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This paper is meant as a short survey on analytically dened digital geometric objects. We will start by giving some elements on digitizations and its relations to continuous geometry. We will then explain how, from simple assumptions about properties a digital object should have, one can build mathematical sound digital objects. We will end with open problems and challenges for the future.

Introduction

Geometry is historically the eld of mathematics dealing with objects and their properties: length, angle, volume, shape, position and transform. The word Geometry stems from the ancient greek words for Earth and Measure. Geometry was the science of shapes and numbers as practical tool for measuring elds, distances between far away places, volumes for commerce, etc. For centuries, properties were proven and geometric objects were constructed based on construction rules. Euclid with his manuscripts Elements, revolutionized geometry with his formalization of abstract reasoning in mathematics and more signicantly in geometry. The second revolution was brought upon by René Descartes with the introduction of coordinates. This marked a profound change in the way geometry was considered. It established a link between Euclidean geometry and algebra: Analytical Geometry was born. Many advances were now possible in astronomy, physics, engineering, etc. Many dierent forms of geometries have since been proposed such as Dierential geometry, Algebraic geometry, etc.

Digital Geometry is one of the most recent forms of geometry. It can be broadly dened as the geometry of digital objects and transforms in a digital space.

In this paper we are mainly considering digital points with integer coordinates (points in Z n ). Digital Geometry has the particularity of, usually, not being an independent geometry but a digital counterpart of Euclidean geometry. Digital objects are supposed to behave and look as much as possible as their continuous counterpart. This question of representing/coding the continuous world in a nite computer is, of course, not limited to digital geometry. From the beginning, when sensors went from analog to digital and when the display mode went from continuous (vector monitor) to digital (raster graphics), the fundamental question of object and space denition has been raised. It proved more elusive than initially thought [START_REF] Montanari | On limit properties in digitization schemes[END_REF]. Elementary rules of topology or geometry, that seem so obvious that they have been raised to the axiomatic status by Euclid, have proven to be false in Digital Geometry [START_REF] Chassery | Géométrie discrète en imagerie[END_REF]: two, non identical, parallel 2D digital straight lines can have an innite number of intersection points while two orthogonal 2D digital straight lines may have no intersection point. Particular versions of the Jordan theorem had to be divised that are in some sense specic to digital geometry [START_REF] Rosenfeld | Digital topology[END_REF]. This confrontation between the digital and the continuous worlds has given birth to various theories. One way of solving this hiatus is to consider the digital information as a sampled version of continuous information. The digital world is an approximation where information has been lost. Signal Theory provides the theoretical toolkit. Although one of the most ecient approaches when it comes to handling digital information (image processing, image analysis), it does little in helping dening actual geometry. It does not really provide any tool if one wants to draw, for instance, a line on a screen. We are considering another approach that nds its origins in the question of drawing digital equivalents of continuous objects on a raster screen (or earlier on, on a plotter). Digital Geometry is, in this sense, more closely linked to computer graphics or arithmetics. As for the continuous geometry, digital geometry started out focusing on very concrete and basic questions: how can one generate a digital analog of a continuous object for visualization purposes ? This algorithmic approach has prevailed for many decades, with algorithms such as the Bresenham Digital Straight line drawing algorithm or Arie Kaufman et al. that proposed many digital primitive generation algorithms [START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF]. The main drawback of such an algorithmic approach is that it is dicult to ensure global properties from the local construction scheme. The other problem with a denition by construction is that you can only generate nite digital objects. As an alternative, researchers tried to describe and categorize digital objects not as a result of an algorithm but as digital classes with properties, be it geometrical or, more generally, topological [1015]. This allows to dene (classes of ) digital objects that are innite and without boundaries such as planes or surfaces in general. This approach proved useful to construct object classes with desired properties but it proved dicult to ensure tightness for the classes. And, as for the continuous geometry, analytical characterization of digital objects has proven to be eective in describing objects and the related transforms. It is a bit early to claim that it will revolutionize Digital Geometry but it allowed new insight and brought new tools for the denition of digital objects, in pattern recognition and design of digital transforms. Consider this paper as a short introduction paper into digitization transforms in general and Digital Analytical Geometry in particular.

In section two, we are going to discuss dierent types of digitizations. In section three we are going to focus on digital analytical objects. We will then conclude and propose some perspectives.

Digitization

Notations

Let us denote n the dimension of space (digital or Euclidean) in this paper. Let {e 1 , . . . , e n } denote the canonical basis of the n-dimensional Euclidean vector space and O the center of the associated geometric coordinate system. Let Z n be the subset of R n that consists of all the integer coordinate points. A digital (resp. Euclidean) point is an element of Z n (resp. R n ). We denote by x i the i-th coordinate, associated to e i , of a point or a vector x. A digital (resp. Euclidean) geometric object is a set of digital (resp. Euclidean) points. A digital inequality is an inequality with coecients in R from which we retain only the integer coordinate solutions. A digital analytical object is a digital object dened as union and intersection of a nite set of digital inequalities. The family of sets over Z n (resp. R n ) is denoted P (Z n ) (resp. P (R n )). A digitization is a transform from sets in the Euclidean to sets in the digital world: ∆ :

P (R n ) → P (Z n ).
For all k ∈ {0, . . . , n-1}, two integer points v and w are said to be k-adjacent or k-neighbors, if for all i ∈ {1, . . . , n}, |v i -

w i | ≤ 1 and n j=1 |v j -w j | ≤ n -k.
In the 2-dimensional plane, the 0and 1-neighborhood notations correspond respectively to the classical 8and 4-neighborhood notations. In the 3-dimensional space, the 0-, 1and 2-neighborhood notations correspond respectively to the classical 26-,18-and 6-neighborhood notations [START_REF] Rosenfeld | Digital topology[END_REF][START_REF] Andres | Dening discrete objects for polygonalization: The standard model[END_REF][START_REF] Andres | Discrete linear objects in dimension n: the standard model[END_REF].

A k-path is a sequence of integer points such that every two consecutive points in the sequence are k-adjacent. A digital object E is k-connected if there exists a k-path in E between any two points of E. A maximum k-connected subset of E is called a k-connected component. Let us suppose that the complement of a digital object E, Z n \ E admits exactly two k-connected components F 1 and F 2 , or in other words that there exists no k-path joining integer points of F 1 and F 2 , then E is said to be k-separating in Z n . If there is no path from F 1 to F 2 then E is said to be 0-separating or simply separating. A point v of a k-separating object E is said to be a k-simple point if E \ {v} is still k-separating. A k-separating object that has no k-simple points is said to be strictly k-separating. The notion of k-separation is dened for digital surfaces without boundaries. See [START_REF] Cohen-Or | Fundamentals of surface voxelization[END_REF] for more general notions. 

General remarks on Digitizations

Let us rst start with some general remarks about digitization methods. The digitization of objects is fundamentally an ill-dened problem [START_REF] Montanari | On limit properties in digitization schemes[END_REF]: any digital E. Andres objects can be considered as the digitization of any continuous object. Usually the goal is to have digital objects that ressemble the continuous object. The resulting digital objects may keep some, but not all, properties of the continuous object [1821]. See [START_REF] Chollet | Insight in discrete geometry and computational content of a discrete model of the continuum[END_REF][START_REF] Reveillès | Back and forth between continuous and discrete for the working computer scientist[END_REF] for a more formal presentation of a link between the continuous and the digital worlds based on non-standard analysis.

A digitization is dened broadly as a transform from the family of Euclidean sets to the family of the digital sets. However, most of the literature deals with digital objects dened as digitization of specic classes of geometric objects [START_REF] Bresenham | Algorithm for computer control of a digital plotter[END_REF][START_REF] Bresenham | A linear algorithm for incremental digital display of circular arcs[END_REF][START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF]2434]: for instance, the Bresenham digital straight line segment generation algorithm [START_REF] Bresenham | Algorithm for computer control of a digital plotter[END_REF] works only for continuous straight line segments between two digital points. In this case, the digitization transform is usually implicit. The fact that the digitization scheme is not explicitely dened is also an important problem for pattern recognition: comparing two digital circle recognition algorithm supposes that the underlying digital circles are dened in the same way or otherwise it is like comparing apples to oranges. Other digitization transforms are dened only for linear objects [START_REF] Andres | Dening discrete objects for polygonalization: The standard model[END_REF][START_REF] Andres | Discrete linear objects in dimension n: the standard model[END_REF] and others still for all objects [START_REF] Andres | The supercover of an m-at is a discrete analytical object[END_REF].

Let us mention some classes of digitization transforms that are important: A general digitization is a digitization that is dened for all continuous objects. A coherent digitization transform ∆ veries the following property E ⊂ F ⇒ ∆(E) ⊂ ∆(F ).

Morphological Digitizations

Let us build a narrative for the construction of a general, coherent digitization transform ∆. For a geometric object E, how can we build its digital counterpart ∆(E) that ressembles E ? Simply considering that ∆(E) = E ∩ Z n is not a good idea. There are no particular reasons for E to pass through digital points and we may end up with ∆(E) = ∅. So let us consider points that are close to E:

∆(E) = {p ∈ Z n : d(p, E) ≤ r} , where d is a distance and r ∈ R (1)
There are some important immediate properties that go with such a denition:

∆(E ∪ F ) = ∆(E) ∪ ∆(F ) and E ⊂ F ⇒ ∆(E) ⊂ ∆(F ), which is a stronger
version of the coherence property. These are fundamental properties when it comes to digital modeling of complex objects. It denes a general, coherent digitization transform. There are two parameters to work with: the distance d and a thickness parameter r. Let us note that the parameter r can also be dened as a function. See [START_REF] Fiorio | Discrete circles: an arithmetical approach with non-constant thickness[END_REF][START_REF] Andres | Analytical description of digital circles[END_REF][START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF] for examples of digital objects dened with a non-constant thickness. Considering the points that are close to the original continuous object seems reasonable if we want the digital object to look like the original. There are also theoretical reasons for such a choice [START_REF] Chollet | Insight in discrete geometry and computational content of a discrete model of the continuum[END_REF][START_REF] Reveillès | Back and forth between continuous and discrete for the working computer scientist[END_REF].

If a point p veries d(p, E) ≤ r then a ball B d (r) of radius r, for the distance d, centered on p intersects E which leads to the following formulation:

∆(E) = {p ∈ Z n : (B d (r) ⊕ p) ∩ E = ∅} (2)
This type of digitization method is part of digitization methods called morphological digitization [3640] with B d (r) as structuring element.

Classically, the distances that have been considered are the Manhattan, the Euclidean and the Chebychev distances. An interesting set of distances well adapted for digitization transforms is the set based on adjacency norms [START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF].

Every digital adjacency relationship can be associated to a norm. Denition 1. For an integer k, 0

≤ k < n, the k-adjacency norm [•] k is dened as follows: ∀x ∈ R n , [x] k = max x ∞ , x 1 n-k .
These distances are interesting because they verify the following property [START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF]:

Let p, q ∈ Z n , then, p and q are k-adjacent i [p -q] k ≤ 1. See Figure 1 for adjacency distance balls.

Fig. 1. 2D and 3D balls for the adjacency distances and the corresponding Flakes [START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF].

For morphological digitizations [START_REF] Heijmans | Morphological image operators[END_REF][START_REF] Klette | Digital straightness -a review[END_REF][START_REF] Lincke | Surface digitizations by dilations which are tunnel-free[END_REF], the structuring element is not necessarily a distance ball as in formula (2). One can consider any continuous object F as structuring element and dene a digitization transform of a continuous object E by [START_REF] Lincke | Surface digitizations by dilations which are tunnel-free[END_REF]:

∆(E) = p ∈ Z n : F ⊕ p ∩ E = ∅ (3) 
The region x ∈ R n : F ⊕ x ∩ E = ∅ is called the oset region. Formulation (3) has implicitly already been used in digitizations such as the grid intersection digitization [START_REF] Klette | Digital straightness -a review[END_REF] with half-open structuring elements. This is also the starting point for the analytical characterization of digital objects with the analytical description of the oset region. Note that, for an arbitrary structuring element F , it is the reection F that appears in formula (3).

Analytical Characterization of Digital Objects

Let us rst dene what we understand by analytical characterization of a digital object: a digital object is dened by a set of equations (inequalities typically).

A point belongs to the digital object i it veries the set of equations. The cardinality of the set of equations should be independent of the number of digital points of the object. The analytical characterization of digital objects has a great interest in digital geometry. A digital object is dened in comprehension and not Fig. 2. This gure has been proposed in [START_REF] Lincke | Surface digitizations by dilations which are tunnel-free[END_REF]. (a

) p ∈ Z 2 : F ⊕ p = ∅ (b) ( F ⊕E)∩Z 2 .
The region in gray in (b) is called the oset zone.

as a voxel enumeration. Innite digital objects can be represented. This was also one of the reasons for trying to dene digital objects based on topology [1015].

The key to the analytical characterization is that it allows a characterization of digital objects with interesting topological properties.

Since Reveilles proposed the analytical characterization of digital straight lines [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF], many papers have been proposed that describe or discuss properties of analytical digital objects. Those papers can be roughly classied into two groups:

Direct dened Analytical Digital Object: Papers that introduce an analytical denition of digital objects or classes of objects, or that analytically characterize previously known digital objects. Those objects are dened directly in the digital space without being explicitely associated to a digitization transform.

Digitized Analytical Objects: papers that introduce a digitization transform that allows an analytical characterization of digital objects.

Direct dened Analytical Digital Objects

Let us rst list some of the digital objects that have been directly analytically dened in the digital space without an explicite reference to a digitization transform. The list is of course not exhaustive.

Digital Analytical Hyperplane: The rst class of digital object that has been analytically characterized has been the digital straight 2D line [START_REF] Brons | Linguistic methods for the description of a straight line on a grid[END_REF][START_REF] Coven | Sequences with minimal block growth[END_REF]. It was J-P. Reveilles that proposed an analytical description of a Digital Straight Line (DSL) 0 ≤ ax -by + c < ω [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF] with a thickness parameter ω that allows a parametrization of its topology. He also made an explicit link between digital straight lines, topology, quasi-ane transforms and arithmetics [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF]4446]. Many papers have been devoted to its study. Indeed, the structure of digital straight lines is rich, with immediate links to word theory, the Stern-Brocot tree, the Farey sequence, etc. It allows a natural extension to higher dimensions [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF][START_REF] Debled-Renesson | A new approach to digital planes[END_REF][START_REF] Andres | Discrete analytical hyperplanes[END_REF] with the analytical characterization of digital hyperplanes:

H : 0 ≤ a 0 + n i=1 a i x i < ω. (4) 
See [START_REF] Klette | Digital straightness -a review[END_REF][START_REF] Brimkov | Digital planarity -A review[END_REF] for a survey of digital linearity and planarity with interesting historical perspectives and useful comments and references on digital analytical lines and hyperplanes. An important step in bringing dierent theoretical approaches together, was to establish a link between the thickness of digital hyperplanes and topology [START_REF] Andres | Discrete analytical hyperplanes[END_REF]: let us assume, w.l.o.g. that 0 ≤ a

1 ≤ . . . ≤ a n , the digital hyperplane 0 ≤ a 0 + n i=1 a i x i < ω is k-separating i ω ≥ n k+1 a i . With ω = n k+1 a i the digital
hyperplane is strictly k-separating, without simple points. Papers have been devoted to the study of dierent classes of digital hyperplanes such as naive hyperplanes [START_REF] Andres | Discrete analytical hyperplanes[END_REF], supercover hyperplanes [START_REF] Andres | Tunnel-free supercover 3d polygons and polyhedra[END_REF][START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF][START_REF] Andres | The supercover of an m-at is a discrete analytical object[END_REF], Graceful lines and planes [START_REF] Brimkov | Graceful planes and thin tunnel-free meshes[END_REF][START_REF] Brimkov | Graceful planes and lines[END_REF], etc. An interesting sequence of papers has focused on the connectivity of digital analytical hyperplanes [START_REF] Brimkov | Connectivity of discrete planes[END_REF][START_REF] Jamet | Minimal arithmetic thickness connecting discrete planes[END_REF][START_REF] Berthé | Critical connectedness of thin arithmetical discrete planes[END_REF]. The problem proved to be quite dicult when it comes to digital analytical (hyper)planes with irrational coecients. Several papers have dealt with topology especially in order to dene a notion of digital surface [START_REF] Francon | Discrete combinatorial surfaces[END_REF][START_REF] Francon | Arithmetic planes and combinatorial manifolds[END_REF].

Digital Analytical Hyperplanes have been dened as purely analytical digital objects. It is however quite easy to associate a digitization transform to digital analytical hyperplanes. The most obvious way is to center a digital hyperplane on the continuous hyperplane: for H :

a 0 + n i=1 a i x i = 0, we dene ∆(H) = p ∈ Z n : ω 2 ≤ a 0 + n i=1 a i x i < ω 2 .
Note that the Bresenham line [22] is such a centered Reveilles line [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF]. There is the question of orientation of the digital hyperplane: with a denition such as 0 ≤ a 0 + n i=1 a i x i < ω, on which side do we put the ≤ and the <. One can easily switch side and obtain 0 < ω-a 0 + n i=1 (-a i )x i ≤ ω, so a choice has to be made. This question is somewhat dicult if we want coherent digitization models, so let us focus a moment on so called closed analytical digital hyperplanes 0 ≤ a 0 + n i=1 a i x i ≤ ω (with two ≤). Let us suppose that we have a digitization transform ∆ that is dened for hyperplanes such that, for a continuous hyperplane H :

a 0 + n i=1 a i x i = 0, we have ∆(H) = p ∈ Z n : ω 2 ≤ a 0 + n i=1 a i x i ≤ ω 2 .
Under some conditions, it is possible to take this as a starting point for the construction of a general, coherent morphological digitization transform: Denition 2. For some classes of digitization transforms ∆ dened for hyperplanes, one can extend ∆ as a general and coherent morphological digitization with a structuring element ∆(O) that is dened by:

For x ∈ R n , ∆(O) = ∀H⊃O ∆(H).
The idea behind this denition is basically the following: For a digitization transform to be coherent, it has to verify the condition E ⊂ F ⇒ ∆(E) ⊂ ∆(F ). ∆(O) has to belong to the digitization of all the hyperplanes that pass through E. Andres the coordinate center O. If we consider the equality, we basically dene the digitization of a point which in this case can serve as structuring element for the morphological digitization transform. The diculty lies in the choice of ω for the digitization transform: for a hyperplane H, we want ∆(H) to be equal to x∈H ∆(x) and that is of course not true for any random choice of ω. There are classes of digital hyperplane thickness that work, namely those that correspond to the optimal hyperplane thickness for it to be k-separating: ω is equal to the sum of the absolute values of the n -k biggest coecients of H. These thicknesses correspond to the adjacency norm [.] k based digitization transforms.

It is interesting to note that, for these digitizations, the structuring element is a polytope and therefore all the linear objects, at least, can be described Andres Hypersphere: The second class of digital objects that have been dened directly as digital objects are the so called Andres hyperpsheres [START_REF] Andres | The discrete analytical hyperspheres[END_REF][START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF]:

analytically
S = x ∈ Z n : ω 1 ≤ n i=1 (x i -c i ) 2 < ω 2
where c is the center of the digital hypersphere and

√ ω 2 -√ ω 1 its (Euclidean) thickness. The same method (as for the hyperplanes) of centering the spherical shell can be used to associate a digitization transform. The Andres hypersphere has been proposed to overcome the limitation of the Bresenham circle [START_REF] Bresenham | A linear algorithm for incremental digital display of circular arcs[END_REF] in particular that is only dened for integer radius, integer coordinate center and that, at the time, did not have an analytical characterization. There is one now [START_REF] Andres | Analytical description of digital circles[END_REF][START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF]. An interesting property of such Andres hyperspheres is that concentric Andres hyperspheres pave digital space. This is quite useful for applications such as simulation of wave propagation [START_REF] Mora | Pedagogic discrete visualization of electromagnetic waves[END_REF].

nD Straight Lines: Flats in general have not been studied that much with the notable exception of straight lines: 2D analytical lines [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF], 3D analytical lines [START_REF] Debled-Rennesson | Etude et reconnaissance des droites et plans discrets[END_REF][START_REF] Figueiredo | A contribution to 3d digital lines[END_REF], graceful lines [START_REF] Brimkov | Graceful planes and lines[END_REF], analytical nD lines [START_REF] Feschet | A generic approach for n-dimensional digital lines[END_REF]. The study of Digital Analytical Lines has gained a lot of traction in the arithmetical community [START_REF] Berthé | An arithmetic and combinatorial approach to threedimensional discrete lines[END_REF][START_REF] Berthé | An arithmetic and combinatorial approach to threedimensional discrete lines[END_REF] for its link to word theory. It is interesting to note that I. Debled-Rennesson's 3D line is dened as the intersection of two orthotropic naive 3D planes (thinnest planes without 6-connected holes) and thus is an analytically dened 26-connected object. However, contrary to what one could think, the 3D line one would obtain by considering naive planes and intersecting them to dene a morphological digitization is usually not 26-connected. The choice of the two planes among three possible orthotropic planes depends on the orientation of the 3D line. I am not quite sure that there exists a corresponding 3D plane thickness (and thus a corresponding general digitization transform) that would dene such digital 3D lines.

It is an interesting question and it shows that direct analytical denitions for digital objects may lead to interesting topological properties.

Other Purely Analytically dened Digital Objects: There are other analytically dened objects that could be considered as purely analytically dened digital objects. Let us just mention some approaches that are particularly interesting: The team around I. Debled-Rennesson proposed the notion of Blurred analytical objects [START_REF] Debled-Rennesson | Segmentation of discrete curves into fuzzy segments[END_REF] with applications in noisy digital object recognition. E.

Andres, M. Rodriguez et al. proposed a notion of analytically characterized digital perpendicular bisector [START_REF] Andres | Generalized perpendicular bisector and exhaustive discrete circle recognition[END_REF] which allowed to tackle the problem of the computation of a circumcenter of several pixels and the recognition of fuzzy circles.

One could add Y. Gerard and L. Provost that proposed a notion of analytically dened curves and surfaces, named Digital Level Layers [START_REF] Gérard | Introduction to digital level layers[END_REF]. Although based on a morphological digitization, the objects are purely analytically dened.

Digitized Analytical Objects

In this section, we are going to take a look at digitized objects that have been analytically characterized. An immediate example is the Bresenham Straight line Segment [START_REF] Bresenham | Algorithm for computer control of a digital plotter[END_REF] that has been shown to be a Reveilles straight line segment [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF]. In the same way, in [START_REF] Andres | Analytical description of digital circles[END_REF], most notions of digital circles that have been introduced have been analytically characterized [START_REF] Bresenham | A linear algorithm for incremental digital display of circular arcs[END_REF][START_REF] Mcilroy | Best approximate circles on integer grids[END_REF]. An extension to higher dimensions has been proposed in [START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF] with an explicit mention of Morphological Digitizations. Let us start with morphological digitization transforms.

Supercover digitization: One of the rst analytically characterized digitization model that has been proposed is the supercover digitization (also called outer Jordan digitization [START_REF] Klette | Digital straightness -a review[END_REF][START_REF] Jordan | Remarques sur les intégrales dénies[END_REF]) based on the Chebychev distance d ∞ [START_REF] Chassery | Géométrie discrète en imagerie[END_REF][START_REF] Cohen-Or | Fundamentals of surface voxelization[END_REF][START_REF] Lincke | Surface digitizations by dilations which are tunnel-free[END_REF][START_REF] Stelldinger | Digitization of non-regular shapes in arbitrary dimensions[END_REF][START_REF] Klette | Digital straightness -a review[END_REF][START_REF] Jordan | Remarques sur les intégrales dénies[END_REF][START_REF] Sankar | Grid intersect quantization schemes for solid object digitization[END_REF][START_REF] Andres | Tunnel-free supercover 3d polygons and polyhedra[END_REF][START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF][START_REF] Andres | The supercover of an m-at is a discrete analytical object[END_REF]. The supercover digitization is well-known for a long time because it has a natural geometric interpretation. The unit ball for the distance

B d∞ 1 
2 is a hypercube of side one. If we denote V(p) the voxel centered on p, Formula (2) for the Chebychev distance is the same as {p ∈ Z n : V(p) ∩ E = ∅}: a point belongs to the supercover of a continuous object E i the corresponding voxel is cut by E. The union of all the voxels of the supercover of a continuous object covers the continuous object, thus the name supercover. This geometric interpretation is so natural that it has been considered long (actually as early as the 19th century [START_REF] Jordan | Remarques sur les intégrales dénies[END_REF]) before the link to the Chebychev distance has been made.

We will not recall all the details on the supercover model: see [START_REF] Cohen-Or | Fundamentals of surface voxelization[END_REF] for general properties of the digitization transform. In [START_REF] Andres | Tunnel-free supercover 3d polygons and polyhedra[END_REF][START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF][START_REF] Andres | The supercover of an m-at is a discrete analytical object[END_REF] for the analytical characterization of the supercover digitization of m-simplice and m-ats in dimension n. In [START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF], the reader will nd an analytical characterization of supercover 2D circles and 3D spheres.

Standard digitization: The supercover digitization transform has many interesting topological properties. In particular, a supercover digitization of a connected object is always (n-1)-connected and tunnel-free but not strictly separating. When E crosses and edge or a vertex of a grid voxel then all the grid points whose voxel share this edge or vertice belong to the digitization. This is called a bubble [START_REF] Andres | Tunnel-free supercover 3d polygons and polyhedra[END_REF][START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF][START_REF] Andres | The supercover of an m-at is a discrete analytical object[END_REF]. The supercover of a hyperplane, for instance, is (n -1)connected but with possibly simple points. For theoretical [START_REF] Francon | Discrete combinatorial surfaces[END_REF][START_REF] Francon | Arithmetic planes and combinatorial manifolds[END_REF][START_REF] Francon | Sur la topologie d'un plan arithmétique[END_REF] as well as practical reasons, it is interesting to have a model without bubble. Various methods have been proposed to solve this problem such as modifying the denition of a voxel [START_REF] Cohen-Or | Fundamentals of surface voxelization[END_REF] but that does not work [START_REF] Andres | Dening discrete objects for polygonalization: The standard model[END_REF][START_REF] Andres | Discrete linear objects in dimension n: the standard model[END_REF]. There is however a way to solve this problem [START_REF] Andres | Dening discrete objects for polygonalization: The standard model[END_REF][START_REF] Andres | Discrete linear objects in dimension n: the standard model[END_REF]. The idea is the following: the supercover S(H) of a hyperplane H : a 0 + n i=1 a i x i = 0 is given by S(H) :

- n i=1 |ai| 2 ≤ a 0 + n i=1 a i x i ≤ n i=1 |ai| 2 .
It is (n-1)-connected, tunnel-free but it might have simple points (bubbles). The analytical hyperplane -

n i=1 |ai| 2 ≤ a 0 + n i=1 a i x i < n i=1 |ai| 2 is (n-1)-connected,
tunnel-free and strictly separating (without bubbles). The only dierence comes from the " ≤ " for the hyperplane supercover that is replaced by a " < " for the analytical hyperplane. So transforming one into the other comes down to choosing a side on which we change a " ≤ " into a " < ". We dene therefore an orientation convention: A halfspace H : a 0 + n i=1 a i x i ≤ 0 is said to have a standard orientation i a 1 > 0 or a 1 = 0 and a 2 > 0 or . . . if a 1 = . . . = a n-1 = 0 and a n > 0. Otherwise the halfspace is said to have a supercover orientation.

Since the dening structuring element for the supercover digitization transform is a unit hypercube, it is easy to see that the oset zone for a supercover linear object is a polytope dened as intersection of a nite sequence of digital

half-spaces S(E) = p ∈ k i=1 H i ∩ Z n ; H i : a i,0 + n j=1 a i,j x j ≤ 0
where k is the cardinality of the set of halfspaces {H i } dening the supercover of E. For such a set of halfspaces, we replace each halfspace H i : a i,0 + n j=1 a i,j x j ≤ 0 that has a standard orientation by H i : a i,0 + n j=1 a i,j x j < 0 in the analytical characterization of the digital object. If the halfspace has a supercover orientation, it is not modied. This denes the standard digitization transform St(E) of a linear Euclidean object E. It has been shown in [START_REF] Brimkov | Object discretizations in higher dimensions[END_REF] that the standard digitization produces (n -1)-connected, tunnel-free and strictly separating objects. See Grid Intersection digitization: A popular digitization scheme is called grid intersection digitization [START_REF] Sankar | Grid intersect quantization schemes for solid object digitization[END_REF]. For a continuous object E, the intersection points of E and the grid lines (all the straight lines x i = k, k ∈ Z) are considered and the closest grid point to these intersection points forms the digital object. This is the same as considering a structuring element corresponding to the set of polygons with vertices 0, . . . , 0, ± 1 2 , 0, . . . , 0, ± 1 2 , 0, . . . , 0 . It is very similar to the digitization with the Manhattan distance d 1 . While the unit ball for this distance is a diamond shaped polytope with all the above mentioned points as vertices. The digitization is dened for all k-dimensional objects, k > 0. Bresenham line [START_REF] Bresenham | Algorithm for computer control of a digital plotter[END_REF] is such an object and its characterization has been given in [START_REF] Reveillès | Calcul en Nombres Entiers et Algorithmique[END_REF] by JP. Reveilles. In [START_REF] Andres | Analytical description of digital circles[END_REF][START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF] there is the analytical characterization of d 1 digital circles and spheres.

Flake Digitization [START_REF] Toutant | Implicit digital surfaces in arbitrary dimensions[END_REF][START_REF] Sekiya | On connectivity of discretized 2d explicit curve. Mathematical Progress in Expressive Image Synthesis[END_REF]: The analytical characterization of the supercover of a sphere S is quite complicated [START_REF] Toutant | Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties[END_REF]. Most (in the geometric sense) of the oset region corresponds however simply to a translation of the continuous sphere S. Indeed, the outer and inner boundary of B d∞ ⊕ S is in great part determined by the vertices of the ball. Let us call V ∞ the set of vertices of B d∞ then V ∞ ⊕ S corresponds largely to the same surface than the boundary of B d∞ ⊕ S. If we consider a structuring element F composed of straight line segments that join the vertices v of B d∞ to its reverse v then F ⊕ S is (n -1)-connected and tunnel-free if S is big enough (details of S need to be bigger than a voxel [START_REF] Toutant | Implicit digital surfaces in arbitrary dimensions[END_REF][START_REF] Sekiya | On connectivity of discretized 2d explicit curve. Mathematical Progress in Expressive Image Synthesis[END_REF]). This is true, not only for the supercover model but for all structuring elements that are polytopes, especially those corresponding to adjacency norms.

The distinctive advantage is that this digitization transform is very simple to characterize analytically if the surface S is dened by an implicit equation f (x) = 0 such that there is a side of the surface where f (x) < 0 and a side where f (x) > 0. Let us suppose we have a surface S dened by such an implicit equation f (x) = 0, x ∈ R n . Let us suppose that we have a structuring element F which is a polytope, with central symmetry (for the sake of simplicity here).

The vertices of F form the set v i . Let us dene the Flake F formed by the straight lines joining the vertices v i to its symmetric vi (See Figure 1). Then (F ⊕ S) ∩ Z n is analytically characterized by: p ∈ Z n :

n min i=1 (f (v i )) ≤ 0 ∧ n max i=1 (f (v i )) ≥ 0 (5)
The idea is actually very simple: as morphological digitization, the surface S cuts a structuring element F ⊕ p i there are vertices on each side of the surface dened by the implicit equation. The so-dened Flake digitization transform (F ⊕ S) ∩ Z n is similar to (F ⊕ S) ∩ Z n except may be on places where S does not t some regularity properties [START_REF] Toutant | Implicit digital surfaces in arbitrary dimensions[END_REF]. The ake digital object keeps the topological properties of the original object. This is a way of dening implicit digital objects is straightforward way with the limitation that it is dened only for (n -1)-dimensional surfaces that are regular enough. See Figure 4 for an exemple of a implicitly dened quadric digitized with all three 3D adjacency akes. 

Conclusion and Perspectives

In this paper we propose a short survey on digital analytical geometry and show what the ideas are behind the analytical characterization of digital objects. There are two key points in digital analytical geometry that we have not addressed in this paper due to space: transforms and object recognition. Both prot greatly of the analytical characterizations of digital objects. For the transforms, let us just cite the Quasi-Ane Transforms [START_REF] Coeurjolly | Quasi-ane transformation in 3-d: Theory and algorithms[END_REF] among many others. For Object Recognition, having mathematical denitions of objects changes many things. Much has not been said and many papers have been omitted in this short survey. We have proposed several open questions along the pages of this article and many others still remain. As concluding words, let us not forget that beyond digital analytical geometry, there are many other forms of digital geometry that still need to be invented or explored: parametric digital geometry, non-Euclidean digital geometry, multiscale digital geometry, etc.

For

  A and B two subsets of R n , A ⊕ B = {a + b : a ∈ A, b ∈ B} is the Minkowski sum of A and B. Let us denote Ǎ = {-a : a ∈ A} the reection set of A. Let us denote A the at of smallest dimension containing A. For a distance d, then the let us denote B d (r) = {x ∈ R n : d(x, O) ≤ r}, the ball of radius r for the distance d. Let us denote d 1 , d 2 , d ∞ respectively the Manhattan, Euclidean and Chebychev distance. Let us denote x k the corresponding norm (with k = 1, 2, ∞).

Figure3

  Figure3 for examples of the standard digitization of points and a 3D triangle.The standard model keeps most of the properties of the supercover model and as such is a coherent digitization. It is not general however as it is dened only for linear objects. There is however a caution. Contrary to the supercover digitization, in general, St(E) = x∈E St(x). The standard digitization is dened as a nite rewriting of the inequalities dening the supercover of a linear object. It does not hold for an innite sequence of inequalities.

Fig. 3 .

 3 Fig. 3. Standard and Supercover digitization of points on the left and digitization of a 3D triangle on the right.

Fig. 4 .

 4 Fig. 4. Flake digitizations of the quadric 9x 2 -4y 2 -36z -180 = 0.

  as linear digital objects (with linear inequalities). The best known of such digitization transforms is the Supercover model[START_REF] Chassery | Géométrie discrète en imagerie[END_REF][START_REF] Cohen-Or | Fundamentals of surface voxelization[END_REF][START_REF] Lincke | Surface digitizations by dilations which are tunnel-free[END_REF][START_REF] Stelldinger | Digitization of non-regular shapes in arbitrary dimensions[END_REF][START_REF] Klette | Digital straightness -a review[END_REF][START_REF] Jordan | Remarques sur les intégrales dénies[END_REF][START_REF] Sankar | Grid intersect quantization schemes for solid object digitization[END_REF][START_REF] Andres | Tunnel-free supercover 3d polygons and polyhedra[END_REF][START_REF] Andres | Supercover of straight lines, planes and triangles[END_REF][START_REF] Andres | The supercover of an m-at is a discrete analytical object[END_REF]. One other thickness that works is ω =

	n i=1 a 2 i . The corresponding

structuring element ∆(O) is the unit hypersphere. The associated norm is the Euclidean norm. What other thicknesses work is an interesting open question.