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Abstract. To be able to identify cohesive zone models for heterogeneous materials, we need 

to estimate the local stress fields. The recent developments in imaging techniques allow now 

reaching local measurement fields (e.g. strain, temperature…). In this paper, an iterative 

procedure is used to identify the spatial material properties distribution and the local stress 

fields. The formulation and the principle of the method are presented, and its reliability is 

checked using finite element simulation data as reference full-field measurements. Finally, the 

method is applied on noisy measured displacement fields to assess its robustness. 
 

 

1 INTRODUCTION 

 

Various identification techniques are developed to identify mechanical behaviors and stress 

fields using kinematic field variables such as displacements or strains obtained by full-field 

measurements techniques (like Digital Image Correlation (DIC), interferometric techniques, 

grid methods, etc.). An overview of these identification procedures and their applications on 

experimental data can be found in [1]. 

In this work, we extend and adapt the approach developed in [2, 3] to identify the 

constitutive laws and their mechanical parameters for heterogeneous materials. The class of 

models that we have in mind is J2-based hardening elastoplasticity. Such identification 

requires the knowledge of the local stress fields. The Constitutive Equation Gap Method 

(CEGM) originally used as an error estimator for finite element simulations is here adopted in 

order to identify these fields in heterogeneous materials. 

 For the identification of plastic parameters, we introduce the elastoplastic secant stiffness 

tensor 𝐵𝑠. For a linear kinematic Prager model, the tensor  𝐵𝑠  is expressed directly as a 

function of the material properties (elastic constants: Young modulus E and Poisson ratio  
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for isotropic elasticity and shear modulus G for cubic elasticity, yield stress 0 and hardening 

coefficient k) and of the loading history. In the following, we will present first the 

identification procedure, then the performance of the method will be illustrated on various 

examples using simulated data obtained under small perturbations and plane stress 

assumptions. We will then check its robustness with respect to measurement noise. 

2 INVERSE METHOD 

2.1 Identification procedure 

 The procedure is presented in a 2D framework (plane stress) because it will be used on 

thin, flat samples observed via in-plane DIC techniques. Consequently, we focus here on the 

identification of elastoplastic constitutive laws in a 2D framework. In the context of 

identification of heterogeneous stress fields, three material parameters can be locally 

identified at most because we have only access to the three local in-plane strain 

measurements. 

 The CEGM is based on the minimization of an energetic functional and depends on two 

sets of parameters: the stress field and the mechanical material properties. This procedure is 

applicable to any identification problem and can be used with data extracted from numerical 

simulations (for validation purposes, as in the present paper) or experimental measurements.  

 For a sequence of successive load steps (subscript 𝑛 for each step), we denote the 

measured displacement field 𝑢⃗ 𝑛
𝑚 on a given region of interest  of a specimen and we 

consider an elastoplastic body, governed by the set of equations (1, 2, and 3): 

𝑑𝑖𝑣 𝜎𝑛
𝑐 = 0     𝑖𝑛 𝜕Ω (1) 

𝜎𝑛
𝑐 = 𝐵𝑛

𝑠: 𝜀 (𝑢⃗⃗ 𝑛
𝑚

)      𝑖𝑛 𝜕Ω (2) 

{
𝑅⃗ 𝑗 = ∫ 𝜎𝑛

𝑐𝑛⃗  𝑑𝑠     𝑜𝑛 𝜕Ω𝑗  
𝜕Ω𝑗

𝜎𝑛
𝑐𝑛⃗ = 0     𝑜𝑛 𝜕Ω𝑖

 

(3) 
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where 𝜎𝑛
𝑐  and 𝜀  represent the stress and strain tensors, 𝐵𝑠 is the fourth order secant 

elastoplastic tensor (corresponding to the standard Hooke tensor 𝐵𝑒 for an elastic step). It is 

important to notice that for a heterogeneous material, all these quantities depend on the 

position.  

The overall forces 𝑅⃗ 𝑗   are known on the boundary 𝜕Ω𝑗 of Ω .The free boundaries 𝜕Ω𝑖 satisfy 

the relations: 𝜕Ω𝑗 ∪ 𝜕Ω𝑖 = 𝜕Ω and 𝜕Ω𝑗 ∩ 𝜕Ω𝑖 = ∅. In the case of a cubic material, the Hooke 

tensor 𝐵𝑒 depends only on three elastic constants: 𝐸, 𝐺, and 𝜈.  

The energetic functional can be expressed in its simplest form (small strain hypothesis, 

equilibrium): 

 

𝐸𝑟𝑐 (𝑢⃗⃗ 𝑛
𝑐
, 𝐵𝑛

𝑠) =
1

2
∫∫ [𝜀 (𝑢⃗⃗ 𝑛

𝑐
) − 𝜀 (𝑢⃗⃗ 𝑛

𝑚
)]: 𝐵𝑛

𝑠:
Ω

[𝜀 (𝑢⃗⃗ 𝑛
𝑐
) − 𝜀 (𝑢⃗⃗ 𝑛

𝑚
)]

𝑡

1

𝑑Ω𝑑𝑡 

(4) 

where 𝑢⃗ 𝑛
𝑐

 is a displacement field compatible with equilibrium of the studied domain Ω. 

 The identification procedure consists in minimizing 𝐸𝑟𝑐 with respect to 𝑢⃗ 𝑛
𝑐  and 𝐵𝑛

𝑠
. 

 According to [4], the fourth order secant elastoplastic tensor can be written at load step 𝑛 

as: 

𝐵𝑛
𝑠 = [𝐵𝑒−1 +

∆𝛾𝑛

1 + 2
3
𝑘∆𝛾𝑛

𝑃]

−1

 
(5) 

 

and with respect to the material parameters: 

 

𝐵𝑛
𝑠 =

[
 
 
 
 
 
 

𝐸(1 + 2𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸(𝜈 − 2) + 1 − 𝜈²

𝐸(𝜈 + 𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸(𝜈 − 2) + 1 − 𝜈²
0

𝐸(𝜈 + 𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸(𝜈 − 2) + 1 − 𝜈²

𝐸(1 + 2𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸(𝜈 − 2) + 1 − 𝜈²
0

0 0
𝐺

1 + 6𝐾𝐺]
 
 
 
 
 
 

 

(6) 

 

where 𝑃 is a constant mapping matrix: 

 

𝑃 =
1

3
[

2 −1 0
−1 2 0
0 0 6

]. 
(7) 
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and ∆𝛾𝑛 is the plastic multiplier at load step 𝑛 

 

∆𝛾𝑛(𝜎0, 𝑘) =
3

2𝑘
〈√

3

2

𝛼𝑛

𝜎0

− 1〉+ 
(8) 

 

with 〈𝑎〉+ representing the positive part of a, 𝛼𝑛 the second invariant of the effective 

stress (𝜎𝑛
𝑐 − 𝑋𝑛) , 𝑋𝑛 is the backstress tensor, reached at the current load step 

 

𝛼𝑛² = (𝜎𝑛
𝑐 − 𝑋𝑛)

𝑇

. 𝑃. (𝜎𝑛
𝑐 − 𝑋𝑛). 

(9) 

 

And finally, as we know that 𝜀𝑝 = 𝜀𝑒 − 𝐵𝑒−1: 𝜎𝑐 we can write 𝐾, depending on two 

parameters (function of 0 and k): 

 

𝐾 = 𝑎
‖𝜀𝑝‖

𝑏 + ‖𝜀𝑝‖
 

 

(10) 

2.2 Numerical method 

 

We focus on a J2 elastoplastic model with kinematic hardening. The elastic and plastic 

identification problem consists in finding the elastoplastic secant stiffness tensor 𝐵𝑛
𝑠 and the 

stress field satisfying equations (1) to (3). Thanks to the convexity of the cost-function  𝐸𝑟𝑐, 

the minimization can thus be performed in two consecutive steps: first with respect to the 

displacement field 𝑢⃗ 𝑛
𝑐  associated with a statically admissible stress fields 𝜎𝑛

𝑐 and second with 

respect to the secant tensor 𝐵𝑛
𝑠 to identify the material parameters. These steps are presented 

in the figure 1.b and this algorithm is used to compute the elastic and plastic properties.  

The identification algorithm involves three steps: (i) an elastic identification, (ii) a 

plasticity detection and (iii) a plastic identification. The Steps (i) and (iii) are based on the 

minimization of the   𝐸𝑟𝑐 cost function. This minimization is performed through an iterative 

algorithm illustrated in Figure 1.b (example for an elastic identification), starting from an 

initial set of parameters (𝐵0). The procedure is stopped using a convergence criterion on the 

norm of the tangent tensor. At convergence, the CEGM procedure gives the material 

parameters and the stress field. 

 

The elastic identification (step (i)), involves an analytic minimization of   𝐸𝑟𝑐 with 

respect to the material parameters (𝐸, 𝜈 , 𝐺) [2]. The plastic identification is less direct since 

the secant tensor expression requires the knowledge of the stress state. The plastic step is 

initialized with the result of an elastic identification. Naturally, the elastic constants obtained 
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by this identification are not the desired parameters, but they give a first estimation of the 

secant tensor at the current loading step 𝐵0
𝑠, and a statically admissible stress state. The 

second step of the minimization then consists in minimizing  𝐸𝑟𝑐 with respect to parameters 𝑎 

and 𝑏. Once the procedure has converged, we get the stress field 𝜎𝑛
𝑐 and the optimal values 

(𝑎𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡) that are directly related to the material parameters 𝜎0 and 𝑘. 

 

The plasticity detection (step (ii)) consists in comparing the norm of the difference 

between the identified secant tensor (𝐵𝑛
𝑠 )𝑖 at iteration 𝑖 and the one identified at the previous 

(i-1) iteration: (𝐵𝑛
𝑠 )𝑖−1 with the norm of (𝐵𝑛

𝑠 )𝑖−1: 

 

‖(𝐵𝑛
𝑠  )

𝑖

−  (𝐵𝑛
𝑠  )

𝑖−1

 ‖
2

< 𝜖 ‖(𝐵𝑛
𝑠  )

𝑖

‖
2

 
(11) 

  

 

 
 

Figure 1- (a) Elastoplastic algorithm, (b) Example of  𝐸𝑟𝑐  minimization elastic algorithm used for the step(i) and 

step(iii). 

 

For the first loading steps, and as long as no plasticity occurs, the secant tensor is 

equal to the elastic tensor 𝐵𝑒.  
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 3 VALIDATIONS 

 

In this section, the efficiency of the proposed procedure is examined using reference 

simulated measurements obtained with the finite element code Comsol Multiphysics. No 

experimental data are presently processed. Only simulated measurements are considered to 

focus on the identification procedure. The in-plane components of the displacement field are 

extracted at the nodes of the finite element discretization and the global load levels are 

extracted on the outer boundaries. The identification method is tested on numerical examples 

concerning both homogeneous and heterogeneous materials subjected to a tensile test. 

Moreover, the robustness of the method is illustrated by studying its sensitivity on noisy data. 

 

3.1 Results  

 

a. Elastic identification 

 

The first (specimen 1) test is performed on an elastic bi-material sample: a soft circular 

isotropic inclusion (Young modulus of 100 GPa, Poisson ratio of 0.15) is embedded in a stiff 

isotropic matrix (Young modulus 210 GPa, Poisson ratio 0.3). Two types of identification are 

performed:  

 an identification mesh perfectly consistent with the material domains (two 

identification domains D1 inclusion and D2 matrix); 

 An identification mesh that does not match the material heterogeneity by 

decomposing it into 400 domains 𝐷𝑗  with 𝑗 = 1 to 400. 

 

 
Figure 2- Geometry for the identification: (a) two identification domains respecting the material heterogeneity 

and (b) 400 identification domains that do not respect the material heterogeneity. 
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   (a)       (b) 

Figure 3- Identified Young modulus distributions: (a) 2 « consistent » identification domains and (b) 400 

« inconsistent » identification domains. 

 

For the first identification, the figure 3 shows a good prediction of the parameter sets with 

a relative error about 1%. Moreover only one load level is sufficient to identify those 

parameters. So the computational time of the procedure is very fast. The Figure 4 shows that 

the identified stress fields are very close to the reference values. 

 
  (a)     (b)     (c) 

Figure 4- Distribution of transversal stress fields: (a) “measured” stress field 𝜎𝑦𝑦_𝑚 (from FE simulation), (b) 

identified stress field 𝜎𝑦𝑦_𝑐 using 2 “consistent” identification domains and (c)identified stress field 𝜎𝑦𝑦_𝑐 using 

400 “inconsistent” identification domains.  

 

For the second identification (400 “inconsistent” material domains), the inclusion is 

perfectly localized. This result shows the ability of the technique to identify heterogeneous 

elastic properties but the identification technique is based on a minimization of an energy 

norm formulated upon the CEGM and if this energy is very small the local identification 

cannot be performed (zones located above and under the inclusion). Furthermore, the error is 

greater in the domains where the strain gradients are high. The presence of strain gradients is 
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an important source of identification errors. The computational time is more important 

because we identify 800 parameters instead of 4 but the results are consistent and show the 

feasibility of this approach.  
 

 

b. Elastoplastic identification 

 

The second test (specimen 2) concerns a standard tensile test performed at constant 

velocity on an isotropic elastoplastic material (Young modulus 210 GPa, Poisson ratio 0.3, 

yield stress 𝜎0 300 MPa and hardening modulus 𝑘 1 GPa). The material parameters are 

identified using data associated with 5 load steps (2 in the elastic domain, and 3 in the plastic 

domain). Although the material is homogeneous, the identification is made on 4 material 

domains (figure 6).  

 

Identified parameters obtained from each zone are collected in the table 1. As it can be 

noticed, the identified parameters values are very close to the reference values and are very 

similar from one identification domain to another.  

The reference (“measured”) stress fields presented in figure 6.a are obtained by solving the 

direct problem whereas the stress fields presented in figure 6.b are obtained by the inverse 

method. We note a close similarity between the distributions and the orders of magnitude for 

this stress component. The procedure converges in a few iterations. The identification of the 

parameters and stress fields gives very satisfactory results (see Table 1). 

 

Table 1: Identifed parameters: specimen 2. 

Parameters E (GPa)  k (GPa) 0 (MPa) 

Reference values  210,00 0,30 1,00 300,00 

     Z1 209.80 0,30 1,03 298,49 

Relative difference (%) 0,10 0,00 3,00 0,50 

     Z2 210,05 0,30 0,99 299,51 

Relative difference (%) 0,02 0,00 1,00 0,16 

     Z3 210,12 0,30 1,00 299,38 

Relative difference (%) 0,06 0,00 0,00 0,21 

     Z4 209,86 0,30 0,99 299,60 

Relative difference (%) 0,07 0,00 1,00 0,13 
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Figure 5- (a) Geometry and identification domains, (b) identification mesh (1400 elements) and (c) the 5 load 

steps. 

 
  (a)      (b) 

 
Figure 6- Distribution of transversal stress fields: 𝜎𝑦𝑦_𝑚 from FE simulation and 𝜎𝑦𝑦_𝑐 the identified. 
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3.2 Sensitivity to the initial set of parameters 

To assess the sensitivity of the identification results to initial values, different starting 

values of the parameters are selected for the procedure. The identification is performed on the 

specimen 2 (table 1) and we check the number of iteration needed for the convergence of the 

procedure. 

 

Table 2 shows that the obtained parameters are in good agreement whatever the chosen 

initial value. So, we can see the stability of the identification procedure of the influence of the 

initial parameters. This confirms the uniqueness of the solution and the independence of the 

solution to the initial values. 

 

 

Table 2: Sensitivity to initial set of parameters : specimen 2. 

Parameters E (GPa)  k (GPa) 0(MPa) 

Reference values  210 0,3 1 300 

     Initial value 1 1,00E-09 1,00E-09 1,00E-09 1,00E-09 

Identified values 209,74 0,30 1,03 300,10 

Relative difference (%) 0,12 0,00 3,00 0,03 

Number of iteration 7 7 8 8 

     Initial value 2 155,00 0,15 0,50 150,00 

Identified values 209,77 0,30 1,03 300,10 

Relative difference (%) 0,11 0,00 3,00 0,03 

Number of iteration 7 7 6 6 

     Initial value 3 420,00 0,60 2,00 600,00 

Identified values 209,84 0,30 1,03 300,09 

Relative difference (%) 0,08 0,00 3,00 0,03 

Number of iteration 8 8 6 6 

 

3.3 Sensitivity to mesh refinement 

 

 In this paragraph we will see also the efficiency of the identification with mesh 

refinement. We mesh the specimen 2 with three different element sizes (coarse, normal and 

fine meshes) to check the convergence of the procedure. 
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Table 3: Sensitivity to mesh density : specimen 2. 

 

Parameters E (GPa)  k (GPa) 0(MPa) 

Reference values  210,00 0,30 1,00 300,00 

     Coarse mesh 

    Identified values 209.80 0,30 1,03 300,09 

Relative difference (%) 0,10 0,00 3,00 0,03 

     Normal mesh 

    Identified values 209,94 0,30 0,99 302,79 

Relative difference (%) 0,03 0,00 1,00 0,93 

     Fine mesh 

    Identified values 209,94 0,30 1,00 299,63 

Relative difference (%) 0,03 0,00 0,00 0,12 

 

The identification is performed for each mesh, and the results obtained on specimen 2 are 

reported in Table 3. As it can be noticed, the identified parameters values are very similar.  

 

3.4 Sensitivity to experimental noise 

 The robustness of the CEGM approach with respect to noise is evaluated using a set of 

simulated displacement fields disturbed by a white noise at different levels. For this purpose, 

we perform an identification on an homogeneous isotropic material submitted to a tensile test. 

The noise level is chosen 𝜸 = 𝟎. 𝟎𝟏 𝒑𝒊𝒙𝒆𝒍. This value is consistent with typical DIC 

measurement errors. The reference FE-displacement fields are corrupted by a white Gaussian 

noise with the amplitude  𝜸.  

Table 3: Sensitivity to noise : specimen 2. 

Parameters E (GPa)  k (GPa)  0 (MPa) 

Reference values  210 0,3 1 300 

     Random noise amplitude 0.1*γ 

 Identified values 209,79 0,30 0,99 300,17 

Relative difference (%) 0,10 0,00 1,00 0,06 

     Random noise amplitude  γ 

    Identified values 206,96 0,30 0,99 299,84 

Relative difference (%) 1,45 0,00 1,00 0,05 
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     Random noise amplitude 2*γ 

    Identified values 189,56 0,23 0,96 300,46 

Relative difference (%) 11,16 23,33 4,00 0,15 

 

It can be seen that identification of all parameters is stable in presence of noise. Naturally, the 

elastic constants are more corrupted by the noise level because for a fixed noise level, the 

signal to noise ratio is smaller for the elastic identification than for the plastic one. 

Furthermore, the Poisson ratio is more sensitive to noise. 

 

4 CONCLUSIONS 

 In the present work, we use full-field measurements and the constitutive equation gap 

method to identify the spatial distribution of a set of J2 elastoplastic behaviors. It is possible 

to identify the unknown parameters zone by zone, thus allowing to characterize heterogeneous 

materials. We validate this approach on different situations (heterogeneous elastic materials 

using heterogeneous strain fields, homogeneous plastic material using heterogeneous strain 

fields and homogeneous plastic materials using homogeneous strain fields). The identification 

algorithm has been presented. Numerical simulations show the feasibility and the robustness 

of the method. The errors in the identification increase in the presence of strong gradients and 

with the level of measurement noise. The next step will focus on the application of this 

method to real full-field measurements. 
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