and

Proposition 2.3.

Recall that the quenched expectation of Kn is

Kn(`) = EE [Kn(`)] = ∑
|z|=`

PE (Tz < Tn
φ ) = ∑

|z|=`

(1− (1− az)
n) ≤ ∑

|z|=`

(naz) ∧ 1,

where az = p(φ,
←−
φ )

∑φ<x≤z eV(x) ≤ e−V(z). Obviously, for any measurable event A with respect to the environ-

ment E ,

(4.1) KA
n (`) ≤ ∑

|z|=`

(naz ∧ 1)1z∈A ≤ ∑
|z|=`

(ne−V(z) ∧ 1)1z∈A.

Also observe that for any z ∈ B3 = {z ∈ T : V(z) ≥ log n + log log n}, 1 − (1 − az)n ≥ naz(1 −
1/ log n). So,

(4.2) (1− 1
log n

) ∑
|z|=`

naz1z∈A∩B3 ≤ KA
n (`) ≤ ∑

|z|=`

naz1z∈A∩B3 + ∑
|z|=`

(naz ∧ 1)1z∈A∩Bc
3
.

4.1 Annealed expectation of Kn(`)

We first study the annealed expectation of Kn which turns out to be of order n/log n.

Lemma 4.1. For ` ∼ γ(log n)2, there exists a constant κ(γ) > 0 such that

(4.3) lim
n→∞

log n
n

E[Kn(`)] = κ(γ).

In fact, applying (4.2) to Kn(`) = EE [Kn(`)] gives that(
1− 1

log n

)
∑
|z|=`

naz1z∈B3 ≤ Kn(`) ≤ ∑
|z|=`

naz1z∈B3 + ∑
|z|=`

(naz ∧ 1)1z∈Bc
3
.

As a consequence, Lemma 4.1 follows from the following lemma.
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Lemma 4.2.

E
[

∑
|z|=`

(naz ∧ 1)1z∈Bc
3

]
=o(

n
log n

).(4.4)

lim
n→∞

log n
n

E
[

∑
|z|=`

naz1z∈B3

]
=κ(γ).(4.5)

Proof. We first prove the convergence in (4.5). Recall that {z ∈ B3} = {V(z) ≥ log n + log log n}.

• Proof of (4.5) Recall that Υz = inf{k ≤ ` : V(zk) = V(z)}. With the same arguments used to

show (3.11) for h1, we can say that for l0 = b`− `1/3c,

(4.6) E
[

∑
|z|=`

naz1V(z)≥log n+log log n,Υz≤l0

]
= o(

n
log n

).

We deduce from (4.6) and the expression of az that

E
(

∑
|z|=`

naz1{V(z)≥log n+log log n}

)
=E
(

∑
|z|=`

n
pE (φ,

←−
φ )

∑|z|k=1 eV(zk)
1{Υz>l0, V(z)≥log n+log log n}

)
+ o(

n
log n

)

=nE
(

∑
|u|=1

1
1 + ∑|v|=1 e−V(v)

κ(V(u), `)
)
+ o(

n
log n

),(4.7)

where

κ(x, `) := Ex

(
∑

|z|=`−1

1

∑`−1
k=0 eV(zk)

1{Υz>l0,V(z)≥log n+log log n}

)
.

and recall that Ex means that V(φ) = x a.s. By (1.15),

(4.8) κ(x, `) = e−xE
(

eS`−1

∑0≤k≤`−1 eSk
; ΥS > l0, S`−1 ≥ log n + log log n− x

)
,

and recall ΥS = inf{k ≤ ` : Sk = S`}. By Markov property at time ΥS = j,

exκ(x, `) =
`−1

∑
j=l0+1

E
[
G`−1−j( ∑

0≤k≤j
eSk−Sj); Sj−1 < Sj, Sj ≥ log n + log log n− x

]
=

`−1

∑
j=l0+1

E
[
G`−1−j( ∑

0≤k≤j
e−Sk); Sj > 0, Sj ≥ log n + log log n− x

]
where the second equality follows from time-reversing, and G. is defined in (1.20). By the joint

convergence (1.17), we get the following estimation similar to that of σ′k defined just above (3.12).

Uniformly on j ∈ [l0, `− 1],

E
[
G`−1−j( ∑

0≤k≤j
e−Sk); Sj > 0, Sj ≥ log n+ log log n− x

]
=

E[G`−1−j(H∞)]P(m1 ≥ 1√
γ )√

`
+

g`−1−jo`(1)√
`
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where for any m ≥ 0, gm := (m + 1)−3/2.

Therefore, for any fixed x,

exκ(x, `) =
P(m1 ≥ 1√

γ )√
`

`−1

∑
j=l0+1

E[G`−1−j(H∞)] +
`−1

∑
j=l0+1

g`−1−j
o`(1)√

`

=
P(m1 ≥ 1√

γ )√
`

∑
j≥0

E[Gj(H∞)] +
o`(1)√

`
,

Moving back to (4.7), we deduce that

E
(

∑
|z|=l

naz1{V(z)≥log n+log log n}

)
=

nP(m1 ≥ 1√
γ )√

`
∑
j≥0

E[Gj(H∞)]E
( ∑|u|=1 e−V(u)

1 + ∑|u|=1 e−V(u)

)
+ o(

n
log n

).

As ` ∼ γ(log n)2, let κ(γ) :=
P(m1≥ 1√

γ )√
γ ∑j≥0 E[Gj(H∞)]E

(
∑|u|=1 e−V(u)

1+∑|u|=1 e−V(u)

)
, we then obtain (4.5).

• Proof of (4.4) Observe that

∑
|z|=`

(naz ∧ 1)1z∈Bc
3
≤ ∑
|z|=`

naz1log n≤V(z)≤log n+log log n + ∑
|z|=`

1V(z)≤log n.

On the one hand, by (1.15) ,

E
[

∑
|z|=`

1V(z)<log n

]
=E
[
eS` ; S` ≤ log n

]
which by (A.15) is bounded by c elog n

` = o( n
log n ). On the other hand, as az ≤ e−V(z),

E
[

∑
|z|=`

naz1log n≤V(z)≤log n+log log n

]
≤nE

[
∑
|z|=`

e−V(z)eV(z)−V(z)1log n≤V(z)≤log n+log log n

]
,

which by (1.15) is equal to

nE
[
eS`−S` , log n ≤ S` ≤ log n + log log n

]
.

By applying Markov property at the first hitting time S`, one sees that

E
[

∑
|z|=`

naz1log n≤V(z)≤log n+log log n

]
≤ n

`

∑
j=1

E
[
eS`−Sj ; Sj−1 < Sj, Sj = S` ∈ [log n, log n + log log n]

]
=n

`

∑
j=1

P
(

Sj−1 < Sj, Sj ∈ [log n, log n + log log n]
)

E
[
eS`−j ; S`−j ≤ 0

]
which by time-reversing equals n ∑`

j=1 P
(

Sj > 0, Sj ∈ [log n, log n + log log n]
)

E
[
eS`−j ; S`−j ≤ 0

]
.

By (A.3) and (A.14), we obtain that

(4.9) E
[

∑
|z|=`

naz1log n≤V(z)≤log n+log log n

]
≤ n

`

∑
j=1

c
(log n)(log log n)
j3/2(`− j + 1)3/2 ≤ cn

log log n
(log n)2 ,

since ` ∼ γ(log n)2. This completes the proof.
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4.2 Quenched variance of KCδ

n (`) and Proof of Proposition 2.3

Recall the definition of Cδ in Section 2.1, in this section we focus on the mean of the quenched variance

of KCδ

n (`) which is a key step in the proof of Proposition 2.3.

4.2.1 Quenched expression for the variance

Lemma 4.3. Recall that az = PE (Tz < Tφ) and let av,z := PE (Tv ∧ Tz < Tφ). For every event A measurable
with respect to E , denote the quenched variance of KA

n (`) as follows:

VEar(KA
n (`)) := EE

[(
KA

n (`)−KA
n (`)

)2
]

,

then

VEar(KA
n (`)) = ∑

|z|=`,|v|=`,z 6=v
[(1− av,z)

n − (1− az)
n(1− av)

n]1z∈A1v∈A(4.10)

+ ∑
|z|=`

[
(1− az)

n − (1− az)
2n]1z∈A.(4.11)

Proof. Note that

KA
n (`)−KA

n (`) = ∑
|z|=`

(
1Tz<Tn

φ
− (1− (1− az)

n)
)
1z∈A

= ∑
|z|=`

(
(1− az)

n − 1Tz≥Tn
φ

)
1z∈A.

So the lemma comes directly.

A corollary of this Lemma is the following result, which gives a simple upper bound of the quenched

variance when A = Cδ :

Lemma 4.4. Recall the definition of Cδ in Section 2.1, we have :

VEar
(

KCδ

n (`)
)
≤ ∑
|z|=|v|=`

nazPEv∧z(Tv < Tφ)1{z∈Cδ,v∈Cδ} + ∑
|z|=|v|=`

navPEv∧z(Tz < Tφ)1{z∈Cδ,v∈Cδ}(4.12)

+ ∑
|z|=`

naz1{z∈Cδ},

where v ∧ z is the latest common ancestor of v and z in the tree T, and PEy is the quenched probability of the
random walk started from y.
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Proof. This upper bound is actually true for every truncated version of Kn(`), however it is optimized

here for events included in B3 so in particular for Cδ. For av,z one sees that

av,z = PE (Tv < Tz ∧ Tφ) + PE (Tz < Tv ∧ Tφ) =: dv,z + dz,v.

We have,

(1− av,z)
n − (1− az)

n(1− av)
n ≤ (1− dv,z − dz,v)

n − (1− az − av)
n ≤ n(az − dz,v + av − dv,z).

Observe that

az − dz,v + av − dv,z =PE (Tv ∨ Tz < Tφ) ≤ PE (Tz < Tφ)P
E
z∧v(Tv < Tφ) + PE (Tv < Tφ)P

E
z∧v(Tz < Tφ)

=azPEz∧v(Tv < Tφ) + avPEz∧v(Tz < Tφ).

This together with Lemma 4.3 yields that

∑
|z|=`,|v|=`,z 6=v

[(1− av,z)
n − (1− az)

n(1− av)
n]1z∈Cδ1v∈Cδ ≤

∑
|z|=|v|=`

nazPEv∧z(Tv < Tφ)1{z∈Cδ,v∈Cδ} + ∑
|z|=|v|=`

navPEv∧z(Tz < Tφ)1{z∈Cδ,v∈Cδ}

Moreover, we have (1− az)n − (1− az)2n ≤ naz. This leads to (4.12).

4.2.2 Upper bound for the mean of the quenched variance

In this section we obtain an upper bound of the mean E
(

VEar
(

KCδ

n (`)
))

.

Lemma 4.5. For ` ∼ γ(log n)2, every δ > 0 and n large enough,

E
(

VEar
(

KCδ

n (`)
))
≤ c

n2

(log n)δ
.

Proof. Because of (4.12), we only have to bound the mean of

tn := ∑
|z|=|v|=`

z 6=v

azPEv∧z(Tv < Tφ)1{z∈Cδ,v∈Cδ},

since the second term on the RHS of (4.12) is its symmetric and the last term has been considered before

(see Lemma 4.1).

The main idea of this proof, is to decompose the double sum ∑|z|=|v|=` according to the latest

common ancestor z ∧ v.

Define ∑1 := ∑φ<s≤v∧z eV(s)−V(z∧v), ∑2 := ∑v∧z<s≤z eV(s)−V(z∧v) and ∑3 := ∑v∧z<s≤v eV(s)−V(z∧v).

We then have

az =
pE (φ,

←−
φ )e−V(v∧z)

∑1 +∑2
and PEz∧v(Tv < Tφ) =

∑1

∑1 +∑3
.
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By comparing Σ1, Σ2, Σ3, we get

tn ≤ t1
n + t2

n + t3
n + t4

n,

with

t1
n := ∑

|z|=|v|=`
z 6=v

e−V(z∧v)

∑1
1{z∈Cδ,v∈Cδ,∑1≥∑2 ∨∑3},

t2
n := ∑

|z|=|v|=`
z 6=v

e−V(z∧v)

∑3
1{z∈Cδ,v∈Cδ,∑2≤∑1≤∑3}, t3

n := ∑
|z|=|v|=`

z 6=v

e−V(z∧v)

∑2
1{z∈Cδ,v∈Cδ,∑3≤∑1≤∑2},

t4
n := ∑

|z|=|v|=`
z 6=v

e−V(z∧v) ∑1

∑2 ∗∑3
1{z∈Cδ,v∈Cδ,∑1≤∑2 ∧∑3}.

We treat each term separately. Notice that by symmetry E(t2
n) = E(t3

n), so we only estimate E(t1
n), E(t2

n)

and E(t4
n).

Recall that for every z ∈ Cδ, V(z) ≥ log n + log log n and az ≤ (n log n)−1. In particular, if {∑i ≥
∑j} with i 6= j, {∑i +∑j ≥ n log ne−V(z∧v)} ⊂ {∑i ≥ n log ne−V(z∧v)/2}. We start with E(t1

n) :

∗ Upper bound for E(t1
n), as Σ1 is the largest term here using the above remark we have {B3, Σ1 ≥

Σ2 ∨ Σ3} ⊂ {V(z ∧ v) > log n + log log n− log 2` =: mn}, also as z ∈ Bδ
2, Σ1 ≤ sn = n/(log n)1+δ, so

t1
n ≤ ∑

|z|=|v|=`
z 6=v

e−V(z∧v)

∑1
1V(z∧v)>mn,Σ1≤sn,∑1≥∑2 ∨∑3, V(z)∧V(v)≥−α

≤
`−1

∑
j=0

∑
|u|=j

e−V(u)

∑u
1

1V(u)>mn,Σu
1≤sn,V(u)≥−α ∑

←−x =u=←−y
x 6=y

∑
|z|=`,z≥x

1∑x,z
2 eV(x)−V(u)≤∑u

1 ∑
|v|=`,v≥y

1∑
y,v
2 eV(y)−V(u)≤∑u

1
,

where Σu
1 := ∑φ<s≤u eV(s)−V(u) and Σx,z

2 := ∑x≤s≤z eV(s)−V(x).

Applying Markov property at time |u|+ 1 and then (1.15) yields that

E[t1
n] ≤

`−1

∑
j=0

E

 ∑
|u|=j

e−V(u)

∑u
1

1V(u)>mn,Σu
1≤sn,V(u)≥−α ∑

←−x =u=←−y
x 6=y

f j,`(Σu
1 eV(u)−V(x)) f j,`(Σu

1 eV(u)−V(y))

 ,

where

f j,`(t) := E

[
eS`−1−j ;

`−1−j

∑
i=0

eSi ≤ t

]
.

By (A.15), f j,`(t) ≤ E(eS`−1−j ; S`−1−j ≤ log+ t) ≤ c(log+ t + 1)t/(` − j)3/2. Plugging this into the
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previous inequality yields

E[t1
n] ≤

`−1

∑
j=0

E

 ∑
|u|=j

e−V(u)Σu
1(1 + log Σu

1)
21V(u)>mn,Σu

1≤sn,V(u)≥−α

× c
(`− j)3 ∑

←−x =u=←−y
x 6=y

[1 + (V(u)−V(x))+]eV(x)−V(u)[1 + (V(u)−V(y))+]eV(y)−V(u)


≤

`−1

∑
j=0

c
(`− j)3 E

 ∑
|u|=j

e−V(u)Σu
1(1 + log Σu

1)
21V(u)>mn,Σu

1≤sn,V(u)≥−α

E

[(
∑
|x|=1

[1 + (−V(x))+]e−V(x)
)2
]

.

By Many-to-one Lemma and hypothesis (1.3), we get

E(t1
n) ≤

`−1

∑
j=0

c
(`− j)3 sn(1 + log+ sn)

2P
[
Sj > mn, ΣS

1 ≤ sn, Sj ≥ −α
]

,

with ∑S
1 := ∑

j
i=1 eSi−Sj . Also by (A.2), P

[
Sj ≥ −α

]
≤ c(1 + α)j−1/2, so

E(t1
n) ≤

`−1

∑
j=0

c
(`− j)3 sn(1 + log+ sn)

2 (1 + α)

(j + 1)1/2 ≤
c(1 + α)n
(log n)δ

.

∗ Upper bound for E(t2
n), with the same ideas than for the upper bound of t1

n, we have

t2
n ≤ ∑

|z|=|v|=`
z 6=v

e−V(z∧v)

∑3
1V(z∧v)>mn,Σ1≤sn,Σ2≤Σ1,V(z∧v)≥−α

≤
`−1

∑
j=0

∑
|u|=j

e−V(u)1V(u)≥mn,Σu
1≤sn,V(u)≥−α ∑

←−x =u=←−y
x 6=y

∑
|z|=`,z≥x

1Σx,z
2 eV(x)−V(u)≤sn ∑

|v|=`,v≥y

1
Σy,v

2 eV(y)−V(u)
,

By Markov property then by (1.15), it follows that

E(t2
n) ≤

`−1

∑
j=0

E

 ∑
|u|=j

e−V(u)1V(u)≥−α ∑
←−x =u=←−y

x 6=y

eV(u)−V(y)E

[
eS`−j−1

∑
`−j−1
i=0 eSi

]
f j,`

(
sneV(u)−V(x)

) ,

which by (A.15) and (A.16), is less than

`−1

∑
j=0

csn(1 + log+ sn)

(`− j)2 E

 ∑
|u|=j

e−V(u)1V(u)≥−α ∑
←−x =u=←−y

x 6=y

eV(u)−V(y)[1 + (V(u)−V(x))+]eV(u)−V(x)


≤

`−1

∑
j=0

csn(1 + log+ sn)

(`− j)2 E

 ∑
|u|=j

e−V(u)1V(u)≥−α

E

[(
∑
|x|=1

[1 + (−V(x))+]e−V(x)
)2
]

.
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Applying again (1.15) and (1.3), we have,

E(t2
n) ≤

`−1

∑
j=0

csn(1 + log+ sn)

(`− j)2 P
(

Sj ≥ −α
)

.

By (A.2),

E(t2
n) ≤

`−1

∑
j=0

c(1 + α)sn(1 + log+ sn)

(`− j)2(j + 1)1/2 ≤ c(1 + α)n
(log n)1+δ

.

∗ Upper bound for E(t4
n), we have :

t4
n ≤ ∑

|z|=|v|=`
z 6=v

e−V(z∧v) ∑1

∑2 ∗∑3
1{V(z∧v)≥−α,∑1≤sn}

≤
`−1

∑
j=0

∑
|u|=j

e−V(u)sn1V(u)≥−α ∑
←−x =u=←−y

x 6=y

∑
|z|=`,z≥x

1
Σx,z

2 eV(x)−V(u) ∑
|v|=`,v≥y

1
Σy,v

2 eV(y)−V(u)
.

With the same arguments as above, one sees that

E(t4
n) ≤

`−1

∑
j=0

E

 ∑
|u|=j

e−V(u)sn1V(u)≥−α ∑
←−x =u=←−y

x 6=y

e2V(u)−V(x)−V(y)E

[
eS`−j−1

∑
`−j−1
i=0 eSi

]2

 ,

which by (A.16) and (1.3) is less than

`−1

∑
j=0

csn

(`− j)
E

 ∑
|u|=j

e−V(u)1V(u)≥−α

 .

Once again by (1.15) and (A.2), we end up with

E(t4
n) ≤

`−1

∑
j=0

csn

(`− j)
P(Sj ≥ −α) ≤

`−1

∑
j=0

csn(1 + α)

(`− j)(j + 1)1/2 ≤
c(1 + α)n(log log n)

(log n)2+δ
.

Consequently, we have

tn ≤ c
n

(log n)δ
,

which concludes the proof.

4.3 Complementary arguments: Proofs of Lemmas 2.1, 2.2, 2.4 and Proposition 2.3

4.3.1 Proof of Lemma 2.1

The computations are essentially the same as in the proof of (4.4). We obtain from (4.2) that

E[KB\B3
n (`)] ≤ E

(
∑
|z|=`

(naz ∧ 1)1V(z)≤log n+log log n,V(z)≥−α

)
≤ E

(
∑
|z|=`

naz1log n−3 log log n≤V(z)≤log n+log log n,V(z)≥−α

)
+ E

(
∑
|z|=`

1V(z)≤log n−3 log log n

)
.
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It follows immediately from (1.15) that

E
(

∑
|z|=`

1V(z)≤log n−3 log log n

)
= E

(
eS`1S`≤log n−3 log log n

)
≤ elog n−3 log log n =

n
(log n)3 = o(

n
(log n)2 ).

For the other term, similarly to the proof of (4.9), by applying (A.5) instead of (A.3), one obtains that

E
(

∑
|z|=`

naz1log n−3 log log n≤V(z)≤log n+log log n,V(z)≥−α

)
≤ c

n log log n
(log n)3 = o(

n
(log n)2 ),

which completes the proof.

4.3.2 proof of Lemma 2.2

The quenched mean of KC
n (`)− KCδ

n (`) satisfies that

0 ≤ EE [KC
n (`)− KCδ

n (`)] = EE
[
KC\Cδ

n (`)
]
= KC\Cδ

n (`) ≤K̃C\Cδ

n (`) = ∑
|z|=`

naz1z∈C\Cδ .

Similarly to (2.7), we have

K̃C\Cδ

n (`) ≤ ∑
|z|=`

n
∑φ<y≤z eV(y)

1log sn−log `<maxφ<y≤z(V(y)−V(y))≤log n,V(z)≥log n+log log n,V(z)≥−α

=
n√
`

(
W(α)

` (Flog n,log n+log log n)−W(α)
` (Flog sn−log `,log n+log log n)

)
,

with recall sn = n/(log n)1+δ. Taking expectation and using change of measures (3.1) yields that

E
[
K̃C\Cδ

n (`)
]
≤ n√

`

(
E
[
W(α)

` (Flog n,log n+log log n)
]
− E

[
W(α)

` (Flog sn−log `,log n+log log n)
])

=
n√
`
R(α)

(
EQ(α)

[W(α)
` (Flog n,log n+log log n)

D(α)
`

]
− EQ(α)

[W(α)
` (Flog sn−log `,log n+log log n)

D(α)
`

])
(4.13)

=
n
`
R(α)

(
EQ(α)

[√`W(α)
` (Flog n,log n+log log n)

D(α)
`

]
− EQ(α)

[√`W(α)
` (Flog sn−log `,log n+log log n)

D(α)
`

])
In view of (3.5), as ` ∼ γ(log n)2, we have

lim
n→∞

EQ(α)

[√`W(α)
` (Flog n,log n+log log n)

D(α)
`

]
= lim

n→∞
EQ(α)

[√`W(α)
` (Flog sn−log `,log n+log log n)

D(α)
`

]
= Cγ−1/2,γ−1/2 .

So,

EQ(α)

[√`W(α)
` (Flog n,log n+log log n)

D(α)
`

]
− EQ(α)

[√`W(α)
` (Flog sn−log `,log n+log log n)

D(α)
`

]
= on(1),

and n
` = O( n

(log n)2 ). This implies that

E[KC
n (`)− KCδ

n (`)] ≤ E
[
K̃C\Cδ

n (`)
]
= o

( n
(log n)2

)
.

This ends the proof of Lemma 2.2. �
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4.3.3 Proof of Proposition 2.3

Observe that

(4.14) P

(
|KCδ

n (`)− K̃Cδ

n (`)| ≥ η
n

(log n)2

)
≤ P

(
|KCδ

n (`)−KCδ

n (`)| ≥ η
n

2(log n)2

)
+ P

(
|KCδ

n (`)− K̃Cδ

n (`)| ≥ η
n

2(log n)2

)
.

For the second term on the right hand side, by Markov inequality and (4.2), we have

P
(
|KCδ

n (`)− K̃Cδ

n (`)| ≥ η
n

2(log n)2

)
≤ 2(log n)2

ηn
E
[
K̃Cδ

n (`)−KCδ

n (`)
]
≤ 2 log n

ηn
E
[
K̃Cδ

n (`)
]

.

In view of (2.7), this implies that

P
(
|KCδ

n (`)− K̃Cδ

n (`)| ≥ η
n

2(log n)2

)
≤2 log n

ηn
× n√

`
E
[
W(α)

` (Flog sn,log n+log log n)
]

=
2c
η
R(α)EQ(α)

[W(α)
` (F)

D(α)
`

]
= O(

1√
`
),

where the last equalities come from the change of measures (3.1) and (3.5).

For the first term on the right hand side of (4.14), using Tchebychev inequality on the quenched

probability yields that

PE
(
|KCδ

n (`)−KCδ
n (`)| ≥ η

n
2(log n)2

)
≤ 4(log n)4

η2n2 VEar
(

KCδ

n (`)
)

.

So,

P

(
|KCδ

n (`)−KCδ

n (`)| ≥ η
n

2(log n)2

)
≤ 4(log n)4

η2n2 E
(

VEar
(

KCδ

n (`)
))

Using Lemma 4.5 with δ = 5 gives what we need. �

4.3.4 Proof of Lemma 2.4

Proof of (2.12). Let us show that

lim
ε↓0

lim sup
n→∞

1
n

E
[

∑
`≥(log n)2/ε

∑
|z|=`

KB
n (`)

]
= 0,(4.15)

lim
ε↓0

lim sup
n→∞

1
n

E
[

∑
`≤ε(log n)2

∑
|z|=`

KB
n (`)

]
= 0.(4.16)

• Proof of (4.15). By (4.1),

LHS(4.15) :=E
[

∑
`≥(log n)2/ε

∑
|z|=`

KB
n (`)

]
≤ E

[
∑

`≥(log n)2/ε

∑
|z|=`

(ne−V(z) ∧ 1)1z<Ln,V(z)≥−α

]
≤ ∑

`≥(log n)2/ε

nE

[
∑
|z|=`

e−V(z)1V(z)≥log n,z∈B

]
+ ∑

`≥(log n)2/ε

E

[
∑
|z|=`

1V(z)≤log n,V(z)≥−α

]
=:RI + RI I .(4.17)
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Applying (1.15) to RI I yields that

RI I = ∑
`≥(log n)2/ε

E
[
eS` ; S` ≤ log n, S` ≥ −α

]
≤ ∑

`≥(log n)2/ε

`

∑
j=1

E
[
eS` ; Sj−1 < Sj = S` ≤ log n, S` ≥ −α

]
,

which by Markov property at time j, is bounded by

∑
`≥(log n)2/ε

`

∑
j=1

E
[
eSj ; Sj ≤ log n, Sj ≥ −α

]
E
[
eS`−j1S`−j≤0

]
≤ ∑

`≥(log n)2/ε

`

∑
j=1

∑
−α≤k≤log n

ek+1P
[
Sj ∈ [k, k + 1], Sj ≥ −α

]
E
[
eS`−j1S`−j≤0

]
.

By (A.14) and (A.3), we have

RI I ≤ ∑
`≥(log n)2/ε

`

∑
j=1

∑
−α≤k≤log n

ek+1 c(1 + α)(1 + k + α)

j3/2(`− j + 1)3/2

≤ ∑
`≥(log n)2/ε

cn(1 + α)(1 + log n + α)

`3/2 ≤ c
n(1 + α)(1 + log n + α)√

(log n)2/ε

For any α > 0 fixed, letting ε ↓ 0 implies that

lim
ε↓0

lim sup
n→∞

RI I

n
= 0.

Also by (1.15), RI = ∑`≥(log n)2/ε nE
[
∑|z|=` e−V(z)1V(z)≥log n,z<Ln,V(z)≥−α

]
equals to

∑
`≥(log n)2/ε

nE
[
eS`−S`1S`≥log n,max1≤k≤` ∑k

i=1 eSi−Sk≤n,S`≥−α

]
.

So,

RI ≤ ∑
`≥(log n)2/ε

nE
[

eS`−S` ; S` ≥ log n, max
1≤k≤`

(Sk − Sk) ≤ log n, S` ≥ −α

]

≤ ∑
`≥(log n)2/ε

n
`

∑
j=1

E
[

eS`−S` ; Sj−1 < Sj = S`, Sj ≥ log n, max
1≤k≤`

(Sk − Sk) ≤ log n, S` ≥ −α

]
,

which by Markov property at time j, is bounded by

∑
`≥(log n)2/ε

n
`

∑
j=1

P
[

Sj−1 < Sj, Sj ≥ log n, max
1≤k≤j

(Sk − Sk) ≤ log n, Sj ≥ −α

]
E
[
eS`−j1S`−j≤0

]
.
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By (A.14),

RI ≤ ∑
`≥(log n)2/ε

n
`

∑
j=1

P
[

Sj−1 < Sj, max
1≤k≤j

(Sk − Sk) ≤ log n, Sj ≥ −α

]
c

(`− j + 1)3/2

=:n ∑
`≥(log n)2/ε

`

∑
j=1

r`,j.(4.18)

We split this sum into two parts: ∑`≥(log n)2/ε ∑`−`1/3

j=1 and ∑`≥(log n)2/ε ∑`−`1/3≤j≤`. For the first sum, by

(A.4), one sees that

n ∑
`≥(log n)2/ε

`−`1/3

∑
j=1

r`,j ≤ n ∑
`≥(log n)2/ε

`−`1/3

∑
j=1

P
(

Sj ≥ −α, Sj = Sj

) c
(`− j + 1)3/2

≤ n ∑
`≥(log n)2/ε

`−`1/3

∑
j=1

c(1 + α)

j(`− j + 1)3/2 ≤ c
n(1 + α)ε1/6

(log n)1/3

For the second sum, by Markov property at j/3 and 2j/3 then by reversing time,

r`,j ≤P
(

Sj/3 ≥ −α
)

P
(

max
k≤j/3

(Sk − Sk) ≤ log n
)

P
(
Sj/3 = Sj/3

) c
(`− j + 1)3/2

=P
(

Sj/3 ≥ −α
)

P
(

max
k≤j/3

(Sk − Sk) ≤ log n
)

P
(

Sj/3 ≥ 0
) c
(`− j + 1)3/2 .

It is known by [16] that for sufficiently large λ > 0, P(max1≤k≤j(Sk − Sk) ≤ λ) ≤ e
−cb j

bλ2c
c
. This

together with (A.2) implies that for any n large enough,

n ∑
`≥(log n)2/ε

∑
`−`1/3≤j≤`

r`,j ≤ n ∑
`≥(log n)2/ε

∑
`−`1/3≤j≤`

c(1 + α)

j(`− j + 1)3/2 e
−c j

(log n)2

≤ n ∑
`≥(log n)2/ε

c(1 + α)

`
e
−c `

(log n)2

≤ c(1 + α)n
∫ ∞

(log n)2/ε
e
−c t

(log n)2
dt
t

,

which by change of variables implies that

n ∑
`≥(log n)2/ε

∑
`−`1/3≤j≤`

r`,j ≤ c(1 + α)n
∫ ∞

1/ε
e−cs ds

s
≤ cε(1 + α)n.

Consequently, one gets that

lim
ε↓0

lim sup
n→∞

RI

n
= 0.

This leads to (4.17) and (4.15) follows immediately.
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• Proof of (4.16). Again by (4.1),

LHS(4.16) :=E
[

∑
`≤ε(log n)2

∑
|z|=`

KB
n (`)

]

≤E

 ∑
`≤ε(log n)2

∑
|z|=`

(ne−V(z) ∧ 1)1z<Ln,V(z)≥−α

 ≤ R′I + R′I I ,

where

R′I := ∑
`≤ε(log n)2

E

[
∑
|z|=`

ne−V(z)1V(z)≥log n/2,V(z)≥−α

]
, R′I I := ∑

`≤ε(log n)2

E

[
∑
|z|=`

1V(z)≤log n/2,V(z)≥−α

]
.

Similarly as above, by (1.15),

R′I =n ∑
`≤ε(log n)2

E
[
eS`−S` ; S` ≥ log n/2, S` ≥ −α

]
=n ∑

`≤ε(log n)2

`

∑
j=1

E
[
eS`−Sj ; Sj−1 < Sj = S`, Sj ≥ log n/2, S` ≥ −α

]
,

which by Markov property at time j is bounded by

n ∑
`≤ε(log n)2

`

∑
j=1

P
(

Sj ≥ −α, Sj = Sj ≥ log n/2
)

E
[
eS`−j1S`−j≤0

]
.

By (A.14),

(4.19) R′I ≤ n ∑
`≤ε(log n)2

`

∑
j=1

P
(

Sj ≥ −α, Sj = Sj ≥ log n/2
) c
(`− j + 1)3/2 .

then by (A.6),

R′I ≤n ∑
`≤ε(log n)2

`

∑
j=1

c(1 + α)

j1/2(`− j + 1)3/2 log n
≤ c(1 + α)n ∑

`≤ε(log n)2

1
`1/2 log n

≤ c
√

ε(1 + α)n.

Therefore,

lim
ε↓0

lim sup
n→∞

R′I
n

= 0.

It remains to bound R′I I = ∑`≤ε(log n)2 E
[
∑|z|=` 1V(z)≤log n/2,V(z)≥−α

]
. By (1.15),

R′I I = ∑
`≤ε(log n)2

E
[
eS` ; S` ≤ log n/2, S` ≥ −α

]
≤ ∑

`≤ε(log n)2

elog n/2 ≤ ε(log n)2√n,

so

lim
ε↓0

lim sup
n→∞

R′I I
n

= 0.

This completes the proof of (4.16).
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Proof of (2.13). We now prove that for any ε > 0,

(log n)2/ε

∑
m=ε(log n)2

E
[
KB\B3

n (m)
]
= o(n),(4.20)

(log n)2/ε

∑
m=ε(log n)2

E
[
KC\Cδ

n (m)
]
= o(n).(4.21)

As shown in the proof of Lemma 2.1, for any m ≥ ε(log n)2,

E
[
KB\B3

n (m)
]
≤ c(ε)n

log log n
(log n)3 ,

so (4.20) follows. It remains to show (4.21). It remains to show (4.21). Observe that

E
[
KC\Cδ

n (m)
]
= E

[
KC\Cδ

n (m)
]
≤E

[
K̃C\Cδ

n (m)
]
= E

[
∑
|z|=m

naz1z∈C\Cδ

]

Take β = log n + log log n. Because of (4.13), for any ε > 0 fixed, there exists c1 > 0 such that when

n ≥ 10, for any m ∈ [εβ2/2, β2/ε] ∩Z,

E
[
K̃C\Cδ

n (m)
]
≤ n√

m
R(α)

(
EQ(α)

[W(α)
m (Fβ,β)

D(α)
m

]
− EQ(α)

[W(α)
m (Fβ−c1 log β,β)

D(α)
m

])
.

It follows immediately that

(4.22)
(log n)2/ε

∑
m=ε(log n)2

E
[
KC\Cδ

n (m)
]
≤ nR(α)

β2/ε

∑
m=εβ2/2

1√
m

(
EQ(α)

[W(α)
m (Fβ,β)

D(α)
m

]
− EQ(α)

[W(α)
m (Fβ−c1 log β,β)

D(α)
m

])
.

Similarly to (1.26), the convergence (3.5) holds uniformly. So following the arguments used to prove

Corollary 1.9, we deduce that for any 0 < b < B < ∞, as β→ ∞,

∑
bβ2≤m≤Bβ2

1√
m

EQ(α)

[W(α)
m (Fβ,β)

D(α)
m

]
=
∫ B

b
Cγ−1/2,γ−1/2

dγ

γ
+ oβ(1).

Similarly, we also have

∑
bβ2≤m≤Bβ2

EQ(α)

1√
m

[W(α)
m (Fβ−c1 log β,β)

D(α)
m

]
=
∫ B

b
Cγ−1/2,γ−1/2

dγ

γ
+ oβ(1).

As a consequence, (4.22) becomes

(log n)2/ε

∑
m=ε(log n)2

E
[
KC\Cδ

n (m)
]
≤ on(1)nR(α),

which ends the proof.
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4.4 Proof of Proposition 1.6

Most of the arguments are already present in the proof of Theorem 1.5 in section 2.2. Indeed we have

stressed on the fact that the main contribution of visited sites comes from the set of individuals of the

tree truncated by Cδ.

Similarly to the proof of (2.13), the restriction A3 := {z ∈ T : V(z) > max|y|≤|z|−|z|1/3, y≤z V(y)} follows

easily from (3.11). So it remains to consider D :=
{

z ∈ T : maxφ<y≤z(V(y)−V(y)) ≤ log n
a0

}
, and

F :=
{

z ∈ T : V(z) ≥ a1 log n
√

log log n
}

. We only need to show that

lim
a0→+∞

lim
n→+∞

E

n−1
(log n)2/ε

∑
m=ε(log n)2

KB∩D∩A3
n (m)

 = 0,(4.23)

and

lim
n→+∞

E

n−1
(log n)2/ε

∑
m=ε(log n)2

KB∩F
n (m)

 = 0.(4.24)

For (4.23) we do as usual and get that the expectation is smaller than

(log n)2/ε

∑
m=ε(log n)2

E
[
eSm−Sm1max1≤i≤m(Si−Si)≤log n/a0, Sm≥−α,ΥS>m−m1/3

]

≤
(log n)2/ε

∑
m=ε(log n)2

m

∑
j=m−m1/3

E
[
eSm−j1Sm−j≤0

]
P
[

max
1≤i≤j

(Si − Si) ≤ log n/a0, Sj−1 < Sj, Sj ≥ −α

]
.

Similarly to (4.18), the above sum is bounded by ∑
(log n)2/ε

m=ε(log n)2 ∑m
j=m−m1/3

c(1+α)
(m−j+1)3/2m e−c′ma0/(log n)2 ≤

−2(log ε)e−c′εa0 which goes to zero as a0 → ∞.

Also for the expectation in (4.24) we can prove that it is smaller than

(log n)2/ε

∑
m=ε(log n)2

E
[
eSm−Sm1Sm≥a1 log n

√
log log n, Sm≥−α

]

≤
(log n)2/ε

∑
m=ε(log n)2

m

∑
j=1

E
[
eSm−j1Sm−j≤0

]
P
[
Sj ≥ −α, Sj ≥ a1 log n

√
log log n

]

which by (A.14) and (A.19) is bounded by c ∑
(log n)2/ε

m=ε(log n)2 ∑m
j=1(m− j+ 1)−3/2m−c′∗a2

1 = on(1) by choosing

a1 properly. �
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A Appendix

A.1 Finiteness of Λ [see (1.23)]

Lemma A.1. The function λ : (0, ∞)→ (0, ∞) is integrable, i.e.,

(A.1) Λ =
∫ ∞

0
λ(γ)dγ = c0

∫ ∞

0

Cγ−1/2,γ−1/2

γ
dγ < ∞.

Further, for any a, b > 0, Caγ−1/2,bγ−1/2 /γ is integrable.

Proof. It suffices to show that
C

γ−1/2,γ−1/2

γ is integrable. Let (ms, s ∈ [0, 1]) and (m̃s, s ∈ [0, 1]) be two

independent Brownian meanders. Then

Ca,b ≤

cP
(

σ(m1 + m̃1) ≥
√

2b
)

cP
(

maxs∈[0,1] σ(ms − m[s,1]) ≤
√

2a
)

.

It follows from the first inequality that

Ca,b ≤ cP(m1 ≥
√

2b
2σ

) = ce−b2/4σ2
,

since the density of m1 is xe−x2/21x≥0. On the other hand, according to [7], with (bs, s ∈ [0, 1]) a Brow-

nian bridge

P
(

max
s∈[0,1]

σ(ms − m[s,1]) ≤
√

2a
)
= P

(
max
s∈[0,1]

|bs| ≤
√

2a/σ

)
≤ P

(
max
s∈[0,1]

bs ≤
√

2a/σ

)
.

This shows that

Ca,b ≤cP
(

max
s∈[0,1]

bs ≤
√

2a/σ

)
= c

(
1− exp

(
−2
(√2a

σ

)2
))
≤ 4c

σ2 a2.

We are now ready to prove the integrability. Observe that∫ ∞

0

Cγ−1/2,γ−1/2

γ
dγ =

∫ 1

0

Cγ−1/2,γ−1/2

γ
dγ +

∫ ∞

1

Cγ−1/2,γ−1/2

γ
dγ

≤
∫ 1

0
ce
− 1

4σ2γ
dγ

γ
+
∫ ∞

1

4c
σ2

dγ

γ2 =
∫ 1

0
ce
− 1

4σ2γ
dγ

γ
+

4c
σ2 .

By change of variables t = 1/γ, ∫ 1

0
ce
− 1

4σ2γ
dγ

γ
=
∫ ∞

1
ce−

t
4σ2

dt
t
< ∞.

We hence conclude the integrability of
C

γ−1/2,γ−1/2

γ , as well as
Caγ−1/2,bγ−1/2

γ for any a, b > 0.
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A.2 Results on one-dimensional random walks

In this section we state technical inequalities that are used all along the paper. The sequence (Sk, k)
which appears here is the one defined in (1.15). The proofs are postpone Section A.3.

We start with two well know inequalities (see [3] for instance) and some basic Facts. There exists

constant c > 0 such that for any n ≥ 1 and u ≥ 0

(A.2) P(Sn ≥ −u) ≤ c(1 + u)√
n

and P(Sn ≤ u) ≤ c(1 + u)√
n

.

By Lemma 2.2 in [3], there exists some constant c > 0 such that for any u ≥ 0, b ≥ a ≥ −u and any

n ≥ 1,

(A.3) P(Sn ≥ −u, a ≤ Sn ≤ b) ≤ c(1 + u)(1 + b + u)(1 + b− a)
n3/2 .

Fact A.2. 1. For any u, α ≥ 0 and ∀n ≥ 1,

(A.4) Pu(Sn ≥ −α, Sn = Sn) ≤
c(1 + α + u)

n
.

2. (a) For any n ≥ 1, B > 0 fixed, there exists c(B) > 0 such that for any u ≥ 0, −B
√

n ≤ −α ≤ 0 < a <

b ≤ B
√

n,

(A.5) Pu(Sn ≥ −α, Sn = Sn ∈ [a, b]) ≤ c(B)(1 + α + u)(b− a)
n3/2 .

(b) For any n ≥ 1, A > 0,

(A.6) P(Sn ≥ −α, Sn = Sn ≥ A) ≤ c(1 + α)

An1/2 .

3. For any a, A, α > 0 and ∀n > m ≥ 1,

(A.7) P(Sn ≥ −α, Sn = Sn, Sm − Sn ≥ −A, Sm − Sm ≤ a) ≤ c(1 + A)(1 + a + A)(1 + α)

m1/2(n−m)3/2

We now state the following Lemma which is mostly a consequence of the above facts.

Lemma A.3. For any α ≥ 0, 0 < a ≤ b and n ≥ 1, we have

P
(

Sn = Sn ≥ −α
)
≤ c(1 + α)2

n3/2 ,(A.8)

P
(

∑
1≤i≤n

eSi−Sn ∈ [a, b], Sn ≥ −α
)
≤ c

(1 + α)(1 + log b)(1 + log b− log a + log n)
n

,(A.9)

E
(

eSn ; Sn ∈ [a, b], Sn ≥ −α
)
≤ ceb(b + α + 1)(1 + b− a)(1 + α)

n3/2 .(A.10)
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Following Lemma focus on asymptotic results.

Lemma A.4. Let a, b ≥ 0 fixed and limn
an√

n = limn
bn√

n = 0. We have the following convergences.

1. Let Cb := P(m1 ≥ b)c+2 with (ms, s ∈ [0, 1]) a Brownian meander and c+2 defined in (1.18). Then,

(A.11) lim
n

√
nP
(
Sn > Sn−1, Sn ≥ b

√
n + bn

)
= Cb.

2. Moreover, for any α ≥ 0 fixed,

(A.12) lim
n

nP
(

Sn ≥ −α, Sn > Sn−1, max
1≤i≤n

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

)
= Ca,bR(α),

where Ca,b ∈ (0, ∞) is a constant depending on a and b.

3. Let g : [1, ∞)→ R+ be a uniformly continuous and bounded function. Then,

(A.13) lim
n→∞

nE

[
g
( n

∑
j=1

eSj−Sn
)

; Sn ≥ −α, Sn > Sn−1, max
1≤i≤n

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

]
= Ca,bR(α)E[g(H∞)]

Below we collect some more basic facts.

Fact A.5. 1. For any n ≥ 1,

(A.14) E[eSn ; Sn ≤ 0] ≤ c
n3/2 .

2. For any A > 0 and n ≥ 1,

(A.15) E[eSn ; Sn ≤ A] ≤ c(1 + A)eA

n3/2 .

3. For any n ≥ 1,

(A.16) E
[ eSn

∑1≤i≤n eSn

]
≤ c

n1/2 .

4. For any A, δ > 0 and ∀n ≥ k2 > k1 ≥ 1,

(A.17) P(S[k1,k2] ≤ A, S(1+δ)n ≥ 0) ≤ c(1 + A)√
δnk1

.

5. If E[e±θS1 ] < ∞ for some θ > 0 [see (1.3)], then for any δ > 0 there exists c(δ, θ) > 0 such that for any
n ≥ 1,

(A.18) P(Sn ≥ n1+δ) ≤ c(δ, θ)e−θn1+δ/2.

47



6. Let a > 0. With the same hypothesis as above there exists c2 > 0 such that

(A.19) P(Sn ≥ a
√

n log n, Sn ≥ −α) ≤ c
na2c2

.

The following corollary follows from above lemmas.

Corollary A.6. Let a ≥ 0, bn ≥ 0 and limn
an√

n = limn
bn√

n = 0. Take n0 = n− n1/3, then

P
(

max
1≤i≤n

(Si − Si) ∈ [a
√

n + an, a
√

n + an + bn], Sn ≥ −α, Sn−1 < Sn

)
=

on(1)
n

,(A.20)

E
[
eSn−Sn ; max

1≤i≤n
(Si − Si) ∈ [a

√
n + an, a

√
n + an + bn], Sn ≥ −α, Sn0 < Sn

]
=

on(1)
n

,(A.21)

P
(

S[n/2,n] ≤ bn, Sn ≥ −α, Sn > Sn−1

)
=

on(1)
n

.(A.22)

A.3 Proofs of (A.4)–(A.22)

We show these results one by one.

Proof of (A.4). Let Rk := Sn − Sn−k for 0 ≤ k ≤ n. Clearly, (Rk, 0 ≤ k ≤ n/2) is an independent copy of

(Sk, 0 ≤ k ≤ n/2). Hence,

Pu

(
Sn ≥ −α, Sn = Sn

)
≤ Pu

(
Sn/2 ≥ −α, Rn/2 ≥ 0

)
= P

(
Sn/2 ≥ −α− u

)
P
(

Rn/2 ≥ 0
)

.

Applying (A.2) to both (S·) and (R·) yields that

(A.23) Pu

(
Sn ≥ −α, Sn = Sn

)
≤ c(1 + α + u)

n
,

which is exactly (A.4).

Proof of (A.5)-(A.6). Using the same arguments as above, as Sn = Sn/2 + Rn/2, we get that

Pu

(
Sn ≥ −α, Sn = Sn ∈ [a, b]

)
=P
(

Sn ≥ −α− u, Sn = Sn ∈ [a− u, b− u]
)

≤P
(

Sn/2 ≥ −α− u, Rn/2 ≥ 0, Sn/2 + Rn/2 ∈ [a− u, b− u]
)

=E
(

ψ(Sn/2); Sn/2 ≥ −α− u
)

,

where ψ(x) := P(Rn/2 ≥ 0, Rn/2 ∈ [(a− u− x)+, b− u− x])1−α−u≤x≤b−u. By (A.3),

ψ(x) ≤ c(1 + b− u− x)(1 + b− a)
n3/2 1−α−u≤x≤b−u.

It follows that

Pu

(
Sn ≥ −α, Sn = Sn ∈ [a, b]

)
≤ c(1 + b− a)

n3/2 E
(
(1 + b− u− Sn/2)+; Sn/2 ≥ −α− u

)
(A.24)

≤ c(1 + b− a)
n3/2 (1 + b + α)P

(
Sn/2 ≥ −α− u

)
,
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which by (A.2) is less than c(1+b−a)
n3/2

(1+α+u)(1+b+α)√
n = O(1) (1+b−a)(1+α+u)

n3/2 since b ∨ α ≤ B
√

n. This

completes the proof of (A.5).

Similarly for (A.6), we have

P
(
Sn ≥ −α, Sn = Sn ≥ A

)
≤ P

(
Sn/2 ≥ −α, Rn/2 ≥ 0, Rn/2 + Sn/2 ≥ A

)
≤ P

(
Sn/2 ≥ −α, Rn/2 ≥ 0, Rn/2 ≥ A/2

)
+ P

(
Sn/2 ≥ −α, Rn/2 ≥ 0, Sn/2 ≥ A/2

)
,

which by independence between (Si, i ≤ n/2) and (Ri, i ≤ n/2) and (A.2), is bounded by

c(1 + α)P
(
Sn/2 ≥ 0, Sn/2 ≥ A/2

)
n1/2 +

cP
(
Sn/2 ≥ −α, Sn/2 ≥ A/2

)
n1/2 .

By Lemma 2.3 in [3], there exists a constant c such that for any α ≥ 0,

sup
n≥1

E
[
|Sn|1Sn≥−α

]
≤ c(α + 1).

It follows from this lemma and Markov’s inequality that for any α ≥ 0,

P
(
Sn/2 ≥ −α, Sn/2 ≥ A/2

)
≤ 2E

[
|Sn/2|

A
1Sn/2≥−α

]
≤ c(1 + α)

A
.

As a consequence,

P
(
Sn ≥ −α, Sn = Sn ≥ A

)
≤ c(1 + α)

A
√

n
.

Proof of (A.7). To obtain (A.7), we consider the two independent random walks (Sk, 0 ≤ k ≤ m) and

(Rk, 0 ≤ k ≤ n−m). As Sn = Rn−m + Sm, one immediately sees that

P
(

Sn ≥ −α, Sn = Sn, Sm − Sn ≥ −A, Sm − Sm ≤ a
)

≤P
(

Sm ≥ −α, Sm − Sm ≤ a, Rn−m ≥ 0, Rn−m ∈ [Sm − Sm, Sm − Sm + A]
)

≤E
[
P
(

Rn−m ≥ 0, Rn−m ∈ [Sm − Sm, Sm − Sm + A]
∣∣∣(Sk, 0 ≤ k ≤ m)

)
1Sm≥−α,Sm−Sm≤a

]
.

Applying (A.3) to this conditional probability implies that

P
(

Sn ≥ −α, Sn = Sn, Sm − Sn ≥ −A, Sm − Sm ≤ a
)
≤E

[
c
(1 + A)(1 + A + Sm − Sm)

(n−m)3/2 1Sm≥−α,Sm−Sm≤a

]

≤c
(1 + A)(1 + A + a)

(n−m)3/2 P (Sm ≥ −α) ,

which by (A.2) is bounded by

c
(1 + α)(1 + A)(1 + A + a)

m1/2(n−m)3/2 .

This ends the proof of (A.7).
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Proof of (A.8). Let Tk := Sn−k − Sn = −Rk. Then (Tk, 0 ≤ k ≤ n) is a random walk distributed as

(−Sk, 0 ≤ k ≤ n). It follows from (A.3) that

P
(

Sn = Sn ≥ −α
)
≤ P

(
Tn ≥ 0, Tn ≤ α

)
≤ c(1 + α)2

n3/2 .

Proof of (A.9). Observe that eSn−Sn ≤ ∑1≤i≤n eSi−Sn ≤ neSn−Sn , then{
∑

1≤i≤n
eSi−Sn ∈ [a, b]

}
⊂ {log a− log n ≤ Sn − Sn ≤ log b}.

We thus bound the left hand side of (A.9) as follows

LHS(A.9) :=P
(

∑
1≤i≤n

eSi−Sn ∈ [a, b], Sn ≥ −α
)
≤ P(log a− log n ≤ Sn − Sn ≤ log b, Sn ≥ −α)

=
n

∑
k=1

P
(
Sk−1 < Sk = Sn, log a− log n ≤ Sn − Sn ≤ log b, Sn ≥ −α

)
.

By Markov property at the first hitting time Sn,

LHS(A.9) ≤
n

∑
k=1

P
(
Sk ≥ −α, Sk = Sk

)
P
(
Sn−k ≤ 0, Sn−k ∈ [− log b, log n− log a]

)
.

By (A.4) and (A.3), we deduce that

LHS(A.9) ≤
n

∑
k=1

c(1 + α)

k
(1 + log b)(1 + log b− log a + log n)

(n− k + 1)3/2

≤ c(1 + α)(1 + log b)(1 + log b− log a + log n)
n

,

which ends the proof.

Proof of (A.10). By (A.3), one sees that

LHS(A.10) := E
(

eSn ; Sn ≥ −α, Sn ∈ [a, b]
)
≤ebP (Sn ≥ −α, Sn ∈ [a, b])

≤ceb (1 + α)(1 + b− a)(b + α + 1)
n3/2 .

Proof of (A.11). By considering Rk = Sn − Sn−k, one sees that

P(A.11) :=P
(
Sn > Sn−1, Sn ≥ b

√
n + bn

)
= P

(
Rn > 0, Rn ≥ b

√
n + bn

)
=P

(
Rn ≥ b

√
n + bn

∣∣∣Rn > 0
)

P (Rn > 0) .

By the theorem in [10] and (1.18), we get the following convergence

lim
n→∞

√
nP(A.11) = P(m1 ≥ b)c+2 = Cb.
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Proof of (A.12). Consider the two independent random walks (Sk, 0 ≤ k ≤ n) and (Rk, 0 ≤ k ≤ n).
One observes that

max
1≤i≤n

(Si − Si) = max
{

max
1≤i≤n/2

(Si − Si), max
1≤i≤n/2

(Rk − R[k,n/2]), Sn/2 − Sn/2 + Rn/2 − Rn/2

}
,

and that

{Sn ≥ −α, Sn > Sn−1} = {Sn/2 ≥ −α}∩{Rn/2−Rn/2 ≤ Sn/2 + α}∩{Rn/2 > 0}∩{Rn/2 > Sn/2−Sn/2}.

Let

P(A.12) := P
(

Sn ≥ −α, Sn > Sn−1, max
1≤i≤i

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

)
.

It is immediate that

P(A.12) = P
(

Sn/2 ≥ −α, Rn/2 > 0, max
1≤i≤n/2

(Si − Si) ≤ a
√

n + an, Rn/2 + Sn/2 > (b
√

n + bn) ∨ Sn/2,

Rn/2 − Rn/2 ≤ (a
√

n + an − Sn/2 + Sn/2) ∧ (Sn/2 + α), max
1≤i≤n/2

(Rk − R[k,n/2]) ≤ a
√

n + an

)
which equals to

E

(
Ψa,b

n (
Sn/2√

n/2
,

Sn/2 − Sn/2√
n/2

); Sn/2 ≥ −α, max
1≤i≤n/2

(Si − Si) ≤ a
√

n + an

)
where

Ψa,b
n (x, h) := P

(
Rn/2 > 0

)
× P

( Rn/2√
n/2

> (
√

2b +
bn√
n/2

) ∨ (x + h)− x,

Rn/2 − Rn/2√
n/2

≤ (
√

2a− h +
an√
n/2

) ∧ (x +
α√
n/2

), max
1≤i≤n/2

(Rk − R[k,n/2]) ≤ a
√

n + an

∣∣∣Rn/2 > 0
)

.

Again by invariance principle and (1.18), as n→ ∞,

(A.25)
√

n/2Ψa,b
n (x, h) −→ Ψa,b(x, h) =

c+2 P
(

σm1 > (
√

2b− x) ∨ h, σm1 − σm1 ≤ (
√

2a− h) ∧ x, max
0≤s≤1

σ(ms −m[s,1]) ≤
√

2a
)

.

Because Ψa,b
n (x, h) is monotone for x ≥ 0 and h ≥ 0 and Ψa,b is continuous, by Dini’s theorem, we have

uniformly for (x, h) ∈ R2
+,

Ψa,b
n (x, h) =

Ψa,b(x, h) + on(1)√
n/2

.

As a consequence,

P(A.12) = E

Ψa,b(
Sn/2√

n/2
, Sn/2−Sn/2√

n/2
) + on(1)

√
n/2

; Sn/2 ≥ −α, max
1≤i≤n/2

(Si − Si) ≤ a
√

n + an


=

1√
n/2

E

(
Ψa,b(

Sn/2√
n/2

,
Sn/2 − Sn/2√

n/2
) + on(1); max

1≤i≤n/2
(Si − Si) ≤ a

√
n + an

∣∣∣Sn/2 ≥ −α

)
P
(
Sn/2 ≥ −α

)
.
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Once again by invariance principle and the fact that limn→∞
√

nP(Sn ≥ −α) = R(α)c+1 ,

P(A.12) =
R(α)Ca,b

n
+

on(1)
n

,

with Ca,b defined in (1.21).

Proof of (A.13). We turn to consider

nE

[
g
( n

∑
j=1

eSj−Sn
)

; Sn ≥ −α, Sn > Sn−1, max
1≤i≤n

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

]
.

First, we show that in this case with high probability, Sn/2 ≤ Sn − n−1/3. In fact,

E

[
g
( n

∑
j=1

eSj−Sn
)

; Sn ≥ −α, Sn/2 ≥ Sn − n−1/3, Sn > Sn−1, max
1≤i≤n

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

]
≤ ||g||∞P

(
Sn ≥ −α, Sn/2 ≥ Sn − n−1/3, Sn = Sn, Sn/2 − Sn/2 ≤ a

√
n + an

)
≤ c||g||∞

a(1 + α)

n1+1/6 ,

where the last inequality follows from (A.7). Now, given Sn/2 ≤ Sn− n−1/3, ∑n
j=1 eSj−Sn can be replaced

by ∑n/2≤j≤n eSj−Sn which is independent of (Sk; 0 ≤ k ≤ n/2). Note that on {Sn/2 ≤ Sn − n−1/3},

∑
n/2≤j≤n

eSj−Sn ≤
n

∑
j=1

eSj−Sn ≤ ne−n1/3
+ ∑

n/2≤j≤n
eSj−Sn .

and that g is uniformly continuous. Hence,∣∣∣g( ∑
n/2≤j≤n

eSj−Sn
)
− g
( n

∑
j=1

eSj−Sn
)∣∣∣ = on(1).

Therefore, we deduce that

E

[
g
( n

∑
j=1

eSj−Sn
)

; Sn ≥ −α, Sn > Sn−1, max
1≤i≤n

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

]

=E

[
g
(

∑
n/2≤j≤n

eSj−Sn
)

; Sn ≥ −α, Sn > Sn−1, max
1≤i≤n

(Si − Si) ≤ a
√

n + an, Sn ≥ b
√

n + bn

]
+

on(1)
n

Now we use (Rk, 0 ≤ k ≤ n/2) in replace of (Sn − Sn−k, 0 ≤ k ≤ n/2) and recount on the same

arguments as in the proof of (A.12). Thanks to (1.17), (A.13) follows immediately.

Proof of (A.14). Let Sn := −Sn. Observe that

E[eSn ; Sn ≤ 0] = E[e−Sn ; Sn ≥ 0] ≤
∞

∑
k=0

e−kP [Sn ≥ 0, Sn ∈ [k, k + 1)] .

52



Applying (A.3) to S implies that

E[eSn ; Sn ≤ 0] ≤
∞

∑
k=0

e−k c(1 + k)
n3/2 ≤ c

n3/2 ,

since ∑k≥0(1 + k)e−k < ∞.

Proof of (A.15). By applying Markov property at the first hitting time Sn, one sees that

E[eSn ; Sn ≤ A] =
n

∑
k=0

E[eSn ; Sk−1 < Sk ≤ A, Sk ≥ S[k,n]]

=
n

∑
k=0

E[eSk ; Sk−1 < Sk ≤ A]E[eSn−k ; Sn−k ≤ 0]

=
n

∑
k=0

E[eSk ; Sk > 0, Sk ≤ A]E[eSn−k ; Sn−k ≤ 0](A.26)

where the last equality follows from time-reversing. Next, one observes that for any k ≥ 1, by (A.3),

E[eSk ; Sk > 0, Sk ≤ A] ≤ ∑
j∈[0,A)∩Z

ej+1P
(

Sk > 0, Sk ∈ [j, j + 1]
)

≤ c
k3/2 ∑

j∈[0,A)∩Z

ej+1(1 + j) ≤ c(1 + A)eA

k3/2 ,

since ∑j∈[0,A
√

n)∩Z ej+1(1 + j) ≤ c(A + 1)eA. Plugging this inequality and (A.14) into (A.26) yields that

E[eSn ; Sn ≤ A] ≤
n

∑
k=0

c(1 + A)eA

(k + 1)3/2(n− k + 1)3/2 ≤
c(1 + A)eA

n3/2 ,

which is what we need.

Proof of (A.16). We have,

E
[

eSn

∑1≤i≤n eSi

]
≤ E

[
eSn−Sn

]
=

n

∑
k=0

E
[
eSn−Sk ; Sk > Sk−1, Sk ≥ S[k,n]

]
,

then by Markov property and a time reversal for (Sj, 0 ≤ j ≤ k), one gets that

E
[

eSn

∑1≤i≤n eSi

]
≤

n

∑
k=0

P
(
Sk > Sk−1

)
E
[
eSn−k ; Sn−k ≤ 0

]
≤

n

∑
k=0

P (Sk > 0)E
[
eSn−k ; Sn−k ≤ 0

]
.

By (A.2) and (A.14)

E
[

eSn

∑1≤i≤n eSi

]
≤

n

∑
k=0

c
(k + 1)1/2(n− k + 1)3/2 ≤

c√
n

.
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(A.17) follows immediately from Lemma 3 in [18].

Proof of (A.18). For θ > 0 such that ϕ(θ) := log E[eθS1 ] ∈ (−∞, ∞), {eθSn−nϕ(θ); n ≥ 0} is a non-negative

martingale. The existence of θ comes from (1.3). Therefore, by Doob’s inequality,

P
(

Sn ≥ n1+δ
)
≤P

(
max

0≤k≤n
eθSk−kϕ(θ) ≥ eθn1+δ−nϕ(θ)

)
≤e−θn1+δ+nϕ(θ)E

[
eθSn−nϕ(θ)

]
= e−θn1+δ+nϕ(θ).

For n large enough, θn1+δ − nϕ(θ) ≥ θn1+δ/2. Hence, for any n ≥ 1,

P
(

Sn ≥ n1+δ
)
≤ c(δ, θ)e−θn1+δ/2.

(A.19) can be treated similarly choosing θ properly as a, decreasing to zero, function of n.

(A.20) is an immediate consequence of (A.12), and we are left to prove (A.21) and (A.22).

Proof of (A.21). Let

E(A.21) := E
[
eSn−Sn ; max

1≤i≤n
(Si − Si) ∈ [a

√
n + an, a

√
n + an + bn], Sn ≥ −α, Sn0 < Sn

]
.

Recall that ΥS is the first hitting time of Sn. So, max1≤i≤n(Si − Si) = max{max1≤i≤ΥS(Si − Si), SΥS −
S[ΥS,n]}, it follows that

(A.27) E(A.21) ≤ E
[
eSn−Sn ; SΥS − S[ΥS,n] ≥ a

√
n + an, Sn ≥ −α, ΥS > n0

]
+

E
[
eSn−Sn ; max

1≤i≤ΥS
(Si − Si) ∈ [a

√
n + an, a

√
n + an + bn], Sn ≥ −α, ΥS > n0

]
.

On the one hand,

E
[
eSn−Sn ; SΥS − S[ΥS,n] ≥ a

√
n + an, Sn ≥ −α, ΥS > n0

]
≤

n

∑
k=n0+1

P
(

ΥS = k, Sk ≥ −α, Sk − S[k,n] ≥ a
√

n + an, S[k,n] ≤ Sk

)
,

which by Markov property is bounded by

n

∑
k=n0+1

P
(
Sk ≥ −α, Sk = Sk

)
P
(
Sn−k ≤ −a

√
n− an

)
.

By (A.4) and (A.18),

E
[
eSn−Sn ; SΥS − S[ΥS,n] ≥ a

√
n + an, Sn ≥ −α, Sn0 < Sn

]
= on(1)/n.
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On the other hand,

E
[
eSn−Sn ; max

1≤i≤ΥS
(Si − Si) ∈ [a

√
n + an, a

√
n + an + bn], Sn ≥ −α, ΥS > n0

]
≤

n

∑
k=n0+1

E
[
eSn−Sk , ΥS = k, max

1≤i≤k
(Si − Si) ∈ [a

√
n + an, a

√
n + an + bn], Sk ≥ −α

]
which by Markov property at time k equals to

n

∑
k=n0+1

E
[
eSn−k1Sn−k≤0

]
P
(

max
1≤i≤k

(Si − Si) ∈ [a
√

n + an, a
√

n + an + bn], Sk ≥ −α, Sk > Sk−1

)
.

By (A.14) and (A.20), this sum is of order on(1)/n. We hence conclude (A.21).

Proof of (A.22). Let

P(A.22) := P
(

S[n/2,n] ≤ bn, Sn ≥ −α, Sn > Sn−1

)
Use again the notation Rk = Sn − Sn−k, we observe that

P(A.22) = P
(

Sn/2 ≥ −α, Rn/2 − Rn/2 ∈ [(Sn/2 − bn)+, Sn/2 + α], Rn/2 > 0, Rn/2 > Sn/2 − Sn/2

)
≤ E

[
Sn/2 ≥ −α, f̂n(

Sn/2√
n/2

)
]
,

where

f̂n(x) := P
(

Rn/2 − Rn/2√
n/2

∈
[
(x− bn√

n/2
), x +

α√
n/2

]
, Rn/2 > 0

)
.

By invariance principle, P(Rn/2−Rn/2√
n/2

≤ x|Rn/2 > 0) converges to P(m1 − m1 ≤ x) uniformly for x ∈ R+.

Consequently,

f̂n(x) =
on(1)√

n
, uniformly for x ∈ R+,

so

P(A.22) ≤
on(1)√

n
P
(

Sn/2 ≥ −α
)
=

on(1)
n

.
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