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Abstract. In this paper we take �rst steps in addressing the 3D Digital
Subplane Recognition Problem. Let us consider a digital plane P : 0 ≤
ax+ by − cz + d < c (w.l.o.g. 0 ≤ a ≤ b ≤ c) and a �nite subplane S of
P de�ned as the points (x, y, z) of P such that (x, y) ∈ [x0, x1]× [y0, y1].
The Digital Subplane Recognition Problem consists in determining the
characteristics of the subplane S in less than linear (in the number of
voxels) complexity. We discuss approaches based on remainder values{

ax+by+d
c

}
, (x, y) ∈ [x0, x1] × [y0, y1] of the subplane. This corresponds

to a bilinear congruence sequence. We show that one can determine if
the sequence contains a value ε in logarithmic time. An algorithm to
determine the minimum and maximum of such a bilinear congruence
sequence is also proposed. This is linked to leaning points of the subplane
with remainder order conservation properties. The proposed algorithm
has a complexity in, ifm = x1−x0 < n = y1−y0, O(m log (min(a, c− a))
or O(n log (min(b, c− b)) otherwise.

Keywords: Digital planes, Digital Subplane Recognition Problem, con-
gruence sequence

1 Introduction

Since J-P. Reveilles, among other previous authors [4, 5], proposed an analytical
description of a Digital Straight Line (DSL) 0 ≤ ax − by + c < ω [14], many
papers have been devoted to its study. Indeed, the structure of DSL is rich,
with immediate links to word theory, the Stern-Brocot tree, the Farey sequence,
etc. See [10] for an historical perspective. The natural extension to higher
dimensions has opened new venues for arithmeticians [2].

Lately, the problem of characterizing a Digital Straight Segment (DSS), seg-
ment of a DSL with known characteristics, has gained some traction [15, 11, 16,
13]. This problem is linked to multiscale shape analysis [11, 15, 19]. When con-
sidering geometrical features at multiple scales, it is important to be able to
recompute the new, scaled, characteristics as rapidly as possible. In this paper
we are interested in the extension of this problem to dimension three: the Digital
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Subplane (DSP) Recognition Problem. Check the following papers for a general
approach on Digital Plane Recognition [6, 9, 12, 3, 7]. In Section 2, we propose a
recall on 2D results and the unsolved problems in 3D. Right now, minimal char-
acteristics of a subplane are chosen as representative of the equivalence class
formed by all the characteristics that �t the Digital SubPlane (DSP) [6, 9, 3]. In
particular, we conjecture the existence of a class of Digital SubPlanes charac-
teristics for which the remainder order property is respected. This means that
by searching for the minimum and maximum of the remainders on a DSP, we
can identify leaning points easily which would lead to the characteristics (a lean-
ing point is a point of extremum remainder in the DSP that allows to compute
its characteristics). In Section 3, we propose an algorithm for computing the
minimum and maximum of a simple bilinear congruence sequence correspond-
ing to the remainders of a DSP. This represents a �rst step towards solving a
particular subclass of the general problem of characterization of a Digital Plane
Subsegment Recognition Problem. We conclude in Section 4.

2 Recalls on the 2D problem and state of the 3D problem

2.1 Recalls of the 2D Digital Straight Subsegment Recognition

Problem

An 8-connected Digital Straight Line (DSL) in the �rst octant, is de�ned
by analytical inequalities 0 ≤ ax − by + c < c, with 0 ≤ a ≤ b and ω = b,
gcd(a, b) = 1, a, b, c ∈ Z3. There is a unique DSL with a given set of char-
acteristics but there are an in�nite number of �nite Digital Straight Lines
that contain a same, �nite connected, Digital Straight Segment (DSS). All
these DSL containing a DSS form an equivalence class. There is therefore a
question of the unique characterization of a DSS. If one simply takes the known
characteristics of a DSL containing a DSS, then we may end up with di�erent
characteristics for the DSS and have the problem of comparing them. There
is a unique DSL among the class that has a minimal parameter b [6]. The
parameters (a, b, c), with minimal parameter b among all the DSL containing
a same DSS, are chosen as characteristics for the DSS. These characteristics
are called minimal characteristics of the DSS. The DSS can then be fully
characterized by those parameters and two points A and B corresponding to the
end points of the segment. These parameters happen also to be those that are
given by the analytical recognition algorithm proposed by I. Debled-Renesson [6].

The problem of the characterization of a Digital Straight Subsegment con-
tained in a known DSL is di�erent from the regular recognition problem of a
DSS since we already know that all the points of the subsegment belong to a
known DSL. Various approaches have been proposed [15, 11, 16] such as consid-
ering the Stern-Brocot tree or the Farey fans. These methods are logarithmic
in the coe�cients of the input slope or the length of the segment. The main
problem with these methods is that they do not o�er an obvious extension to
higher dimensions. In [13], the authors have proposed an alternative algorithm
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based on the remainder values. For a DSL D(a, b, c) of characteristics (a, b, c),
if a point (x, y) belongs to the DSL, then the remainder ax − by + c is equal
to
{
ax+c
b

}
(where

{
n
m

}
stands for n mod m). The integer R(a,b,c) =

{
ax+c
b

}
is called a remainder in x as remainder of a Euclidean division where

⌊
ax+c
b

⌋
is the ordinate of the point of abcissa x belonging to the DSL. The remainders
de�ne a simple congruence sequence noted R(a,b,c). One of the main results that
we showed is that for a DSL of characteristics (a, b, c) and a DSS of minimal
characteristics (α, β, γ) de�ned on x ∈ [u, v], the remainder order is conserved
on the DSS [13]:

∀x, x′ ∈ [u, v], |x− x′| ≤ b : Ra,b,c (x) < Ra,b,c (x′)⇒ Rα,β,γ (x) ≤ Rα,β,γ (x′)

This has some direct consequences such as the fact that the minimal and
maximal values of the DSL remainders on the subsegment are leaning points.
By computing a third minimal or maximal remainder, it allows to determine
the minimal characteristics of the subsegment. Furthermore, the computa-
tion of these minimal and maximal values of the congruence sequence can
be done in logarithmic time with a simple characteristic substitution and
sequence reduction scheme (DSL collapse) akin to Euclid's Algorithm. The
method is faster than previous ones [15, 11, 16] and o�ers a possible extension
to higher dimensions. It is this extension we start exploring in the present paper.

2.2 State of the 3D problem

This paper is interested in the exploration of the Digital SubPlane (DSP) Recog-
nition (characterization) Problem in dimension three. The paper is meant as a
�rst step as there are some signi�cant di�erences with the problem in dimension
two and, as we will see, many questions that remain open and that require future
investigations. First of all, Digital Plane (DP) recognition problems in 3D can
be way more di�cult than in 2D. For instance, decomposing a 2D closed curve
into a minimal number of 2D DSS can be performed in linear time [8] while
the equivalent problem in 3D is NP-hard [17]. The preimage of a 2D DSS is a
polygon of a maximum of four vertices while there is no limit to the number
of vertices for the preimage polytope of a DSP in 3D [3]. There are also some
similarities: as in 2D, a �nite connected digital subplane belongs to an in�nite
number of digital planes containing the DSP (and thus de�ning an equivalence
class). There exists a unique DP of characteristics (a, b, c, d) such that c is mini-
mal among the characteristics in the equivalence class. This is called the minimal

characteristics of a DSP. The DSP Recognition algorithms provide the minimal
characterictics [6, 9, 12, 3, 7]. For the problem that interests us, the problem of
characterizing a plane subsegment of a known Digital Plane in dimension three,
the Stern-Brocot exploration approach followed by Said and lachaud [15, 11] and
the Farey fan walk approach followed by Sivignon [16] are not easily extended
to dimension three, while our remainder approach seems more appropriate [13].
The extension of the 2D remainder sequence to 3D is straightforward and con-
stitutes the starting point of this investigation. Let us consider a digital plane
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(DP) P(a, b, c, d) =
{
(x, y, z) ∈ Z3; 0 ≤ ax+ by − cz + d < c

}
of known char-

acteristics (a, b, c, d), with, w.l.o.g. gcd(a, b, c) = 1 and 0 ≤ a ≤ b ≤ c. For
all the points of the DP, one can de�ne a simple bilinear congruence sequence

Ra,b,c,d(x, y) = ax+ by − cz + d =
{
ax+by+d

c

}
[14, 1].

One could think that the 2D remainder properties extend naturally to 3D, but
they do not, at least not always. The 2D remainder order conservation property
(recalled in the previous subsection) is not veri�ed anymore in 3D (see the con-
clusion of [13] for an example). It is veri�ed quite often but not systematically.
The consequences are immediate: there are leaning points of the DP that may
not be leaning point anymore in the DSP and vice-versa. It means also that the
minimum and maximum remainder value on a DSP remainder sequence are not
necessarily leaning points for the minimal characteristics of the DSP. However,
it seems that there always exists characteristics for the DSP such that the min-
imum and maximum remainder are leaning points. Let us express this in the
form of a conjecture:

Conjecture 1. Let us consider a DP P = D(a, b, c, d), with gcd(a, b, c) = 1 and
0 ≤ a ≤ b ≤ c and a �nite DSP of P de�ned on (x, y) ∈ [x0, x1] × [y0, y1],
then there exists characteristics (α, β, γ, δ) such that the points among those
with the minimum and maximum values of the bilinear remainder sequence
R(a,b,c,d)(x, y) on [x0, x1]× [y0, y1] are leaning points of the DSP for the charac-
teristics (α, β, γ, δ).

Actually, what that means is that the minimal characteristics for a DSP may
not be the only choice as DP equivalence class characteristics' representative.
While the remainder conservation property is not always veri�ed for minimal
characteristics, it seems that there are actually always characteristics (some-
times not minimal) that have this property. This needs to be looked upon more
closely before we state it as a conjecture or simply prove it, but it opens the way
to a subclass of DSP characteristics with some very interesting properties. On
the opposite, the remainder conservation property seems to be the norm. For
instance, when we consider a DSP with minimal characteristics, most DP that
contain this DSP seems to verify the conservation property but not necessarily
all. Are there always DP that do not verify this property and always some that
do? How are those groups characterized? They represent after all the very same
voxels so what makes them behave di�erently?

So, why considering characteristics that are not necessarily minimal? First of
all, this may lead to characterization algorithms that are sublinear in the DSP
number of voxels (for the Digital Subplane Recognition Problem). The insight
in the characteristics classes may lead to new and better general understanding
of Digital Planes. In this paper, we provide the �rst algorithm with sublin-
ear complexity to determine the minimum and maximum of a simple bilinear
congruence sequence (DSP remainder sequence) and provide some thoughts on
particular classes of Digital Plane collapses.

After some notations, we will present in Section 3 some extensions of the
results presented in [13] on linear congruence sequences. We show that one can
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determine in logarithmic time if a bilinear congruence sequence contains a given
value ε. We provide an algorithm to compute the minimum and maximum of a
bilinear congruence sequence. We conclude in Section 4 and give some clues on
the computation of DSP characteristics and future work.

3 Finding the minimum and maximum of a simple

bilinear congruence sequence

We are looking for the minimum and maximum of a bilinear congruence sequence{
ax+by+d

c

}
for (x, y) ∈ [x0, x1] × [y0, y1]. We suppose that gcd(a, b, c) = 1 and

that 0 ≤ a ≤ b ≤ c. After the presentation of some notations, we will discuss
properties of linear congruence sequences and especially linear congruence se-
quence collapses that preserve minimum or maximum values. This leads to a
�rst algorithm for the search of a minimum and maximum in a bilinear con-
gruence sequence. We will end this section with some thoughts on digital plane
collapses in order to obtain even better complexities.

3.1 Notations

A Digital Plane (DP for short) P (a, b, c, d) of integer characteris-

tics (a, b, c, d) is the set of digital points (x, y, z) ∈ Z3 such that
0 ≤ ax + by − cz + d < max (|a| , |b| , |c|) with gcd (a, b, c) = 1. This digi-
tal plane is 18-connected and called a naive digital plane [3]. The value d
is sometimes called the translation constant. In this paper, without loss of
generality, we assume that 0 ≤ a ≤ b ≤ c. In this case, we have one and only one
point, denoted PD(x, y), in P with abscissa x and ordinate y. The z-coordinate

is then z =
⌊
ax+by+d

c

⌋
.

A Digital SubPlane (DSP for short) S (P, x0, x1, y0, y1) associated to the
DP P = P (a, b, c, d) is the subset of P with points of abscissa and ordinate in
[x0, x1]× [y0, y1]. A DSP is a �nite 18-connected subset of a DP.

We will use the notation
{
n
m

}
for n mod m [14]. In 3D, the remainder at

abscissa and ordinate (x, y) is the value Ra,b,c,d (x, y) = ax + by − cz + d. For

a point of the DP, we have Ra,b,c,d (x, y) =
{
ax+by+d

c

}
. The bilinear remainder

sequence Ra,b,c,d (x0, x1, y0, y1) is a set of remainders Ra,b,c,d (x, y) for (x, y) ∈
[x0, x1] × [y0, y1]. In 2D, the remainder for a DSL of characteristics (a, b, c) is
the value Ra,b,c (x) =

{
ax+c
b

}
at abscissa x. The linear remainder sequence

Ra,b,c (u, v) corresponds to the values Ra,b,c (x) for u ≤ x ≤ v.
Let us �rst note that Ra,b,c,d (x, y) = Ra,c,d+by(x) = Rb,c,d+ax(y). The sim-

pliest way of looking at a bilinear congruence sequences is to look at them as
sequences of linear congruence sequences. The results presented here are slight
extensions of properties already presented in [13] for sequences of type Ra,b,0(x)
with parameter c = 0. Here we are looking at the same properties for Ra,b,c(x).
As we will see, the extensions are pretty straightforward.
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3.2 Linear Sequence collapse

Let us look at collapsed linear congruence sequences to Ra,b,c(u, v) ={{
ax+c
b

}
: u ≤ x ≤ v

}
that preserve the minimum and maximum values of the

sequence. We suppose that 0 ≤ b and gcd(a, b) = 1. Let us remark that the
sequence of remainders Ra,b,c(x) corresponds to a naive DSL of slope a

b in the
�rst octant. When one looks at such a sequence as a DSL, one can see that the
minimal values and maximal values are located at speci�c places on the DSL.
Let us call a span, a set of pixels with same ordinate. The remainders between 0
and a− 1 are located at the beginning of a complete span while the remainders
between b− a and b− 1 are located at the end of a complete span. Let us note
as well that, in Figure 1, the �rst span on the bottom left is not complete and
the upper top span neither.

Initial Sequence
Characteristics (51,131,71)
Interval [0,13]

1st step

Min sequence 1
Characteristics (22,51,20)
Interval [1,5]

Max sequence 1
Characteristics (22,51,20)
Accumulation value 80
Interval [1,5]

2nd step

Min sequence 2
Characteristics (15,22,20)
Interval [2,3]

Max sequence 2
Characteristics (15,22,20)
Accumulation value 109
Interval [2,3]

Final step 
Characteristics (7,22,20)

Min sequence interval [-3,-3]

Max sequence interval [-2,-2]
Accumulation value 109

Minimum Maximum

3rd step

Min sequence 3
Characteristics (7,22,20)
Interval [-3,-2]

Max sequence 3
Characteristics (7,22,20)
Accumulation value 109
Interval [-3,-2]

Fig. 1. DSS of characteristics (51, 131, 71), 0 ≤ x ≤ 13. Minimum remainders are at
the beginning of a span while maximum remainders are at the end of a span. Three
steps are needed in this case to determine the minimum and maximum.

The following proposition states that the span start and end remainders form
linear congruence sequences as well:

Proposition 1. Let us consider the remainder subsequence ζ = Ra,b,c(u, v),
with 0 ≤ a ≤ b and gcd (a, b) = 1.



Thoughts on 3D Digital Subplane Recognition 7

� if
⌊
au+c
b

⌋
=
⌊
av+c
b

⌋
then min(ζ) =

{
au+c
b

}
and max(ζ) =

{
av+c
b

}
;

� otherwise min(ζ) ∈ ζ ′ where ζ ′ = R{−ba },a,c
(
1 +

⌊
a(u−1)+c

b

⌋
,
⌊
av+c
b

⌋)
;

� and max(ζ) ∈ ζ ′′ where ζ ′′ = b− a+R{−ba },a,c
(
1 +

⌊
au+c
b

⌋
,
⌊
a(v+1)+c

b

⌋)
.

Proof. In [13] a similar result has been presented but with c = 0. We have
therefore simply to prove that the result stands with c 6= 0. For the �rst line,⌊
au+c
b

⌋
=
⌊
av+c
b

⌋
corresponds to the ordinate of the points of abscissa u and v.

If the ordinates are equal, both points are on the same span and the minimum
is located at abscissa u and the maximum at abscissa v regardless if the span is
complete or not.

Let m = min(ζ). Now, let us consider the Bezout coe�-
cient (α, β) of (a, b) such that aα − bβ = 1. It is easy to see
that Ra,b,c (u, v) = Ra,b,0

(
u−

{
cα
b

}
, v −

{
cα
b

})
[13]. We know

already that if m ∈ Ra,b,0
(
u−

{
cα
b

}
, v −

{
cα
b

})
then m ∈

R{−ba },a,0

(
1 +

⌊
a(u−{ cαb }−1)

b

⌋
,

⌊
a(v−{ cαb })

b

⌋)
[13]. It is now easy to see

that this is the same as m ∈ R{−ba },a,c
(
1 +

⌊
a(u−1)+c

b

⌋
,
⌊
av+c
b

⌋)
. The same

goes for the maximum. ut

Proposition 1 means that we can build two linear congruence sequences that
maintain the minimum and maximum values respectively. Although the maxi-
mum value is only conserved indirectly via an accumulator value. The interest-
ing aspect is that we replace a sequence of (v − u) values by a sequence with(⌊

av+c
b

⌋
−
⌊
a(u−1)+c

b

⌋
− 1
)
values. However if the slope is close to 1, the num-

ber of points is equal to the number of spans and we do not gain much by
replacing one sequence by the other. This is solved by performing the following
substitution:

Lemma 1. Let us consider the remainder subsequence ζ = Ra,b,c(u, v), with

0 ≤ a ≤ b and gcd (a, b) = 1. Let us suppose that 2a > b then:

min(ζ) ∈ ζ ′ and max(ζ) ∈ ζ ′ where ζ ′ = Rb−a,b,c(−v,−u)

The proof is similar to the one that can be found in [13]. With Lemma 1,
we transform a sequence with a spans into a sequence with b − a spans and a
DSS of slope a

b >
1
2 into a DSS of slope b−a

b < 1
2 . The spans are bigger and the

computation time is reduced.

Lemma 2. Ra,b,c(u, v) = Ra,b,{ cb}(u, v)

This result is obvious since the remainder sequence has a periodicity of b.
This lemma can help if c is big compared to b.

Right now we have supposed that for a DSL characteristics (a, b, c), we have
gcd(a, b) = 1. This is reasonable since the DSL of characteristics (a, b, c), for
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g = gcd(a, b) > 1, is the same than the DSL of characteristics
(
a
g ,

b
g ,
⌊
c
g

⌋)
.

However, if we are simply looking at the remainder sequence for gcd(a, b) > 1,
the values in the sequence are di�erent although related to the remainder values
obtained by dividing the characteristics by the gcd, as the following lemma shows
(note that the algorithm 1 works even if the GCD is not equal to one):

Lemma 3. Let us consider a DSL of characteristics (a, b, c) such that

gcd(a, b) = g > 1, then: Ra,b,c(u, v) =
{
c
g

}
+ gR a

g ,
b
g ,c

(u, v)

Algorithm 1: ComputeMinMax2D (In: a, b, c, u, v. Out: mini,maxi) - -
a, b, c: characteristics of the DSL; u, v: interval of de�nition of the DSS;
mini, maxi: minimal, maximal remainder)

begin

minifound← False; maxifound← False; cumul← 0 ;
(* (u′, v′) min sequence interval and (u′′, v′′) max sequence interval *)
u′ ← u ; v′ ← v ; u′′ ← u ; v′′ ← v ;
while not (minifound and maxifound) do

if 2a > b then
(* Dealing with longer spans reduce computation time *)
(a, b, c, u′, v′, u′′, v′′)← (b− a, b, c,−v′,−u′,−v′′,−u′′) ;

(a′, b′)←
({−b

a

}
, a
)
;

c′ =
{

c
b′

}
;

if not(minifound) then

yu ←
⌊

au′+c
b

⌋
; yv ←

⌊
av′+c

b

⌋
;

if yu = yv (* only one span *) then

mini←
{

au′+c
b

}
;

minifound← True ; (* We have our minimal remainder *)

else

(u′, v′)← (1 + b(a′(u′ − 1) + c′)/b′c , b(a′v′ + c′)/b′c);

if not(maxifound) then

yu ←
⌊

au′′+c
b

⌋
; yv ←

⌊
av′′+c

b

⌋
;

if yu = yv (* only one span *) then

maxi← cumul +
{

au′′+c
b

}
;

maxifound← True ; (* We have our maximal remainder *)

else

(u′′, v′′)← (1 + b(a′u′′ + c′)/b′c , b(a′(v′′ + 1) + c′)/b′c);

(a, b, c)← (a′, b′, c′);

We now have all we need for a complete 2D algorithm: see Algorithm 1 for
the search of the minimum in a 2D sequence. This algorithm is an extension of



Thoughts on 3D Digital Subplane Recognition 9

the one proposed in [13] as it computes the minimum and the maximum at the
same time. Note however that we do not check if the value 0 or b − 1 belong
to the sequence for algorithm ComputeMinMax2D parameters (a, b, c, u, v). In
3D, there is an overall check for the presence of those values in the complete
bilinear sequence. If the reader wants to use the algorithm ComputeMinMax2D
to solve 2D cases, he may add these checks although it is not necessary. It
requires to compute the Bezout coe�cients and thus it adds the complexity of
this computation to the general case and substitutes it to the complexity of the
algorithm (equivalent to the complexity of the Euclidean algorithm).

Example: Figure 1 shows an example of simple linear congruence col-
lapse. The DSS is de�ned by 0 ≤ 31x − 151y + 71 < 151 with 0 ≤ x ≤
13. The �rst step transforms the DSS characteristics in

({−151
31

}
, 31, 71

)
=

(22, 51, 20). The translation constant is
{

71
51

}
= 20 (Lemma 2). We have

now two sequences: the one that contains the minimum values and the one
with the maximum values. The minimum sequence is de�ned on the interval[
1 +

⌊
31(0−1)+20

151

⌋
,
⌊
31·13+20

151

⌋]
= [1, 5]. The formula 1+

⌊
a(u−1)+c

b

⌋
ensures that

the span considered is the �rst complete span. The �rst value in the minimum
sequence will be 42 and not 71. The maximum sequence is de�ned on the interval[
1 +

⌊
a·0+20
151

⌋
,
⌊
31(13+1)+20

151

⌋]
= [1, 5] with accumulation value 131 − 51 = 80.

Note that the interval for the minimum sequence and the maximum sequence
are not necessarily identical as can be seen in the last step. The second step is
similar to the �rst but applied on the minimum and maximum sequence: the
DSS 0 ≤ 22x− 51y+20 < 51 is collapsed into the DSS 0 ≤ 15x− 22y+20 < 22
with both intervals 2 ≤ x ≤ 3, and accumulation value 80 + 51− 22 = 109. The
third step corresponds to an inversion on the sequence: since 15 · 2 > 22, the
DSS is transformed into 7x − 22y + 20 < 7, with intervals −3 ≤ x ≤ −2. The
accumulation value does not change. As can be seen in the �gure, the values
are now, for both minimum and maximum sequence, on a same span, and the
minimum is given by the �rst value in the span piece while the maximum value
is given by the last value in the span piece.

3.3 E�cient search for a given value in a bilinear congruence

sequence

We have now almost all we need for a �rst 3D algorithm. There is however a
last problem that we are going to address. Let us consider a bilinear congruence
sequence ζ = Ra,b,c,d (x0, x1, y0, y1). We know that the minimum value in ζ
cannot be smaller than 0 and the maximum not greater than c − 1. So, by
providing an e�cient method that determines if a given value ε belongs to the
sequence (in our case ε = 0 or ε = c− 1), we will not have to search further for
a minimum or a maximum. Of course, one can check row by row or column by
column but one can actually do better than that using the following theorems
(see Figure 2 for an example):

Theorem 1. Let us consider the bilinear congruence sequence ζ =
Ra,b,c,d (x0, x1, y0, y1) and a value ε, with 0 ≤ ε < c. Let us suppose that
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gcd(a, c) = 1 and (α, β) their Bezout coe�cients verifying aα− cβ = 1.
Let us de�ne the sequence xε(y), y ∈ [y0, y1] of the smallest abscissa greater or

equal to x0 with remainder Ra,b,c,d(x, y) = ε. Then:

xε is given by the sequence x0 +R−bα,c,α(ε−d−ax0) (y0, y1) .

Proof. Let us consider a DSP de�ned by 0 ≤ ax+ by − cz + d < c with (x, y) ∈
[x0, x1] × [y0, y1]. Let us suppose that gcd(a, c) = 1 and (α, β) their Bezout
coe�cients verifying aα− cβ = 1. First, let us note that 0 ≤ ax+ by− cz+d < c
with (x, y) ∈ [x0, x1] × [y0, y1] is equivalent to 0 ≤ ax′ + by − cz + d + ax0 < c
with (x′, y) ∈ [0, x1 − x0] × [y0, y1] and x′ = x − x0. For a given ordinate, we
are searching for the abscissa x′ greater or equal to 0 with a remainder equal
to ε. For a given ordinate y, the abscissa x′(y) with remainder Ra,b,c,d(x′, y) =
ax′+ by− cz+ d+ ax0 = ε veri�es ax′− cz = ε− d− by− ax0. With the Bezout
coe�cients (α, β), we have (α(ε−d−by−ax0)+kc)a−(β(ε−d−by−ax0)+ka)c =
ε−d− by−ax0, k ∈ Z. This means that x′ ∈ {(ε− d− by − ax0)α+ kc : k ∈ Z}.
The smallest abscissa x = x′ + x0, greater or equal to x0 with remainder equal

to ε is then given by x0 +
{
−bαy+α(ε−d−ax0)

c

}
. ut
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Fig. 2. Bilinear Congruence Sequence
{

4x+12y+4
17

}
on [3, 15]× [0, 5]. The blue rectangle

shows the DSP subsequence. In Pink, the values ε = 0 with abscissa greater than
x0 = 3. In Dark Blue, the values 0 with abscissa smaller than x0 = 3.

In Theorem 1, we have supposed that gcd(a, c) = 1 which is not necessarily
the case. Let us now examine what happens when gcd(a, c) = g > 1.

Theorem 2. Let us consider the bilinear congruence sequence ζ =
Ra,b,c,d (x0, x1, y0, y1) and a value ε, with 0 ≤ ε < c. Let us suppose that

gcd(a, c) = g > 1. Let us suppose that (α, β) are the Bezout coe�cients for

(b, g) such that bα − gβ = 1. Then, the bilinear congruence sequence ζ con-

tains the value ε i� the sequence R a
g ,{ bg}, cg , d+b·yi−eg

(
x0, x1, 0,

⌊
y1−yi
g

⌋)
with

yi = y0 +
{
α(e−d−by0)

g

}
, contains the value 0.
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Proof. Let us consider the bilinear congruence sequence ζ =
Ra,b,c,d (x0, x1, y0, y1) and a value ε, with 0 ≤ ε < c. Let us suppose that
gcd(a, c) = g > 1. Let us suppose that (α, β) are the Bezout coe�cients for
(b, g) such that bα − gβ = 1. Of course, here, gcd(b, g) = 1 or otherwise we
would not have gcd(a, b, c) = 1. It is easy to see that Ra,b,c,d (x0, x1, y0, y1) for
y ∈ [0, y1 − y0] is the same as Ra,b,c,d+by0 (x0, x1, 0, y1 − y0). We know that

ax+by′−cz+d+by0 = ε, with y′ = y−y0, is only possible if
{
by′+d+by0−ε

g

}
= 0.

The smallest value y′ ≥ 0 verifying this is given by y′ =
{
α(ε−d−by0)

g

}
. Let us

denote yi = y0 +
{
α(ε−d−by0)

g

}
. The ordinate yi is the �rst ordinate between y0

and y1 for which the sequence ζ may contain ε. The other ordinates where we

may �nd ε are then all the yi + kg for k ∈
[
0,
⌊
y1−yi
g

⌋]
. Now we need to replace

y by gy′′ in order to have steps of 1 on the ordinates. We also need to start
with the ordinate 0 as yi is not necessarily divisible by g. It is easy to see that
ζ = Ra,b,c,d+byi (x0, x1, 0, y1 − yi). Since the value ε can only be found on the
lines with ordinate yi+ kg, it is easy to see that ε can be found in ζ i� it can be

found in Ra,bg,c,d+byi
(
x0, x1, 0,

⌊
y1−yi
g

⌋)
. If we denote (a′, c′) = (a/g, c/g) then

we have a′gx+ bgy − c′gz + d+ byi = ε if a′gx+ bgy − c′gz + d+ byi − ε = 0 or
a′x+ by− c′z+ d+byi−ε

g = 0 (note that d+ byi − ε is divisible by g). Here, if b is
bigger than c, then it is easy to see that it can be replaced by

{
b
c

}
. ut

Theorem 3. Deciding if a value belongs to a bilinear congruence sequence can

be decided in logarithmic time.

The proof is obvious. With Theorem 1 and Theorem 2, we exhibit linear
congruence sequences. We can search for its minimum with Algorithm 1. If the
minimum is smaller or equal to x1 − x0 then the sequence ζ contains the value
ε. This search for the values 0 or c− 1 can thus be done in logarithmic time.

3.4 First algorithm for the minimum and maximum search in a

bilinear congruence sequence

Let us consider a bilinear congruence sequence ζ = Ra,b,c,d (x0, x1, y0, y1). The
previous section let us check if the values 0 or c − 1 belong to ζ. If both val-
ues are in ζ then the search is over. Otherwise, let us consider the smallest
of the intervals n = x1 − x0 and m = y1 − y0. W.l.o.g., let us consider that
we have m < n. The �rst 3D algorithm consists simply in applying algorithm
ComputeMinMax2D(a,c,d + ay), for y ∈ [y0, y1]. We keep the minimum and
maximum over all these 2D sequences.

Proposition 2. Let us consider a bilinear congruence sequence ζ =
Ra,b,c,d (x0, x1, y0, y1) with n = x1 − x0 < m = y1 − y0. The complex-

ity of the search for the minimum and maximum value in ζ is bounded by

O (n · log (min(a, c− a))).
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The proposition is a direct consequence of the complexity of the 2D algorithm
[13]. Figure 3 shows an example. As one can see, the collapse line by line does
not produce a rectangle on (x, y). Also, one can see that the �nal minimum
or maximum values do not necessarily form a connected �nal set. The problem
comes from the sequences of the values (u, v) over the di�erent lines.

Initial sequence 
of characteristics (161,191,331,7) 

on [0,7] x [0,4]

Min Sequence 1 Max Sequence 1 Min Sequence 2 Max Sequence 2

First step : characteristics (152,161,7+191k) Second step : characteristics (7,161,7+191k)

Last step :
Characteristics (1,9,7+191k)

List of mins (7,1,31,52,82)

List of maxs (329,198,219,
249,270)

Min values

Max values

Fig. 3. Bilinear Congruence Sequence
{

161x+191y+7
331

}
on [0, 7]× [0, 4].

4 Discussion, Conclusion and Perspectives

In this paper we were interested in the Digital SubPlane (DSP) Recognition
Problem. We tried to extend our remainder approach for the recognition of
straight line segments to the recognition of subplanes. The extension is not
immediate. In particular, the remainder order property that is veri�ed in 2D
is not always veri�ed in 3D. As a consequence, a point may be a Leaning
Point for the Digital Plane but not for the Digital SubPlane and vice-versa.
There seems however to be classes of subplanes for which the remainder
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order property are conserved. The characterization of this subclass is an open
question. It could represent an interesting candidate as representative of the
equivalent class of Digital Planes containing a SubPlane. From this starting
point, we proposed an extension of the search of a minimum and maximum of
a linear congruence sequence to the third dimension. We showed in particular
that one can determine if a given value belongs to a bilinear congruence
sequence in logarithmic time. The minimum and maximum value in a bilinear

congruence sequence
{
ax+by+d

c

}
, (x, y) ∈ [x0, x1] × [y0, y1] can be found, if

m = x1 − x0 < n = y1 − y0, in O(m log (min(a, c− a)) or O(n log (min(b, c− b))
otherwise.

This paper is only a very �rst step in the investigation of the SubPlane
Recognition Problem. As already discussed, we would like to prove that there
are always subplanes that verify the remainder order property, namely, for a
Digital Plane of characteristics (a, b, c, d) and a SubPlane of characteristics
(α, β, γ, δ) de�ned on [x0, x1] × [y0, y1] ∀(x, y) and (x′, y′) ∈ [x0, x1] × [y0, y1], :
Ra,b,c,d (x, y) < Ra,b,c (x′, y′) ⇒ Rα,β,γ,δ (x, y) ≤ Rα,β,γ,δ (x′, y′). The question
comes actually down to a construction problem. Starting from the Digital Plane,
it is possible to erode it in such a way that we obtain a sequence of SubPlanes
that verify the remainder order property and vice-versa?

The algorithm for the search of a minimum and a maximum in a bilinear
congruence sequence searches for the minimum and maximum line by line (or
column by column). This is possible because a line of a bilinear congruence
sequence is simply a linear congruence sequence. One could try to improve
this by alternatively searching for a minimum in a line or a column. This
corresponds to a form of 3D digital plane collapse (see [18] for other forms of
plane collapses). See Figure 4 when this is performed on an in�nite Digital
Plane and Figure 5 where it is performed on a Digital SubPlane. Again, one
can see that the collapse on a DSP does not preserve a simple shape. One
would be able to achieve a logarithmic search for the minimum and maxi-
mum if one is able to characterize the shape of the collapsed DSP (See Figure 5).

There are however possibilities of improvement in terms of complexity.
Firstly, one can see that the shape after one collapse (see Figure 3 and Fig-
ure 5) is not de�ned on a rectangle anymore but the sides that are not parallel
to an axis form actually a Digital Straight Line (when projected on 2D). Another
possible improvement could be done by repetitively searching for speci�c values
in the bilinear congruence sequence: looking for values 0, 1, .. when a value is
found in the sequence it corresponds then to the minimum. The complexity is
then c times a log. This works best when the size of the DSP is important com-
pared to the characteristics values. A �ner study needs to be conducted to check
when doing one is more e�cient than the other, or mixing both.
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Fig. 4. Plane collapses

Fig. 5. DSP of characteristics (31, 71, 191, 1) on [0, 8]× [0, 8]. Two successive collapses
are shown, a �rst vertical and then an horizontal one.
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