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Drop coalescence and liquid flow in a single Plateau border

Alexandre Cohen,∗ Nathalie Fraysse, and Christophe Raufaste
Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, Parc Valrose, 06100 Nice, France

We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid
foam microchannel, also called Plateau border. This drop-injected experiment reveals an intricate
dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia
or viscosity. We devoted a previous study [Cohen, PRL 112, 218303 (2014)] to the inertial imbibition
regime, unexpected at such small length scales. Here, we report other features of interest of the
drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to
both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films
as well as effects of the interfacial rheology. The transition between the two regimes is investigated
and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled
by considering the flow of liquid at the nodes of the network of interconnected microchannels.
Extensions of our study to liquid foams are discussed.

∗ corresponding author : Alexandre.Cohen@unice.fr
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I. INTRODUCTION

Liquid foams are dispersions of gas bubbles within a continuous liquid phase. Generally, the liquid is an aqueous
solution of surfactants that stabilize the gas-liquid interfaces. Liquid foams are found in numerous applications: food
and cosmetics processing, nuclear decontamination, oil recovery [1–3]. Their structure is organized as follows. Liquid
films are found at contacts between two bubbles, three bubbles meet along liquid channels called Plateau borders,
and four Plateau borders join at vertices. This structure is constantly evolving over time, which might alter the
foam properties. One of the aging processes is drainage, namely liquid flows triggered by gravity, other mechanical
perturbations, or by capillary suction whenever structural inhomogeneities occur [4]. The drainage of liquid foams
under gravity has raised an important interest and has resulted in numerous macroscopic measurements at the foam
scale [4–8], as well as a few studies at the bubble scale in the steady regime [9–11]. Drainage was found to occur mostly
in the interconnected network of Plateau borders. In all these studies, measurements were satisfactorily accounted
for by a model of flow through a porous medium at low Reynolds number. In this context, the interfacial rheology
was shown to play an important role on the localization of the flow dissipation [7, 12, 13]. Surfactants leading to
tangential stress-free gas-liquid interfaces mainly induce dissipation within the vertices, while surfactants leading to
rigid interfaces tend to localize the dissipation within the Plateau borders [7, 13]. Experiments on flows triggered by
structural inhomogeneities only are scarce and limited to a few experiments in microgravity [14, 15].

We have designed an experiment to study transient flows inside a Plateau border (PB), with capillarity as the
only driving force and negligible gravity effects. Our drop-injected experiment consists in releasing a droplet above a
single, horizontal PB; the droplet coalesces with the PB as would do a droplet contacting a liquid bath; this triggers
a flow of liquid inside the PB, whose dynamics has been systematically studied for various surfactant solutions and
experimental conditions.
For surfactants leading to tangential stress-free interfaces, low bulk viscosities and large PBs, we have shown that

the perturbation is dispersed through the formation of structures analogous to capillary hydraulic jumps, whose
constant velocity was found to be independent of the perturbation size and to scale as the capillary-inertial velocity
c0 =

√

γ/ρRi [16], where γ and ρ are the surface tension and the density of the surfactant solution, respectively, and
Ri stands for the radius of curvature of the PB. We have derived a model that points out the analogy with Rayleigh’s
description of hydraulic jumps[17], and that accounts for the exact shape of the jump. According to the experimental
conditions, we may also observe a viscous regime for the liquid redistribution, this time in agreement with the low
Reynolds number assumption commonly used in the literature on foam drainage. Here, we present the entire study
in order to complete the short report [16] dedicated to the capillary inertial regime.

The manuscript is organized as follows. After the introductory Sec.I, Sec.II describes the experimental setup. Sec.
III deals with the coalescence of the droplet with the PB and the subsequent liquid flow, with a detailed description of
both the inertial and the viscous regimes. The transition that may occur between the two regimes is also rationalized.
Sec. IV is dedicated to three other important issues in the field of liquid foam drainage, namely the imbibition through
the vertices, the role of the soap films, and the influence of the interfacial rheology.

II. MATERIALS AND METHODS

A. A single-cell model foam

All our experiments were performed on an elementary foam cell obtained by withdrawing a rigid triangular prism
frame (depicted by dashed lines in Fig. 1a) from a surfactant solution. Its two empty triangular bases are equilateral,
with edges 3cm-long, while the length of the prism can be varied from 3 to 12 cm. When dipped into a soapy solution,
this frame holds nine soap films; at each end, three films arrange in a tetrahedron, three edges of which being Plateau
borders; the three remaining films stretch in between and join in one central, straight Plateau border (PB), ending
at a vertex on each side (Fig. 1a, b). The frame is positioned in order for the central PB to be horizontal and for the
cross-section of the three films that hold it to take the shape of a Y (Fig. 1c).

Preliminary results (data not shown) showed that the length of the PB, which varies from 1.5 to 11.5 cm when
varying the length of the frame in the above mentioned range, has no effects on the observations reported below;
therefore, we kept it constant, equal to 2.5 cm throughout the present study unless stated otherwise. Because the
structure is maintained horizontally, gravity effects on the central PB are reduced and its thickness remains uniform
from one vertex to the other. However, the PB thickness decreases slowly with time due to drainage in the vertical
direction. A way to compensate for the drainage as well as to vary the PB thickness consists in continuously injecting
liquid into the foam cell from one upper-corner of one triangular base of the frame (Fig. 1a). The liquid spreads
throughout the structure, which leads to a quasi-uniform and constant thickness for the central PB. The exact flow
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rate through the PB is not known since most of the liquid leaks downward and does not flow through the central PB.
Nevertheless, the PB thickness can be significantly increased by increasing the flow rate of the liquid injected.

2 films

1 film

FIG. 1. The single-cell model foam. a) Outline of the experimental setup: the triangular prism frame (dashed black lines) holds
the liquid films that join in seven Plateau Borders and two vertices (bold blue lines). The central horizontal PB that spreads
between the two vertices constitutes the region of interest of our study (red-dotted quadrangles). b) Side view of the central
PB given by the high-speed camera, from which the apparent thickness, eexp, can be measured. c) Longitudinal view. The
picture shows the cross-section of the PB seen through one of the vertices (and an adjoining glass plate - see text for details);
the sketch depicts the geometry of the PB cross-section and defines the relevant geometrical quantities R and e. d) Graph R
as function of eexp given by the calibration step. The two lengths are proportional to an accuracy of 2% on this example.

Experiments are backlit and filmed from the side by means of a high-speed camera (1000 to 3000 fps), in order to
keep track of the time evolution of the PB (Fig. 1b). The apparent thickness of the PB, eexp, can be measured at
any given time; however, this measurement is set-up dependent (the light intensity and the threshold used for the
image analysis, inter alia, slightly influence the measured value of the apparent thickness). In order to deduce the real
radius of curvature R of the PB from its apparent thickness, a calibration step needs to be performed before each set
of experiments. It consists in coupling simultaneous side and longitudinal views of the PB. The former is given by the
high-speed camera, whereas the latter is obtained by use of a standard camera (10 fps) placed on the axis of the PB in
order to capture its cross-section geometry through one of the vertices (see [11] for details). To prevent troublesome
refractive effects, a glass plate is put in contact with the vertex during calibration; Fig. 1c shows a typical picture
thus obtained. The cross-section geometry of the PB is formed by three menisci of same radius of curvature, R, in

close contact. R is proportional to the height, e, of the small triangle drawn on Fig. 1c: e =
√
3
2 R. Experimentally, we

access eexp from the side view and e from the longitudinal view simultaneously. We then compute R from e and plot
it as a function of eexp as shown in Fig. 1d. All the calibration curves have been found to be linear to an accuracy of
a few percent only. The initial radius of curvature of the Plateau Border, Ri, varies from 0.1 mm to 1.3 mm in the
experiments.

B. Droplet addition

We probe the stability of the PB and study its return to equilibrium by making droplets coalesce with the PB. For
this purpose, we release from above small droplets of the same surfactant solution as the single-cell model foam. Due
to the Y-shape of the liquid films, the droplet stabilizes on top of the PB after some bounces on the upper liquid
films and/or the PB itself. The height at which the droplet is released must not be too large, otherwise the droplet
deforms the PB too much; in extreme cases, the droplet can even be penned into a gas bag (forming what is called
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solution glycerol (%w) ρ (kg/m3) η (mPa.s) γ (mN/m) η∗ (mPa.s.m) symbol
A1 - TTAB 3g/l 0 1030 1.0 38 0.080
A2 - TTAB 6g/l 45 1100 3.4 34 0.084

A3 - TTAB 6g/l 60 1140 9.2 34 0.115

A4 - TTAB 6g/l 75 1150 10.4 33 0.118

A5 - TTAB 6g/l 80 1160 12.4 33 0.161
A6 - TTAB 6g/l 85 1190 27.8 32 0.172

B - SLES+betaine+LAc 0 980 0.9 20 1.115

TABLE I. Properties of the aqueous surfactant solutions at 20◦C.

an anti-bubble), it then passes over the PB and is evacuated along the vertical bottom liquid film without coalescing
(images not shown). The radius, r, of the droplet is deduced from the photographs afterwards. It varies from 0.2 mm
to 1.8 mm in the experiments.

C. Aqueous surfactant solutions

Two kinds of surfactant solutions were used in the experiments:

• solutions A were obtained by dissolving tetradecyl trimethyl ammonium bromide (TTAB) into deionized water
and adding various amounts of glycerol in order to vary the viscosity. The concentration in TTAB was 3 g/l
for the aqueous solution A1 containing no glycerol, and was raised to 6 g/l for the solutions containing glycerol
to enhance the stability of the foam cell under study. Solutions A are characterized by tangential stress-free
interfaces (high surface mobility limit).

• solution B was one of the surfactant mixtures proposed by Golemanov et al. [18] to vary the dynamics
surface properties. This mixture contains sodium lauryl-dioxyethylene sulfate (SLES), cocoamidopropyl betaine
(CAPB) and lauric acid (LAc). It was prepared following the protocol reported in [18].

Room temperature was kept to 20◦C throughout the whole study. The properties of the Solutions A and B at 20◦C
are given in Tab. I. The density ρ was measured by weighing a known volume of solution (error of ±50 kg/m3), the
bulk viscosity η was determined using a Ubbelohde viscometer (error of ±2%) and the surface tension γ was measured
using the pendant drop method (error of ±1 mN.m−1). The dynamics surface properties were characterized through
the surface viscosity η∗, which was measured from the growth dynamics of a PB during a T1 process as described in
[19] (error of ±5%).
In summary, we use Solutions A to study effects of the bulk viscosity, which changes by a factor 30, while the

surface mobility does not vary significantly (factor 2 only on the surface viscosity). On the other hand, comparison
between Solutions A1 and B makes it possible to investigate the effects of the surface mobility (factor 14 on the
surface viscosity) at constant bulk viscosity (1.0± 0.1 mPa.s).

III. MAIN STUDY

A. A Three-stage process

The perturbation of the Plateau border following the droplet release can be divided into three stages. The first
stage is marked by the droplet rebounds and the consequent deformations of the Plateau Border. It ends up with
the droplet stabilization on a gaseous lubrication layer. We will not detail this stage here. The second stage deals
with the coalescence of the droplet with the PB, which follows the thinning of the lubrication layer under the droplet
weight pressure, and its rupture. A third stage deals with the redistribution of the liquid brought by the droplet along
the Plateau Border. These last two stages are successively described in the following sub-sections.

B. Coalescence stage

Once stabilized on the PB, the released droplet rests on a thin layer of air that slowly drains to its point of rupture.
This defines the time t = 0 at which contact is established between the droplet and the PB. From that time, due to
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FIG. 2. (a)Image sequence of the coalescence of the droplet with the PB; enlarged pictures of the droplet at t = 0 and Tcoal

defined as the coalescence time. (b) Coalescence time as a function of the initial radius of curvature of the PB (see Tab. I for
the correspondence between the markers used in Fig. 2b-d and the surfactant solutions). (c) Coalescence time as a function of
the droplet radius. Each color straight line is the best linear fit going through zero for the data points represented by markers
of the same color. The computed slope equals [5.5± 0.2; 7.7± 0.3; 6.7± 0.2; 6.9± 0.2; 7.1± 0.1; 9.0± 0.4; 8.7± 0.9] for Solution
[A1;A2;A3;A4;A5;A6;B], respectively. (d) Ratio of the coalescence time to the capillary-inertial time as a function of the
ratio r/Ri (logarithmic scales). Dashed black straight lines correspond to y = 1 and to a slope −0.4, respectively.

surface tension forces, the area of contact quickly increases; simultaneously, the droplet surface deforms, as can be
seen on the image sequence of Fig. 2a. The perturbation of the drop shape spreads upward, the top of the droplet
flattens and its curvature eventually changes its sign. In some cases, this process leads to the creation of a daughter
droplet, as observed by Thoroddsen and Takehara [20] for droplets coalescing with a liquid bath. The coalescence
process is rapid and occurs for the biggest drops within 15 ms for Solutions A and 20 ms for Solution B (low surface
mobility). Following Thoroddsen and Takehara, we define a coalescence time, Tcoal, as the time at which the curvature
of the top of the droplet comes to zero before changing its sign. Results are reported in Fig. 2. For a given surfactant
solution, the coalescence time does not exhibit any clear trend as a function of the radius of curvature, Ri, of the
PB (Fig. 2b), whereas it strongly correlates with the droplet radius, r, whatever the Ri value (Fig. 2c). As can be
expected, the coalescence time increases with the droplet size. This increase is compatible with a linear trend. The
slope of the best linear fits equals 8.7 for Solution B and varies from 5.5 to 9.0 for Solutions A; this slight variation
(factor 1.6) does not correlate with the variation (factor 30) in bulk viscosity for Solutions A.

The coalescence process is driven by surface tension forces which tend to minimize the total liquid/gas interface
area of the system. Experimentally we observe (Fig. 2) that effects of the bulk viscosity and of the initial radius of



6

curvature of the PB are small compared to the effects of the droplet radius. Assuming that gravity does not play any
role except for bringing together the droplet and the PB, this suggests that the surface tension forces might be balanced
by the fluid inertia inside the droplet and that the coalescence time should be compared to the capillary-inertial time
√

ρr3/γ. Without loss of generality, the coalescence time writes

Tcoal =

�

ρr3

γ
.f̃coal

Å

Oh,
r

Ri

ã

, (1)

where f̃coal is a dimensionless function of two dimensionless numbers, the Ohnesorge number, Oh = η/
√
ργRi, which

is built by balancing bulk viscous effects with the capillary and inertial ones, and the ratio r/Ri of the droplet radius
to the PB radius of curvature.

Fig. 2d shows that Tcoal/
√

ρr3/γ is close to unity, which supports the capillary-inertial mechanism suggested above.

A finer analysis shows no correlation of Tcoal/
√

ρr3/γ with Oh, but exhibits a slight dependency with r/Ri, which can

be described by the following empirical law: f̃coal = (1.3± 0.1)
Ä

r
Ri

ä−(0.4±0.1)
if r/Ri < 1 and f̃coal ∼ 1 if r/Ri > 1.

The dependency of f̃coal with r/Ri is small but reveals a specificity of our 1D PB-supported geometry when
comparing with the coalescence of droplets on a liquid bath (e.g. [20]).

C. Liquid redistribution stage

Following the coalescence of the droplet with the PB, the additional liquid reorganizes due to surface tension forces
that tend to bring the PB back to a uniform thickness. Fig. 3a, b, and c illustrate the three flow regimes that were
identified. Sec. III C is devoted to the first two regimes, the third one observed for Solution B in the low surface
mobility limit will be detailed and discussed specifically in Sec. IVC. Fig. 3a depicts the major characteristics of the
inertial regime. Two traveling jumps appear on both sides of the coalescing droplet promptly, even before the end of
the coalescence process; the velocity of the sharp fronts proves to be constant, and remarkably high, of the order of
1 m.s−1; upstream of the jumps, the PB is thicker, yet its thickness is uniform, and constant as long as the PB can
be supplied in liquid. The viscous regime (Fig. 3b) strongly contrasts with the inertial regime, being much slower,
and exhibiting a smooth, bell-like profile for the PB perturbation, which flattens more and more slowly to eventually
disappear.

1. Inertial regime

The occurrence of a capillary-inertial regime for transient flows in a single foam microchannel was reported in [16, 17]
and was unexpected at the small length scales that characterize such a system. This flow regime was described in [16]
from measurements performed on two low-viscosity surfactant solutions, one of them being the Solution A1. Here,
we investigate it further through the use of Solutions A having higher viscosities. We observed the capillary-inertial
regime for bulk viscosities up to 10 mPa.s (Solutions A1 to A4). The capillary jump geometry that characterizes the
capillary-inertial regime is recalled in Fig. 4a. Measurements of the constant, uniform radius of curvature upstream
of the jump, Rj , as well as the jump velocity, c, are reported in Fig. 4b,c. Note that measurement of the jump
velocity requires to take into account the flow that preexists inside the PB due to the continuous supply in liquid;
we compute it as the mean value of the velocities cr and cl measured for the jumps propagating in the opposite (on
the right-hand side of the PB perturbation in Fig. 3) and in the same (on the left-hand side of the PB perturbation
in Fig. 3) directions of the preexisting flow. Fig. 4b shows that the ratio Rj/Ri is constant for a given surfactant
solution, and does not significantly depend on the viscosity of the solution. The slopes of the best linear fits going
through zero for Solutions A1-A4 are reported in Tab. II. The measured jump velocity is found to decrease when the
radius of curvature of the PB increases (Fig. 4c). A power-law interpolation of the data points obtained with Solution

A1 leads to c = (0.0057± 0.0002)R
(−0.50±−0.02)
i (c and Ri are given in m/s and m).

This is consistent with [16], from which c is expected to scale as c0 =
√

γ/ρRi. Imposing the exponent of the
power-law to be -1/2 gives the pre-factors reported in Tab. II. The solution viscosity has negligible effects on c, as
on Rj/Ri. In addition, both quantities prove to be independent on the droplet radius, r, as seen on the inserts of
Fig. 4b,c. Mass and momentum balance equations when formulated in the specific geometry of the capillary hydraulic
jump lead to an intrinsic relation between the imbibition velocity and the jump geometry characterized by the ratio
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FIG. 3. Three sets of snapshots that illustrate the various regimes observed for the liquid redistribution in a single Plateau
border. The first six images of each set were taken every 5 ms after contact between the droplet and the PB; the seventh image
was taken after 100 ms. a) Capillary-inertial regime (Solution A1). A sharp front, which moves at constant, high velocity (∼ 0.5
m.s−1), separates two regions of constant, uniform thickness of the PB. cr (cl) stands for the velocity of the front that travels
toward the right (left); the preexisting flow goes to the left. The red dashed lines are guides to the eyes to follow the front
position. b) Viscous regime (Solution A5). The perturbation slowly spreads along the PB. The evolution can be characterized
by measuring S(t) (see Section III.C.2 for details). The red dashed lines are guides to the eyes to compare the actual spreading
of the perturbation to a spreading linear in time. c) Liquid redistribution observed in the low surface mobility limit (Solution
B). The red dashed lines are guides to the eyes to a constant spreading velocity.

Rj/Ri [16]:

c(Rj/Ri) = c0
1

√

Ri/Rj(1 +Ri/Rj)
, (2)

The measured jump velocity is plotted in Fig. 4d as a function of the theoretical velocity computed using the exper-
imental value of the ratio Rj/Ri for each surfactant solution (Tab. II). All data points for all four Solutions A1-A4
collapse on the diagonal to a good approximation. In conclusion, this regime does not depend on the bulk viscosity of
the surfactant solution, and its dynamics results from a balance between capillary and inertia. These results confirm
and extend the conclusions drawn in [16].

2. Viscous regime

The dynamics observed during the liquid redistribution stage drastically changes when further increasing the bulk
viscosity of the surfactant solution, all other things being equal. Fig. 3b illustrates the relaxation of the PB-with-drop.
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FIG. 4. a) Sketch of the capillary jump geometry. It is characterized by the two radii of curvature, Ri and Rj , of the unperturbed
and the perturbed parts of the PB, respectively. The sharp front between these two zones of uniform, constant thickness, moves
with a velocity c. b) Radius of curvature upstream of the jump, Rj , as a function of the radius of curvature downstream, Ri,
for various radii of the coalescing droplets, for Solutions A1- A4 (see Tab.I for markers). The black straight line has a slope
equal to 1.7. Insert: Rj as a function of the radius r of the released droplet. c) Measured front velocity cexp as a function of
the radius of curvature Ri of the PB far from the perturbation [same experiments as in b)] (logarithmic scales). The black
straight line on the graph has a slope -0.5. Insert: cexp as a function of the radius r of the released droplet. d) Measured front
velocity cexp compared to the theoretical velocity derived using the capillary hydraulic jump geometry. The black straight line
of slope 1 emphasizes the good agreement between the experimental values and the modeling.

In this regime the central bulge appears to spread smoothly, and the liquid in excess is slowly evacuated into the PB.
At any given time, the variation in thickness eexp(t) − eexp(0) measured along the longitudinal axis Ox of the PB
yields a bell-like profile as depicted in the insert of Fig. 5a. As stated previously, t = 0 stands for the beginning of
the coalescence stage. We characterize such a dynamics for the liquid redistribution by means of the time-evolution
of the spreading distance S(t), which we define as the distance between the two edges of the perturbation (Fig. 3b).
In practice, S(t) may be difficult to measure accurately. Strong oscillations of the PB are usually observed after
the droplet coalescence, which induces some noise, especially on the basis line of the bell curve. Also, we worked
with a PB as long as possible (12 cm) to minimize the effects of the vertices which may perturb the flow, however
this implies to zoom out and, consequently, to lessen the spatial resolution of the images. We used an algorithm to
compute the spreading distance S(t) as the largest distance between two points that belong to the bell curve and
whose over-thickness is smaller than 0.2 mm. With the help of this subjective criterion, we were able to obtain the
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Solution c/R
−1/2
i (m3/2.s−1) Rj/Ri

A1 (57± 2).10−4 (1.5± 0.1)
A2 (53± 3).10−4 (1.5± 0.1)

A3 (58± 1).10−4 (1.7± 0.1)
A4 (59± 2).10−4 (1.7± 0.1)

TABLE II. Results of the curve fitting for Solutions A1-A4 in the capillary-inertial regime.
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FIG. 5. a) Time evolution of the spreading distance S(t) (blue dots) measured for an experiment performed with the most

viscous surfactant solution (Solution A6, Ri = 0.7 mm, r = 1.2 mm). The red dashed curve is the
√

D(t− t0) interpolation

(D = 1.3 m2.s−1, t0 = 12 ms). Insert: bell-like profile of the over thickness of the PB, at three different times. b) Coefficient D
as a function of the droplet radius, r. Markers refer to Solutions A3 to A6 as stated in Tab. I. The straight color lines are the
best linear fits going through zero for the data sets obtained using the various surfactant solutions. Insert: D as a function of
the initial radius of curvature of the PB (same experiments). c) D compared to the capillary-viscous diffusion coefficient γr/η.

The black dashed line has a slope 1. d) t0 as a function of the capillary-inertial time
√

ρr3/γ. Lines of slope 1 and 10 were
drawn for the sake of comparison.

time-evolution of S for each experiment, as plotted in Fig. 5a. Despite a slight residual noise on the experimental
data, it appears clearly that the spreading slows down, according to a sub-linear law. We chose to interpolate the
S(t) curves by a diffusive law of the form:

S(t) =
»

D(t− t0), (3)

whereD and t0 are two fitting parameters, which have the dimensions of a diffusion coefficient and a time, respectively.
We do not claim that the curve fitting leads unambiguously to an exponent 1/2, however a diffusive law is fully
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Solution D/γr
η

t0/
»

ρr3

γ

A3 (1.1± 0.2) (6.6± 0.4)
A4 (1.1± 0.1) (7.2± 0.4)
A5 (1.0± 0.1) (7.3± 0.4)
A6 (1.0± 0.1) (6.6± 0.4)

TABLE III. Numerical values for Solutions A3-A6 in the viscous regime.

compatible with our experimental data and is supported by a simple dimensional analysis as shown below. Scaling
laws with exponents 1/3 and 2/3, as found by Piroird and Lorenceau [21] for the imbibition dynamics of oil droplets
into a PB, proved to be less consistent with our experimental data than a diffusive law (see Sec. IV.C for a brief
discussion on the work by Piroird and Lorenceau, which was performed with rigid surfactant solutions, in relation to
ours).
This dynamical regime was observed for Solutions A3 to A6; overall, we obtained D values in the range 0.5.10−3 to

4.5.10−3 m.s−2, and t0 in the range 5 to 100 ms. D is plotted in Fig. 5b as a function of the droplet radius, r, for all
experiments in this regime. D increases with r. For any given surfactant solution, the data follow a linear trend; the
higher the bulk viscosity of the solution, the smaller the coefficient D and the slope of the linear fit. Insert of Fig. 5b
does not show any correlation between D and the initial radius of curvature of the PB.
The experimental results in this regime can be rationalized by considering the dynamics of the liquid redistribution

as the result of a capillary-viscous process. The surface tension and the bulk viscosity of the surfactant solution
determine the driving force and the damping, respectively. Using the droplet radius r, which appears to be the only
relevant length scale, we can build a diffusion coefficient, D = γr/η. Comparison with the experimental D-values is
shown in Fig. 5c, and the slopes of the best linear fits for Solutions A3-A6 are given in Tab. III. The good agreement
between the two quantities supports the capillary-viscous mechanism and a diffusive dynamics. We will thus name
this regime the viscous regime. A similar dimensional analysis suggests that t0 scales as the capillary-inertial time
√

ρr3/γ introduced in Sec. III B. Fig. 5d plots t0 as a function of the capillary-inertial time and Tab. III gives the
slopes of the best linear fits for Solutions A3-A6. An average over all the measurements yields a value of 6.9± 0.4 for
the slope.
In conclusion, for large bulk viscosities and for small radii of curvature of the Plateau border, a viscous regime is

observed. The liquid inhomogeneity spreads with a smooth thickness profile of the PB. The spreading distance follows
a diffusion-like dynamics, whose diffusion coefficient depends on the surface tension, the drop radius and the bulk
viscosity. Conversely to the inertial regime, the viscous regime does not depend on the liquid density nor on the PB
radius of curvature.

3. Inertial-viscous transition

For intermediate bulk viscosities, namely for Solutions A3 and A4, we experimentally observe that the system
switches progressively from the inertial regime to the viscous one. At short times, the jump geometry and a constant
imbibition velocity are typical of the capillary-inertial regime; at longer times, the thickness profile smoothens and the
dynamics slows down, in a way reminiscent of the viscous regime. We illustrate this behavior in Fig. 6a, which displays
the time-evolution of the spreading distance for an experiment performed with Solution A3. For each experiment, we
define the critical spreading Sexp

c as the spreading distance for which the data points depart from the linear start. Note
that spreading distances larger than Sexp

c are difficult to measure accurately since the rims of the PB perturbation
are no longer well-defined fronts. This results in the increasing noise that can be seen in Fig. 6a.
Let’s assume that the slower mechanism imposes its dynamics to the system, the transition between the two regimes

then occurs when their spreading velocities are similar. The imbibition velocity in the capillary-inertial regime scales
as c0 =

√

γ/ρRi (Eq. 2 ). Its counterpart cη(t) = 1
2dS(t)/dt = D/4S(t) in the viscous regime scales as γr/ηS(t).

Equating the two yields the following scaling for the critical spreading Sc:

Sc ∝
r

Oh
, (4)

where Oh is the Ohnesorge number introduced in Section III B. Comparison with experiments is displayed in Fig. 6b.
A good agreement is observed, with a prefactor close to 1/2. Note that the range of comparison is restricted due
to experimental constraints. We cannot measure values of Sc smaller than about one droplet diameter, which is the
approximate distance for the imbibition process to become discernible. We were not able to reach large values of Sc
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FIG. 6. a) Time evolution of the spreading distance S(t) measured for an experiment performed with Solution A3, Ri = 0.7
mm and r = 1.2 mm. The thin black lines underline the two consecutive regimes. The critical spreading distance Sexp

c at the
transition is determined from the experimental curve. b) Critical spreading distance determined experimentally as a function
of the ratio r/Oh. The dashed straight line has a slope 1/2.

neither; this would require a large initial radius of curvature of the PB, and thus a large liquid reservoir to sustain
the inertial regime (let’s recall that the upstream radius of curvature of the PB is about twice the downstream radius
of curvature) over a distance large enough to be measured. We did not succeed in making coalesce droplets with the
PB that were large enough to meet this condition.
The existence of a critical spreading distance related to a transition between the inertial and the viscous regimes,

as well as its scaling, refine and amend the criterion given in Cohen et al. [16]. Let’s recall that a constant value
of Oh, approximately equal to 0.05, had been considered to be a limit above which the dynamics was dominated by
viscosity and under which the capillary inertial regime was observed, for all values of r and Ri. However, because
our purpose was a careful study of the newly observed inertial regime, we considered its occurrence as certain when
the capillary jump had been observed over a distance large enough, typically larger than 5r, from the center of the
coalescing droplet. This resulted in a biased criterion, which deduces from the one given above by assigning the value
of the critical spreading to 10r (twice the arbitrary value that we had chosen for the distance traveled by the jump
on one side of the droplet).
A phenomenological criterion to transiently observe the inertial regime in liquid foams can be inferred from what

precedes. We may reasonably assume that capillary jumps become discernible from the liquid perturbation that
emitted them once the distance they have travelled is larger than about the size of the initial liquid perturbation.
Therefore, a minimal condition to detect the inertial regime before the viscous regime takes place, is that the critical
spreading is larger than the liquid perturbation size (Sc > 2r). This defines a critical radius of curvature of the Plateau

borders for the liquid foam: Rc
i ∝ 4η2

γρ
. For an ideal foam obeying the Kelvin structure, the radius of curvature of

the PBs is related to the bubble radius, Rb, and the liquid fraction, φl: R ∝ Rb

»

φl

0.33 . These two expressions yields

a critical bubble size, of the order of the micrometer for usual aqueous surfactant solutions and dry foams (η = 1
mPa.s, ρ = 1000 kg.m−3, γ = 30 mN.m−1, φl = 0.01), above which capillary jumps shoud be observed, at least for a
short time, when liquid inhomogeneities occur within a liquid foam.

IV. OTHER FEATURES

A. Flow through a vertex in the inertial regime: influence of the bulk viscosity

Dissipation in the PB greatly differs according to the flow regime. In particular, shear occurs all over the PB
perturbation in the viscous regime; in contrast shear is localized in the narrow zone of the capillary hydraulic jump
in the inertial regime, which leads to the faint dissipation evidenced by the independence of the dynamics on the
bulk viscosity (see Section III C 1). Let’s turn now to what happens at the vertices in the inertial regime. When a
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FIG. 8. Characterization of the swelling of the vertex for Solutions A1 (blue squares) and A3 (gold triangles), which differ by
a factor 9 in viscosity. a) Maximum increase in size of the vertex, Rv

max −Ri , as a function of its initial size Ri. Insert: same
data in logarithmic scales. The straight thick line has a slope -1. b) Swelling rate of the vertex, V , as a function of its initial
size Ri . Insert: same data in logarithmic scales. The straight thick line has a slope -1.

hydraulic jump reaches a vertex, a much more complicated flow might result from the 3D geometry and dissipation
might be affected. To get some insight on this issue, we performed experiments using the same experimental set-up
and procedure as before, this time focusing the fast camera on the right-hand side vertex. In order to probe the
influence of the bulk viscosity, we used the Solutions A1 and A3, A3 being the most viscous TTAB/glycerol solution
leading to the inertial regime; their viscosities are 1.0 and 9.2 mPa.s, respectively; their surface tension and density
do not differ significantly. The initial radius of curvature of the PB was varied over one decade. Droplets of large and
approximately the same volume were dropped on the PB in order to ensure a large pressure reservoir that supplies
the vertex with liquid in an enough durable and steady way to make the analysis possible. Fig. 7a shows snapshots
taken after the droplet has coalesced with the PB, when the perturbed part of the PB reaches the vertex and proceeds
through it. Once the capillary hydraulic jump has hit it, the vertex swells, and three secondary jumps are created and
propagate along the three PBs starting from the vertex; the growth of the vertex eventually saturates; as the liquid
reservoir empties, the vertex progressively goes back to its initial size. To quantify the swelling of the vertex observed
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during this process, we measure the radius, a(t), of the circle inscribed in the vertex (see Fig. 7a) as a function of
time. For comparison with the PB, we define the size of the vertex Rv as the quantity proportional to a that satisfies
the relation Rv(t = −∞) = Ri. Note that, due to Laplace’s law, the geometry of the vertex consists of four portions
of spheres having the same radius of curvature at equilibrium and a factor 2 exists between the radius of curvature
of the PB (or, equivalently, the size of the vertex Rv) and the radius of curvature of the portions of spheres that
compose the vertex interface. A typical measurement is displayed in Fig. 7b: Rv increases from its initial value Ri to
a constant value Rv

max, at a roughly constant rate V , of the order of 10−2 m.s−1. Deflation is much slower. A linear
adjustment gives rates about 10−3 m.s−1 (data not shown).
The increase in size of the vertex, Rv

max − Ri, and the swelling rate V are plotted as a function of the initial
radius of curvature Ri in Fig. 8a and b respectively, for two sets of experiments performed with Solutions A1 and
A3. Both quantities decrease when Ri increases, and the data are compatible with 1/Ri laws. Remarkably, the two
sets of experimental data superimpose on these plots: the solution viscosity appears not to be relevant. Imposing
the exponents of the power laws to be -1, the best fits give Rv

max − Ri = (0.9 ± 0.1).10−7R−1.0
i and Rv

max − Ri =

(1.4 ± 0.1).10−7R−1.0
i , and V = (5.2 ± 0.5).10−6R−1.0

i and V = (5.8 ± 0.6).10−6R−1.0
i , for Solutions A1 and A3,

respectively (lengths and times are given in meters and seconds). At longer times, the liquid reservoir empties and the
whole system slowly drains back to its initial state. Again, no dependence on the solution viscosity could be detected
during the shrinkage of the vertex (data not shown) in the range of parameters we investigated. We did not proceed
further in the study of the deflation dynamics, which is partially ruled by gravitational drainage, and is certainly
affected by finite size effects as the secondary jumps reach the frame within a few tens of milliseconds.
The characterization of the growth of the vertex gives some insights on its internal flow dynamics. While the

viscosity ratio between the two solutions is equal to 9, the ratio of the interpolations of the measured velocity is only
1.1, and the ratio of the interpolations of the measured variation in size, Rv

max − Ri, is about 1.6. This shows that
the viscosity does not play any significant role on the vertex dynamics and suggests that when the BP imbibition
is inertial, the flow inside the vertex is inertial as well. However, the narrow range of parameters we have access to
makes an extensive experimental study of the flow through a vertex very difficult.
The above results prompt two remarks. First, the exponents of the interpolations are difficult to retrieve within

the framework of a dimensional analysis. Even though, this would be very difficult to test experimentally since, as
already mentioned, we are not able to significantly vary the other parameters: density, surface tension, droplet size.
The droplet size could not be varied over one decade without qualitatively changing the behavior observed, mainly
because the droplet empties before the vertex has significantly grown. The second remark deals with the origin of
dissipation in liquid foams. In the context of the drainage equation, it is now widely accepted that dissipation occurs
mainly within the vertices when dealing with stress-free interfaces [7, 12], since one expects plug flows in the PBs and
the shear zones to be located within the vertices. Our results question this conjecture as they show no evidence that
the vertex prevails on the PB. This holds for the particular configuration we study, however this could also hold for
liquid foams whose liquid fraction is not homogeneous, for instance in the zone of transition between the dry and the
swollen regions observed in macroscopic drainage studies.

B. Drainage through the bottom film

In some cases, some of the liquid brought by the coalescing droplet flows through the vertical bottom film (see
Fig. 1) instead of being evacuated within the PB. Fig. 9 illustrates this behavior for Solutions A1 and A6. A blob of
liquid is observed to stretch downwards before eventually flowing, which is emphasized by the presence of a wake. A
flow diagram is displayed in Fig. 10a, which reports the occurrence of the film drainage. Note that this occurrence is
independent of the flow regime, inertial or viscous, inside the PB.
Within our parameters range, the drainage through the bottom film occurs for coalescing droplets having a radius

larger than approximately 1 mm, independently of the surfactant solution properties, as well as of the radius of
curvature of the PB. This length is comparable to the capillary length. This suggests that gravity needs to be taken

into account ,which can be done by introducing the Bond number, Bo = ρgr2

γ
. Fig. 10 b shows a transition for a value

of Bo about 0.36.

C. Influence of the surface mobility of the surfactant solutions

Solution B was used to investigate effects of the surface mobility. This surfactant solution has the same low bulk
viscosity and a surface viscosity significantly higher (by a factor 14) than Solution A1. Let’s recall that we always
observed the inertial regime with Solution A1.
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FIG. 9. Sequences of images that illustrate the film drainage for the low viscosity surfactant Solution A1 (top) and for Solution
A6 thirty times more viscous than A1 (bottom).
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The coalescence stage did not show any qualitative difference between Solution B and Solution A1. The data points
in Figs. 2c and d follow the same trends as the ones obtained with the low surface viscosity solutions and the slight
variation observed cannot be ascribed to the difference in surface mobility.

In contrast, the liquid redistribution stage differs strongly, as can be seen by comparing the time-evolutions reported
in Figs. 3a and c. In the low surface mobility limit, the dynamics is characterized by the presence of a spatially extended
front; the imbibition velocity, c∗, which was computed as before (see Sec. III C 3) as half of the time derivative of the
spreading distance, is found to be constant, at least during the early stage of the liquid redistribution. We did not
observe any correlation between the imbibition velocity and the droplet radius (insert of Fig. 11a), however Fig. 11a
shows a clear dependency of c∗ on the initial radius of curvature of the PB, Ri, as it is the case for the capillary
inertial regime except that the opposite trend is obtained here, the larger the PB initial radius of curvature Ri, the
higher the imbibition velocity c∗. Both quantities are roughly proportional, and a linear interpolation leads to c∗

(m/s) = (156 ± 20) Ri (m). This leads to Reynolds numbers larger than a few tens.

These results call for a comparison with the imbibition dynamics reported by Piroird and Lorenceau [21] for the
suction of oil droplets by a single PB. Even though the setup geometries are analogous and the experiments performed
with two similar surfactant solutions, both in the low surface mobility limit, distinct results and trends are obtained.
In particular, the dynamics of the oil droplet imbibition is faster as Ri decreases in contrast with our case (Figure 11).
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However, the mechanisms at play are expected to differ fundamentally between the two physical systems. Let’s recall
that Piroird and Lorenceau use silicon oils. First, these liquids are immiscible with the aqueous surfactant solution
and the droplet creates an additional interface that alters the shape of the PB cross-section and thus the capillary
pressure. Second, the silicon oils are much more viscous than the surfactant solution. Indeed Piroird and Lorenceau
show that the elongation of an oil droplet inside a PB is a viscous process. In our case, the Reynolds numbers suggest
that the flow might be inertia-dominated.
Another specific feature of the liquid redistribution for Solution B is noticeable on the last snapshot of Fig. 3c.

For not too small droplets, namely droplets whose radius is larger than the radius of curvature of the PB, part of
the liquid transfers during the coalescence process to the three films that hold the PB, and remains trapped there
while only the remainder flows into the PB. Moreover, we hardly ever observed drainage through the bottom film (see
Section IVB), even for the biggest droplets; consequently the criterion given above in the high surface mobility limit
does not hold in the low surface mobility limit.
The surface viscosity of the surfactant solutions accounts for the interfacial stresses that oppose the interface

dilatation and shear. This characteristic is expected to significantly influence the dynamics of the interface as the PB
deforms and the holding films open, but also the dynamics of the bulk flow inside the PB, which strongly depends on
the boundary conditions imposed at the interface [4]. Investigating the various effects of the surfactant mobility at the
interfaces and rationalizing the experimental results would require to vary the surface characteristics of the surfactant
solutions more systematically, which may be possible by playing on the physical chemistry of the surfactants; however,
this is out of the scope of the present study.

V. CONCLUSION

We have designed a local scale experiment to study transient flows in liquid foams. This drop-injected experiment
has yielded the following main results. First, we have shown that the coalescence of a droplet with a single Plateau
border is inertia-dominated and its dynamics is similar to the dynamics of coalescence of a droplet with a liquid bath.
Second, the imbibition process proves to be dominated either by inertia or viscosity; in the first case, its dynamics
is controlled by the surface tension and the density of the surfactant solution, and the radius of curvature of the
PB, whereas the relevant parameters in the second case are the surface tension and the viscosity of the surfactant
solution, and the radius of the coalescing droplet. The liquid redistribution may actually switch from the capillary
inertial regime to the viscous one in the course of an experiment. We propose to rationalize this transition assuming
a velocity-limiting mechanism.
We have shown that the interfacial rheology plays a major role on the regime that is inertia-dominated in the high
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surface mobility limit. This issue would need to be further investigated.
In the future, occurrence of the inertia-dominated regime triggered by capillary suction needs to be investigated

at the foam scale. Microgravity experiments might be an option [14, 15]; a close look at the front zone in drainage
experiments [22, 23] could also disclose evidences of the capillary inertial regime.
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