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Abstract. — The aim of this article is to study some asymptotics of a natural model
of random ramified coverings on the disk of degree N . We prove that the monodromy
field, called also the holonomy field, converges in probability to a non-random continuous
field as N goes to infinity. In order to do so, we use the fact that the monodromy field of
random uniform labelled simple ramified coverings on the disk of degree N has the same
law as the S(N)-Yang-Mills measure associated with the random walk by transpositions
on S(N).

This allows us to restrict our study to random walks on S(N): we prove theorems
about asymptotics of random walks on S(N) in a new framework based on the geometric
study of partitions and the Schur-Weyl-Jones’s dualities. In particular, given a sequence
of conjugacy classes (λN ⊂ S(N))N∈N, we define a notion of convergence for (λN)N∈N

which implies the convergence in non-commutative distribution and in P-distribution of
the λN -random walk to a multiplicative P-Lévy process. This limiting process is shown
not to be a free multiplicative Lévy process and we compute its log-cumulant transform.
We give also a criterion on (λN)N∈N in order to know if the limit is random or not.

1. Intoduction

Yang-Mills theory was introduced by Yang and Mills, in 1954, in [25] as a theory of
random connections on a principal bundle with gauge symmetry. In two dimensions, it
has been defined by mathematicians ([1], [3], [2], [11], [12], [16], [17], [18], [20], [23],
[24]) and it has become well understood that it was a theory of random multiplicative
functions from the set of paths of a two dimentional surface to a compact group G. In
[13], the author proved that an axiomatic formulation of planar Yang-Mills measures,
similar to the axioms for Lévy processes, could be set: this allowed to prove a correspon-
dence between Yang-Mills measures and a set of Lévy processes on G. In the following,
by Yang-Mills measure, we consider the one given by choosing a Brownian motion on G.

When the structure group G is a discrete group, T. Lévy proved in [20] that the
Yang-Mills measure could be seen as the random monodromy field of a random ramified
G-bundle. Since ramified S(N)-bundles are in bijection with ramified coverings with
N sheets, one recovers the link explained by A. D’Adda and P. Provero in [9] and [10]
between S(N)-Yang-Mills measure and random branched S(N) coverings. It has to be
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noticed that this link is different from the U(N)-Yang-Mills measure/ramified coverings
partly explained in [19] and also known as the Yang-Mills/String duality. The theory of
random ramified coverings has also some interesting and challenging links with quantum
gravity [26].

In this article, we study the asymptotic of the theory of random ramified coverings
coming from the S(N)-Yang-Mills measure as N goes to infinity: we construct the
S(∞)-master field. The rigorous study of the asymptotics of Yang-Mills measures driven
by the Brownian motion on the unitary group begun with M. Anshelevich and A.N.
Sengupta in [4] where the convergence was proved for a weak Yang-Mills measure and
T. Lévy in [21] where asymptotics and Makeenko-Migdal equations were proved for the
full Yang-Mills measure. In this last article, the unitary, orthogonal and sympleptic
groups were considered. The convergence of the Yang-Mills measure driven by the
different Brownian motions, as the dimension of the group goes to infinity, was proved
by using estimates for the speed of convergence in non-commutative distribution of
arbitrary words in independent Brownian motions. In the article [8], the author and
his co-authors show how to prove asymptotics of Yang-Mills measures driven by Lévy
processes on the unitary and orthogonal groups without using any estimates for the
speed of convergence: the asymptotic of Yang-Mills measures is a consequence of the
convergence in non-commutative distribution of the Lévy processes considered and a
kind of two-dimensional Kolmogorov’s continuity theorem proved by T. Lévy in [20].

Using similar arguments, we prove convergence of Yang-Mills measures driven by
random walks on the symmetric groups by proving the convergence in non-commutative
distribution of some continuous-time random walks on the symmetric groups. For sake of
simplicity, for any integer N , we only consider random walks which jump by an element
which is drawn uniformly from a conjugacy class λN of S(N). If the conjugacy class
λN converges in some sense, then the random walks will converge in non-commutative
distribution. In particular, the eigenvalue distribution will converge as N goes to infinity.
When λN is the set of transpositions, this result was shown using representation theory
[5]. Besides, it seems possible that some of these results could be deduced from the proofs
of articles like [6], [7] where the distance from the identity was proved to converge. The
study of some asymptotics linked with random walks was also one of the concern of
the article [22]. In these last articles, the heuristic idea was to consider the symmetric
group as a “Lie group” whose “Lie algebra” would be in some sense Z[C] where C =
∪∞
k=2

(

[|1, N |]k/ ∼
)

where (i1, ..., ik) ∼ (j1, ..., jk) if the second one is obtained by a cyclic
permutation of the first one. In this picture, the exponential of c ∈ C would just be
the permutation which has c as a single non-trivial cycle. The interesting fact about
this is that, one can link easily the Brownian motion on the “Lie algebra” which drives
the Brownian motion on the symmetric group (the random walk by transposition) with
some Erdös-Renyi random graph process. Using the natural coupling between the two
processes, one can then transfer results from Erdös-Renyi random graph processes to
the study of random walks on the symmetric graph.

In this article, we use a generalization of the non-commutative probability ideas,
constructed in [14] and [15], in order to prove asymptotics and phase transitions for the
random walks on the symmetric group without using the coupling with the Erdös-Renyi
random graph processes. This allows us to show that asymptotics of random walks on the
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symmetric groups can be studied with the same tools than the one used for the study of
multiplicative unitary Lévy processes (Section 7 of [15]). This method is a generalization
of the method used by T. Lévy in [19] or [21] in order to study the large N asymptotics
of the Brownian motions on U(N), O(N) and Sp(N). In particular, we do not use any
theory of representations, as opposed to [5] where some results were given for the random
walk by transpositions. We prove results in a more general setting, in particular we do
not ask that the elements of λN have bounded support as N goes to infinity. This allows
us to show that there exist two behaviors for the eigenvalue distribution: if the size of the
support is o(N) then it converges in probability to a non random probability measure
we are able to compute explicitely, and if the support is growing like αN , the eigenvalue
distribution converges in law to a random measure. As an application of asymptotic
P-freeness of independent matrices which are invariant by the symmetric group, we get
that the whole random walk converges in distribution in non-commutative distribution
to a process whose increments are not free but P-free. This gives the first non-trivial
example of multiplicative P-Lévy process whose log-cumulant transform is computed.

1.1. Layout. — The results we present in this article are based on the study of the
asymptotic of random walks on the symmetric group (Section 2). In Section 2.1, we give
a summary of some definitions and results proved in [14] and [15]. The theorems about
convergence of random walks on the symmetric group S(N) are presented in Section
2.2. After some preliminary results explained in Section 2.3, we give the proofs of these
theorems in Section 2.4. The log-cumulant transform for the limit of random walks on
the symmetric group is computed in Section 2.5.

A short presentation of Yang-Mills measure with S(N)-gauge group is explained in
Section 3. In the same section, we prove that the Wilson loops in S(N)-Yang-Mills
measure converge in probability as N goes to infinity to a non-random field: the S(∞)-
master field.

Based on the results of T. Lévy in [20], we explain in Section 4 how to link the study
of random coverings of the disk and the study of S(N)-Yang-Mills measure. This allows
us to prove that the monodromy field of a model of random simple ramified labelled
coverings of the unit disk with N sheets converges in probability to the S(∞)-master
field. In Section 5, we explain how to compute the S(∞)-master field by giving an
example.

2. Convergence of random walks on S(N)

2.1. A brief reminder. — We review briefly the definitions and results, proved in
[14] and [15], that we will need later. In these articles, we study the asymptotics of

random matrices when the size of these matrices goes to infinity. Let L∞− ⊗M(C) be
the set of sequences of random matrices (MN )N∈N such that MN is a N × N random
matrice whose entries have order of any moments. For any family of elements (ai)i∈I in

L∞− ⊗M(C), the algebra generated by (ai)i∈I is simply:

A ((ai)i∈I) = {P (ai1 , ..., aik)|(i1, ..., ik) ∈ I, P ∈ C{X1, ...,Xk}, k ∈ N},(1)

where C{X1, ...,Xk} is the algebra of non-commutative polynomials.
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Figure 1. The partition {{1′, 2′}, {1, 2, 3′, 5}, {3}, {4′, 4}, {5′}}.

Let M be in L∞− ⊗ M(C). We will suppose from now on that any element M of

L∞− ⊗ M(C) we consider is invariant in law by conjugation by the symmetric group.
This means that for any integer N , for any σ ∈ S(N), viewed as a N × N matrice,
σMNσ

−1 has the same law as MN . In order to study the asymptotic of M , let us define
the partition observables.

Let k be a positive integer, Pk is the set of partitions of {1, ..., k, 1′ , ..., k′}. There
exists a graphical notation for partitions as illustrated in Figure 1. Let p ∈ Pk, let us
consider k vertices in a top row, labelled from 1 to k from left to right and k vertices in
a bottom row, labelled from 1′ to k′ from left to right. Any edge between two vertices
means that the labels of the two vertices are in the same block of the partition p. Using
this graphical point of view, the set of permutations of k elements, namely Sk, is a
subset of Pk: if σ is a permutation, we associate the partition {{i, σ(i)′}|i ∈ {1, ..., k}}.

Let p and p′ be two partitions in Pk. The set Pk has some nice structures that we are
going to explain:

1. Transposition: The partition tp is obtained by flipping along an horizontal line
a diagram representing p.

2. Order p′ is coarser that p, denoted p E p′, if any block of p is included in a block
of p′.

3. Supremum: p ∨ p′ is obtained by putting a diagram representing p′ over one
representing p.

4. Multiplication: p ◦ p′ is obtained by putting a diagram representing p′ above
one representing p, identifying the lower vertices of p′ with the upper vertices of p,
erasing the vertices in the middle row, keeping the edges obtained by concatenation
of edges passing through the deleted vertices. It has the nice following property:
if p ◦ p′ ∈ Sk then p and p′ are in Sk. Doing so, we remove a certain number of
connected components, number which is denoted by κ(p, p′).

5. A family of multiplications: C[Pk(N)] is the algebra such that pp′ = Nκ(p,p′)p◦
p′.

6. Neutral element: The partition idk = {{i, i′}|i ∈ {1, ..., k}} is a neutral element
for the multiplication. Often we will denote it by id when there can not be any
confusion.

7. Height function: nc(p) is the number of blocks of p.
8. Cycle: A cycle is a block of p ∨ id: nc(p ∨ id) is the number cycles of p. A

partition p is irreducible if nc(p ∨ id) = 1.
9. Representation: There exists an important representation of C[Pk(N)] on
(

C
N
)⊗k

. Let (ei)
N
i=1 be the canonical basis of C

N and let Ej
i be the matrix

which sends ej on ei and any other element of the canonical basis on 0. For any

I = (i1, ..., ik , i1′ , ..., ik′) ∈ {1, ..., N}2k , we define Ker(I) the partition such that two
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elements a and b of {1, ..., k, 1′ , ..., k′} is in a block of Ker(I) if and only if ia = ib.
We define:

ρN (p) =
∑

I=(i1,...,ik,i1′ ,...,ik′)∈{1,...,N}2k|pEKer(I)

Ei1
i1′

⊗ ...⊗ Eik
ik′
.

The application ρN is a representation of C[Pk(N)]. We will also define:

ρN (pc) =
∑

I=(i1,...,ik,i1′ ,...,ik′)∈{1,...,N}2k|p=Ker(I)

Ei1
i1′

⊗ ...⊗ Eik
ik′
.

10. Tensor product: The partition p ⊗ p′ ∈ P2k is obtained by putting a diagram
representing p′ on the right of a diagram representing p. It satisfies the identity
ρN (p ⊗ p′) = ρN (p)⊗ ρN (p′).

11. Extraction: The extraction of p to a symmetric subset I of {1, ..., k, 1′ , ..., k′} is
obtained by erasing the vertices which are not in I and relabelling the remaining
vertices (definition given at the beginning of Section 3.1.2 of [14]).

In [14], we defined a distance (Definition 2.2 of [14]) and a geodesic order on Pk

(Definition 2.4 of [14]). For any partitions p and p′ in Pk, the distance between p and
p′ is:

d(p, p′) =
nc(p) + nc(p′)

2
− nc(p ∨ p′).

We wrote that p ≤ p′ if d(id, p) + d(p, p′) = d(id, p′): this defines an order on Pk. The
set {p|p ≤ p′} is denoted by [id, p′]Pk

.
Using the set Pk, we defined some observables. Let N be a positive integer and let

p ∈ Pk, the random p-moment of MN is given by:

mp(MN ) =
1

Nnc(p∨id)
Tr
(

M⊗k
N ρN (tp)

)

,(2)

and the p-moment of MN is given by Emp(MN ) = E [mp(MN )] . The random p-exclusive
moment and the p-exclusive moment of MN are given by the same formulas, except that
one has to replace p with pc.

Using the Schur-Weyl-Jones duality, E
[

M⊗k
N

]

belongs to Vect {ρN (p)|p ∈ Pk} and if

N is bigger than 2k, {ρN (p)|p ∈ Pk} is a basis. We will always suppose from now on that
this condition on N and k is always satisfied. In [15], we defined the finite dimensional
P-cumulants (Eκp(MN ))

p∈Pk
by the formula:

E

[

M⊗k
N

]

=
∑

p∈Pk

Eκp(MN )

Nnc(p)−nc(p∨id)
ρN (p).(3)

For any M1, ...,Mk in L∞− ⊗ M(C), one can generalize these definitions in or-
der to define for any p the observables mp(M1,N , ...,Mk,N ), Emp(M1,N , ...,Mk,N ),
mpc(M1,N , ...,Mk,N ), Empc(M1,N , ...,Mk,N ) and Eκp(M1,N , ...,Mk,N ): one has to re-

place M⊗k
N by M1,N ⊗ ... ⊗Mk,N . Let us state a consequence of Theorems 3.2 and 4.2

of [15].

Theorem 2.1. — The three following convergences as N goes to infinity are equivalent:

1. convergence of (Eκp(MN ))
p∈Pk

,
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2. convergence of (Emp(MN ))
p∈Pk

,

3. convergence of (Empc(MN ))
p∈Pk

.

If for any integer k, one of these convergences holds, we say that M converges in P-
distribution. Let us suppose it is the case: for any integer k, for any p ∈ Pk:

lim
N→∞

Emp(MN ) =
∑

p′∈[id,p]Pk

lim
N→N

Eκp′(MN ),

lim
N→∞

Emp(MN ) =
∑

p′∈Pk|pEp′,nc(p∨id)=nc(p′∨id)

lim
N→∞

Emp′c(MN ),

and for any σ ∈ Sk:

lim
N→∞

Emσc(MN ) = lim
N→∞

Eκσ(MN ).

The same results hold for a family of elements of L∞− ⊗M(C). From now on, when
in an observable or in a coordinate number we do not put the index N , it means that we
take the limit as N goes to infinity. For example, Emp(M) stands for limN→∞ Emp(MN ).
Let us suppose that M converges in P-distribution. We associate the R-transform of
M which is the element R[M ] ∈ (

⊕∞
k=0C[Pk])

∗ such that for any k, any p ∈ Pk,
(R[M ]) (p) = Eκp(M).

We say that M satisfies the asymptotic P-factorization if for any positive integers k
and k′, any p1 ∈ Pk and p2 ∈ Pk′ ,

Emp1⊗p2(M) = Emp1(M)Emp2(M).

Let us state an easy version of Theorem 3.1 of [15].

Theorem 2.2. — Let us suppose that (Mi)i∈I ∈ L∞− ⊗ M(R) converges in P-
distribution and satisfies the asymptotic P-factorization property then the P-moments
of (Mi)i∈I converge in probability: for any integer k, any i1, ..., ik in I, any p ∈ Pk,
mp(Mi1,N , ...,Mik ,N ) converges in probability to Emp(Mi1 , ...,Mik ).

In particular, ifM is an orthogonal element, which means that for any positive integer
N , MN is orthogonal, then the eigenvalue distribution of MN is on the unit circle U. If
M converges in P-distribution, the mean eigenvalue distribution converges to a measure
µ (Theorem 1.1 of [15]) and if M satisfies the asymptotic P-factorization property, the
eigenvalue distribution converges in probability to µ.

Let M and L be elements of L∞− ⊗ M(C) which converge in P-distribution. The
notion of P-freeness is defined as a condition of vanishing of mixed cumulants and a
factorization property for compatible cumulants. The elements M and L are P-free if
the two following conditions hold:

– for any integer k, any p ∈ Pk, any (B1, ..., Bk) ∈ {M,L}k, Eκp(B1, ..., Bk) = 0 if
there exists i and j in {1, ..., k} in the same cycle of p such that Bi 6= Bj

– for any integers k and k′, any p ∈ Pk, any p
′ ∈ Pk′ , Eκp⊗p′(M, ...,M,L, ..., L) is

equal to Eκp(M, ...,M)Eκp′ (L, ..., L).

In [15], we proved the following theorem. We recall that we always suppose that the
random matrices are invariant in law by conjugation by the symmetric group.
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Theorem 2.3. — If for any positive integer N , MN and LN are independent then they
are P-free.

The notion of P-freeness differs from the notion of freeness in the sense of Voiculescu.
In particular, we gave a condition, in Theorem 3.7 of [15], in order to prove that two
P-free elements are not free. Let us denote by 02 the partition {{1, 2, 1′ , 2′}}.

Lemma 2.1. — Let us suppose that M and L are P-free, satisfy the asymptotic P-
factorization and that

Eκ02 [M ]Eκ02 [L] 6= 0,

then M and L are not free.

In [15], we proved a general theorem about the convergence of matricial Lévy processes
in P-distribution. We will explain a consequence which is needed in this article. Let
us consider for any N , (XN

t )t≥0 a multiplicative real-matricial Lévy process which is
invariant in law by conjugation by S(N). Let us denote, for any positive integers k
and N :

GN
k =

d

dt |t=0
E

[

(

XN
t

)⊗k
]

.

The endormorphism GN
k is also in Vect {ρN (p)|p ∈ Pk} and we can define the coordinate

numbers of GN
k , κp(G

N
k ) by the same formula as Equation (3). We can also define

the moments of GN
k , mp(G

N
k ), by the same formula as Equation (2), and the exclusive

moments of GN
k , mpc(G

N
k ) by replacing p by pc. We say that the sequence (GN

k )N∈N

converges if and only if its coordinate numbers converge. This is equivalent to say that
the P-moments or the P-exclusive moments of (GN

k )N∈N converge. If for any positive
integers k and l, for any partitions p and p′ respectively in Pk and Pl,

lim
N→∞

mp⊗p′(G
N
k+l) = lim

N→∞
mp(G

N
k ) + lim

N→∞
mp′(G

N
l ),

we say that (GN
k )k,N condensates weakly. Recall the notion of multiplicative P-Lévy

process defined in Definition 2.9 of [15]. Let us state a direct consequence of Theorem
6.1 and Remark 6.2 of [15].

Theorem 2.4. — Let us suppose that for any positive integer k, (GN
k )N>0 converges.

The process (XN
t )t≥0 converges in P-distribution toward the P-distribution of a P-Lévy

process. For any p ∈ Pk, for any t0 ≥ 0,

d

dt |t=t0
Eκp(Xt) =

∑

p1∈Pk,p2∈Pk |p1◦p2=p,p1≺p

κp(Gk)Eκp2(Xt0).

Besides, the process (XN
t )t≥0 satisfies the asymptotic P-factorization if and only if

(GN
k )k,N weakly condensates. If so, it converges in probability in P-distribution.

We will not explain the definition of the notation p1 ≺ p: the only important fact to
know for this article is Lemma 3.6 of [14] which states that for any σ ∈ Sk:

{p′ ∈ Pk|p′ ≺ σ} = [id, σ]Pk
∩Sk.
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2.2. General theorems of convergence. — In this section, we state the general
theorems about convergence of random walks on the symmetric group that we are going
to prove in this article. The proofs will be given in Section 2.4.

Let N be a positive integer, let us consider λN a conjugacy class of S(N), the sym-
metric group on N elements. We denote by #λN the size of the conjugacy class λN .
Let σ be in λN and let i be in {1, ..., N}. For any k ∈ {1, ..., N}, the period of k in σ is
the smallest positive integer n such that σn(k) = k. We denote by λN (i) the number of
elements in {1, ..., N} which period in σ is equal to i: this number does not depend on
the choice of σ. Thus, we can see λN as a way to decompose the integer N : λN can be
coded by the sequence (λN (i))∞i=1 which satisfies

∑∞
i=1 λN (i) = N.

Definition 2.1. — We define the λN -random walk on S(N), denoted by
(

SN
t

)

t≥0
, as

the Markov process on S(N) such that SN
0 = idN and whose generator is given by:

∀f ∈ R
S(N),∀σ0 ∈ S(N),HNf(σ0) =

N

λN (1c)

1

#λN

∑

σ∈λN

[

f(σσ0)− f(σ0)
]

,

where we used the following notation:

λN (1c) = N − λN (1).

This random walk is invariant in law by conjugation by S(N).

Lemma 2.2. — Let σ be in S(N), let
(

SN
t

)

t≥0
be a λN -random walk on S(N). We

have the equality in law:
(

σSN
t σ

−1
)

t≥0
=
(

SN
t

)

t≥0
.

Proof. — It is a consequence of the fact that the generator of
(

SN
t

)

t≥0
is invariant by

conjugation by S(N).

Let us consider a sequence (λN )N∈N∗ such that, for any positive integer N , λN is a
conjugacy class of S(N).

Definition 2.2. — The sequence (λN )N∈N converges if and only if there exists:

(λ(i))i≥2 ∈
{

(ai)i∈N\{0,1} |∀i ≥ 2, ai ≥ 0,

∞
∑

i=2

ai ≤ 1

}

such that for any integer i ≥ 2:

λN (i)

λN (1c)
−→
N→∞

λ(i),

and there exists α ∈ [0, 1] such that:

λN (1)

N
−→
N→∞

1− α.

We will denote by λ(1) the value of 1−α. The sequence (λN )N∈N is evanescent if α = 0
and it is macroscopic if α > 0.

For any positive integer N , let us consider
(

SN
t

)

t≥0
a λN -random walk on S(N).

Recall the notion of exclusive moments Emσc . From now on, let us suppose that the
sequence (λN )N∈N converges.
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Theorem 2.5. — For any t ≥ 0, the mean eigenvalue distributions of
(

SN
t

)

N∈N
con-

verge as N goes to infinity to a probability measure µλt which has the form:

µλt =
∑

n∈N∗

n−1
∑

k=0

mnc(t)

n
δ
e
2ikπ
n

+m∞c(t)λU,

with m∞c(t) = 1−∑∞
k=0mnc(t) ≥ 0, mnc(t) ≥ 0 for any integer n and λU is the uniform

probability measure on the unit circle U.
We denote by [σ] the conjugacy class of σ which, as already noticed, can be seen as a

decomposition of N . Also, by convention, for any positive integer k:
((1−0)k−1)

0 = −k.
Let us consider the unique solution

(

(mσc(t))σ∈∪kSk

)

t≥0
of the system of differential

equations:
∀k ∈ N

∗, ∀σ0 ∈ Sk, ∀t0 ≥ 0:

d

dt |t=t0
mσc

0
(t)=

(

(1− α)k − 1
)

α
mσc

0
(t0)

+
∑

σ∈Sk\{id},σ≤σ0

αnc(σ∨id)−[σ](1)−1

(

k
∏

i=2

(λ(i))
[σ](i)

i

)

(1− α)[σ](1)m(tσσ0)c(t0),

with the initial conditions: ∀k ∈ N
∗,∀σ ∈ Sk,mσc(0) = δσ=id. Then for any positive

integer n, for any real t ≥ 0:

mnc(t) = m(1,...,n)c(t),

where (1, ..., n) ∈ Sn is a n-cycle. Besides for any integer k, any t ≥ 0 and any σ ∈ Sk:

mσc(t) = lim
N→∞

Emσc

[

SN
t

]

.

In fact, in the proof of Theorem 2.5, we will show that the eigenvalue distributions of
(

SN
t

)

N∈N
converge in law as N goes to infinity to a random measure: depending on the

behavior of (λN )N∈N, one can know if the limit is or is not random.

Theorem 2.6. — Let t be a positive real. The eigenvalue distribution µλN
t of SN

t con-
verges in law to a random measure on U, denoted by µλt . Two behaviors are possible:

1. if the sequence (λN )N∈N is evanescent then the limiting measure is a non-random
measure on U, µλt = µλt , and the convergence holds in probability. The family
(

SN
t

)

N∈N
satisfies the asymptotic P-factorization and thus it converges in proba-

bility in P-distribution,
2. if the sequence (λN )N∈N is macroscopic, then the limiting measure is not a non-

random measure on U and the family
(

SN
t

)

N∈N
does not satisfy the asymptotic

P-factorization.

When the sequence (λN )N∈N is evanescent, we can compute explicitly the measure µλt .
Given Theorem 2.5, we only need to compute its moments or mnc(t). In the following
theorem, we will use the same notations as in Theorem 2.5 and in Definition 2.2.
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Theorem 2.7. — Let us suppose that (λN )N∈N is evanescent. Let n be a positive integer
and let t ≥ 0. We have:

mnc(t) = e−nt
n−1
∑

k=0

tk
nk−1

k!

∑

(i1,...,ik)∈N∗,
∑k

j=1 ij=n−1

k
∏

j=1

λ(ij + 1).(4)

We used the usual conventions for the products and the sums, thus m1c(t) = e−t. As a
consequence, for any positive integer n, and any t ≥ 0:

mn(t) :=

∫

z∈U
zndµλt (z)=

∑

d|n

e−dt
d−1
∑

k=0

tk
dk−1

k!

∑

(i1,...,ik)∈N∗,
∑k

j=1 ij=d−1

k
∏

j=1

λ(ij + 1).

In particular, let us consider a positive integer k, let us suppose that λ(k) = 1 and for
any positive integer l 6= k, λ(l) = 0. This means that we are considering a random walk
which jumps by multiplication by a uniform k-cycle. Let t be a non-negative real. If
there does not exist any positive integer u such that n = u(k − 1) + 1, then mnc(t) = 0.
Besides, for any u ∈ N:

m(u(k−1)+1)c(t) = e−(u(k−1)+1)ttu
(u(k − 1) + 1)u−1

u!
.(5)

Theorems 2.5 and 2.6 can be extended to the whole process
(

SN
t

)

t≥0
.

Theorem 2.8. — The family
(

SN
t

)

t≥0
converges in P-distribution as N goes to infinity

toward the P-distribution of a multiplicative P-Lévy process. If (λN )N∈N is evanescent,
it is not a multiplicative free Lévy process: the multiplicative increments are not asymp-
totically free.

In Section 2.5, we will prove an other theorem, namely Theorem 2.11, which allows
us to compute the log-cumulants of the limiting multiplicative P-free Lévy process.

In the second part of the article, in order to construct the Yang-Mills S∞-field, we will
need the following result whose proof will not be given since it is an easy consequence of
Theorems 2.6 and 2.8, Lemma 2.2 of this article and Theorem 5.1 and 3.1 and Proposition
3.1 of [15].

Let n be a positive integer and for any positive integer N , let us consider

(S1,N
t )t≥0,...,(S

n,N
t )t≥0, n independent λN -random walks on S(N). Recall the Equation

(1) and the representation ρN defined in Section 2.1.

Theorem 2.9. — The family of random matrices

FN =
⋃

k∈{1,...,n}

(

(

Sk,N
t

)

t≥0
∪
(

(Sk,N
t )−1

)

t≥0

)

converges in P-distribution as N goes to infinity. Let us suppose that (λN )N∈N
is evanescent. The family FN satisfies the asymptotic P-factorization property:
FN converges in probability in P-distribution. Besides, for any i ∈ {1, ..., k},
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(

Si,N
t

)

t≥0
∪
(

(Si,N
t )−1

)

t≥0
is asymptotically P-free but not asymptotically free from

⋃

k∈{1,...,n}\{i}

(

(

Sk,N
t

)

t≥0
∪
(

(Sk,N
t )−1

)

t≥0

)

.

We will finish this section with some results about phase transition for these random
walks. Let us suppose for this discussion that (λN )N∈N is evanescent. In Theorem 2.5, we
saw that the measure µλt is the sum of an atomic part and m∞c(t) times the Lebesgue
measure on the unit circle. In fact there exists a real tλc ≥ 0 such that µλt is purely
atomic for t ≤ tλc and for any t > tc, µ

λ
t is a sum of a purely atomic and a multiple of

the Lebesgue measure. This critical time is the same critical as found by N. Berestycki
in [7] for the phase transition for the distance to the identity.

Theorem 2.10. — Let us suppose that (λN )N∈N is evanescent. The function which
sends t on m∞c(t) is continuous and converges to 1 as t goes to infinity. Besides, if we
define:

tλc = δ∑∞

j=2 λ(j)=1
1

∑∞
j=2(j − 1)λ(j)

,(6)

for any 0 ≤ t ≤ tλc , m∞c(t) = 0 and for any t > tλc , m∞c(t) > 0.

Using the theorems already explained, we get a generalization of Theorem 3 of [6],
Theorem 4 of [5]. We recommend the reader to have also a look at Theorem 3 of [7].

Corollary 2.1. — Let us suppose that (λN )N∈N converges and is evanescent. For any
positive integer N , let

(

SN
t

)

t≥0
be a λN -random walk on the symmetric group. For any

permutations σ and σ′ in S(N), let dS(N) (σ, σ
′) be the distance in S(N) between σ

and σ′ defined as N − nc (σ ∨ σ′). Then for any t ≥ 0, 1
N
dS(N)

(

idN , S
N
t

)

converges in
probability as N goes to infinity to the non-random continuous function:

dλ(t) = 1−
∞
∑

k=1

1

k
mkc(t),

where mkc(t) is given by Equation (4).

Using Equation (5), we recover Equation (5) of [7], yet this expression of dλ(t) for
general λ seems to be new. The function dλ(t) was studied in [7], when (λN (1c))N∈N

is constant and equal to a positive integer a: using tλc defined before, it was shown that
dλ(t) is C∞ on a subset of the form R

+ ⊂ I, with I a bounded interval of ]t0,∞[, for

any t < tλc , d
λ(t) = t

a
and

(

dλ
)′′ (

(tλc
)+

) = −∞. Using the Stirling’s formula, it is easy
to see that for the random walk which only jumps by multiplication by a k-cycle, the
set I is empty.

2.3. Preliminary results. — Before we prove the theorems of Section 2.2, we present
some preliminary results which are not stated in [15].
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2.3.1. Exclusive moments for permutation matrices. — Let k be a positive integer.

Definition 2.3. — Let I = {b1, ..., bs} be a partition of {1, ..., k}, let σ be an irreducible
permutation of {1, ..., s}, and let i0 ∈ {1, ..., k}. For any integer l ∈ {1, ..., s}, we denote
by b′l the set {j ∈ {1′, ..., k′},∃i ∈ bl, j = i′}. The partition:

p1 =
{

bl ∪ b′σ(l), l ∈ {1, ..., s}
}

is called the necklace associated with (I, σ), and the partition:

p2 =
{

bl ∪ b′σ(l), l ∈ {1, ..., s} \ {i0}
}

is called the chain associated with (I, σ, i0). The true-length of p1 and p2, denoted |p1|
and |p2|, is equal to s.

A partition p in Pk is a parure if for any cycle c of p the extraction of p on c, denoted
by pc, is either a chain or a necklace. The true-length of p is:

|p| =
∑

c cycle of p

|pc|.

Let N be a positive integer, let S be a permutation in S(N). For any positive integer
l, (1, ..., l) is the l-cycle in Sl. Recall that mpc is the normalized exclusive moment.

Proposition 2.1. — Let p be a partition in Pk. If p is not a parure then mpc (S) = 0.
If p is a necklace, then mpc (S) = m(1,...,|p|)c (S). If p is a chain, then:

mpc (S) = 1−
|p|
∑

l=1

m(1,...,l)c (S) .

Proof. — Let u and v two elements of {1, ..., k} which are in the same block of p. Then
u′ and v′ must be in the same block of p if one wants mpc(S) not to be equal to zero.
This is a consequence of the fact that for any i, j, l ∈ {1, ..., N},

Sj
i S

l
i = Sj

i δl=j and Si
jS

i
l = Si

jδl=j .(7)

The same result holds if one exchanges k and k′. Yet, if p is not a parure, these conditions
on the blocks of p are not satisfied, thus mpc (S) = 0.

The assertion about the exclusive moments when p is a necklace is a direct consequence
of Equations (7). Now, let us suppose that p is a chain. Using Equations (7), we get that
mpc (S) is the fraction of elements of {1, ..., N} which period in S is strictly greater than
|p|. Thus it is equal to one minus the fraction of elements of {1, ..., N} which period in
S is less than |p|. Since for any positive integer l, m(1,...,l)c (S) is the fraction of elements
of {1, ..., N} which period in S is equal to l, we get the following equality:

mpc (S) = 1−
|p|
∑

l=1

m(1,...,l)c(S),

which is the equality we had to prove.

When one considers permutation matrices, an interesting link occurs between mo-
ments and exclusive moments.
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Proposition 2.2. — For any positive integer k,

Tr
[

S⊗k ◦ ρN ((1, ..., k))
]

=
∑

d∈N∗,d|k

Tr
[

S⊗d ◦ ρN ((1, ..., d)c)
]

.

Proof. — This is due to the fact that for any positive integer k,

Tr
[

S⊗k ◦ ρN ((1, ..., k))
]

= Tr
(

Sk
)

is equal to the number of elements i ∈ {1, ..., N} whose period divides k and
Tr
[

S⊗d ◦ ρN ((1, ..., d)c)
]

is equal to the number of elements i ∈ {1, ..., N} whose
period is equal to d.

2.3.2. Criterion of non S-freeness. — Let us state some consequence of Lemma 2.1
when one considers random matrices whose entries are equal either to 0 or 1. Recall
that 02 is the partition {{1, 2, 1′, 2′}} in P2. Let us recall that when, in an observable or
in a coordinate number, we do not put the index N , it means that we take the limit as
N goes to infinity.

Lemma 2.3. — Let S = (SN )N∈N be an element of L∞−⊗M({0, 1}). Let us suppose
that S converges in P-distribution then:

Eκ02 [S] = Emid1 [S]− Emid2 [S].

If the asymptotic P-factorization property holds for S, then:

Eκ02 [S] = Emid1 [S] (1− Emid1 [S]) .

Proof. — Indeed, we have Eκ02 [S] = Em02 [S] − Emid2 [S]. Yet, for any integer N , SN
is a matrix of zeros and ones, thus for any positive integer N , Em02 [SN ] = Emid1 [SN ].
This implies that:

Eκ02 [S] = Emid1 [S]− Emid2 [S].

The second assertion is a direct consequence of the P-factorization property.

This calculation allows us to state the following criterion of non-freeness for {0, 1}-
valued random matrices.

Proposition 2.3. — Let S1 and S2 be two elements of L∞− ⊗ M({0, 1}) which con-
verge in P-distribution, satisfy the asymptotic P-factorization property and which are
asymptotically P-free. If Emid[S1] /∈ {0, 1} and Emid[S2] /∈ {0, 1}, then S1 and S2 are
not asymptotically free.

Proof. — This is a consequence of Lemmas 2.1 and 2.3.
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2.3.3. Measures. — The following lemma is a special and easy case of the problem of
moments.

Lemma 2.4. — Let (κn)n∈N be a sequence of positive numbers such that
∑∞

i=1 κi ≤ κ0.
There exists a unique measure µ on U whose weight is equal to κ0 such that:

∀n ∈ N
∗,

∫

U

zndµ(z) =
∑

d∈N∗,d|n

κd.

Besides µ is given by:

∑

n∈N∗

n−1
∑

k=0

κn
n
δ
e
2ikπ
n

+

[

κ0 −
∞
∑

i=1

κi

]

λU,(8)

where we recall that λU is the uniform measure on the circle.

Proof. — Any measure on the unit circle U is characterized by its non-negative moments.
It is enough to see that the moments of the measure given by Equation (8) are equal to
the ones expected.

Remark 2.1. — Let µ be given by Equation (8), the weight of the purely atomic part
of µ is equal to

∑

n≥1 κn.

2.4. Proofs of the theorems stated in Section 2.2. — Now that we have gathered
all the notions and tools that we need, we can prove the theorems of Section 2.2.

Theorem 2.5 and Theorem 2.8. — For any positive integer N , let us consider λN a con-
jugacy class of S(N). Let us suppose that (λN )N∈N converges as N goes to infinity. For

any positive integer N , let us consider
(

SN
t

)

t≥0
a λN -random walk on S(N). Let N and

k be two positive integers and let us define:

GN
k =

d

dt |t=0
E

[

(

SN
t

)⊗k
]

=
N

λN (1c)

1

#λN

∑

σ∈λN

[

σ⊗k − id⊗k
N

]

.

Let p be a partition in Pk and let σN ∈ λN . Let us remark that:

mpc
(

GN
k

)

=
N

λN (1c)

[

mpc

(

σ⊗k
N

)

−mpc

(

id⊗k
N

)]

,

thus, using Proposition 2.1, if p is not a parure, then mpc
(

GN
k

)

= 0.
Let us suppose that p is an irreducible parure, then it is either a necklace or a chain.

Let us suppose that p is a necklace. Using Proposition 2.1, we can suppose that it is a
cycle. Let us suppose that p = (1, ..., k), then:

mpc
(

GN
k

)

=
N

λN (1c)

[

m(1,...,k)c

(

σ⊗k
N

)

−m(1,...,k)c

(

id⊗k
N

)]

.

If k = 1, then:

mpc
(

GN
k

)

=
N

λN (1c)

[

λN (1)

N
− N

N

]

= −1.
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If k 6= 1, then:

mpc
(

GN
k

)

=
N

λN (1c)

[

λN (k)

N

]

=
λN (k)

λN (1c)
−→
N→∞

λ(k).

If p is a chain, let us remark that, using again Proposition 2.1:

mpc
(

GN
k

)

=
N

λN (1c)
mpc

(

σ⊗k
N

)

=
N

λN (1c)



1−
|p|
∑

l=1

m(1,...,l)c

(

σ⊗l
N

)



 −→
N→∞

1−
|p|
∑

l=2

λ(l).

Thus, for any irreducible partition, mpc
(

GN
k

)

converges as N goes to infinity. Yet, if
p is irreducible, any partition p′ which is coarser than p is also irreducible. This implies
that, for any irreducible partition, mp

(

GN
k

)

converges as N goes to infinity.
Let us remark that for any partition p in Pk:

mp

(

GN
k

)

=
N

λN (1c)

[

mp

(

σ⊗k
N

)

− 1
]

.(9)

Thus, we have proved that for any irreducible partition p, mp(σ
⊗k
N ) converges as N goes

to infinity. Besides, if (λN )N∈N is evanescent, λN (1c)
N

goes to infinity: lim
N→∞

mp(σ
⊗k
N ) = 1.

Let r be a positive integer, let us consider r irreducible partitions p1, ..., pr, we have:

mp1⊗...⊗pr

(

GN
k

)

=
N

λN (1c)

[

mp1⊗...⊗pr

(

σ⊗k
N

)

− 1
]

=
N

λN (1c)

[

r
∏

i=1

mpi

(

σ⊗k
N

)

− 1

]

=

r
∑

i=1

(

N

λN (1c)

[

mpi

(

σ⊗k
N

)

− 1
]

r
∏

l=i+1

mpl

(

σ⊗k
N

)

)

=
r
∑

i=1

(

mpi

(

GN
k

)

r
∏

l=i+1

mpl

(

σ⊗k
N

)

)

.

This proves that mp1⊗...⊗pr

(

GN
k

)

converges as N goes to infinity. Thus for any positive

integer k, for any partition p ∈ Pk, mp

(

GN
k

)

converges as N goes to infinity.

Using Theorem 2.4, the family
(

SN
t

)

t≥0
converges in P-distribution toward the P-

distribution of a multiplicative P-Lévy process.
In particular, for any t ≥ 0,

(

SN
t

)

N∈N
converges in P-distribution as N goes to infinity.

Using the discussion after Theorem 2.2 we deduce that the mean eigenvalue distributions
of
(

SN
t

)

N∈N
converges as N goes to infinity to a probability measure µλt defined on the

circle U. Besides, the measure µλt is characterized by the fact that for any positive integer
n:

∫

U

zndµλt = lim
N→∞

Em(1,...,n)

[

SN
t

]

.
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Using Proposition 2.2, we get that:
∫

U

zndµλt =
∑

d∈N∗,d|n

lim
N→∞

Em(1,...,d)c
[

SN
t

]

.

We are in the setting of Lemma 2.4 thus µλt is equal to:

µλt =
∑

n∈N∗

n−1
∑

k=0

mnc(t)

n
δ
e
2ikπ
n

+m∞c(t)λU,

where for any integer n ∈ N
∗, mnc(t) = lim

N→∞
Em(1,...,n)c

[

SN
t

]

and mc
∞(t) is such that

µt
λ(U) = 1.
For any positive integer k, any σ ∈ Sk and any t ≥ 0, let us denote by mσc(t) the

limit lim
N→∞

Emσc

[

SN
t

]

. Using Theorem 2.1, we know that:

mσc(t) = Eκσ [St] .

Using Theorem 2.4 and using the same notations as for this theorem, we get that mσc(t)
satisfies the system of equations, ∀t0 ≥ 0, ∀k ∈ N

∗, ∀σ0 ∈ Sk:

d

dt |t=t0
mσc

0
(t) =

∑

p1∈Pk,p2∈Pk|p1◦p2=σ0,p1≺σ0

κp1(Gk)Eκp2 [St0 ].

Yet, we saw that if p1 and p2 are two partitions such that p1 ◦ p2 = σ0 and p1 ≺ σ0,
then p1 and p2 are two permutations and p1 ∈ [id, σ0]Pk

∩Sk. Thus ∀t0 ≥ 0, ∀k ∈ N
∗,

∀σ0 ∈ Sk:

d

dt |t=t0
mσc

0
(t) =

∑

σ∈Sk |σ≤σ0

κσ(Gk)mtσσ0
(t0).

Using again the fact that for any permutation σ, κσ [Gk] = lim
N→∞

mσc

(

GN
k

)

, we only

need to compute lim
N→∞

mσc

(

GN
k

)

for any permutation in Sk in order to finish the proof

of Theorem 2.5. Let σ0 be a permutation in Sk and let us compute mσc
0

(

GN
k

)

. If σ0 is
equal to idk, then:

midck

(

GN
k

)

=
N

λN (1c)

1

#λN

∑

σ∈λN

[

midck

(

σ⊗k
)

−midck

(

id⊗k
N

)]

=
N

λN (1c)

[

midck

(

σ⊗k
)

−midck

(

id⊗k
N

)]

,

where σ is any permutation in λN . We will use the following convention: for any n and
m in N such that n−m+ 1 ≤ 0, n!

(n−m)! = 0. If σ is a permutation in λN :

midck

(

σ⊗k
)

=
1

Nk

λN (1)!

(λN (1)− k)!
.
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Thus:

midck

(

GN
k

)

=
N

λN (1c)

1

Nk

[

λN (1)!

(λN (1)− k)!
− N !

(N − k)!

]

=
N

λN (1c)

[

k−1
∏

i=0

(

1− λN (1c) + i

N

)

−
k−1
∏

i=0

(

1− i

N

)

]

.

Let us denote by α the limit of λN (1c)
N

as N goes to infinity. We get:

lim
N→∞

midck

(

GN
k

)

=

{

−k if (λN )N∈N is evanescent,
1
α
((1− α)k − 1) if (λN )N∈N is macroscopic.

Now, let us suppose that σ0 is not equal to idk. Let σ be in λN , since mσ0

(

id⊗k
N

)

= 0:

mσc
0

(

GN
k

)

=
N

λN (1c)
mσc

0

(

σ⊗k
)

.

Let us denote by [σ0] the conjugacy class of σ0. As we already saw for λN , we can see
[σ0] as a vector ([σ0](i))

N
i=1. It is easy to see that:

mσc
0

(

σ⊗k
)

=
1

Nnc(σ0∨id)

k
∏

i=1

(

λN (i)
i

)

!
(

λN (i)
i

− [σ0](i)
i

)

!
i
[σ0](i)

i ,

thus:

mσc
0

(

GN
k

)

=
N

λN (1c)

1

Nnc(σ0∨id)

k
∏

i=1

(

λN (i)
i

)

!
(

λN (i)
i

− [σ0](i)
i

)

!
i
[σ0](i)

i .

Let us notice that nc(σ0 ∨ id) =
∑k

i=1
[σ0](i)

i
. Thus mσc

0

(

GN
k

)

is equal to:

N

λN (1c)





k
∏

i=2

1

N
[σ0](i)

i

(

λN (i)
i

)

!
(

λN (i)
i

− [σ0](i)
i

)

!
i
[σ0](i)

i





1

N [σ0](1)

λN (1)!

(λN (1)− [σ0](1))!
.

We recall that for any i ≥ 2, there exists λ(i) such that λN (i)
λN (1c) converges to λ(i) as N

goes to infinity, and limN→∞
λN (1)
N

→ 1− α. Thus, as N goes to infinity, mσc

(

GN
k

)

has
the same limit as:

N

λN (1c)





k
∏

i=2

(

λN (i)

λN (1c)

λN (1c)

N

)

[σ0](i)
i





(

λN (1)

N

)[σ0](1)

,

or the same limit as:

(

λN (1c)

N

)nc(σ0∨id)−[σ0](1)−1 k
∏

i=2

(

λN (i)

λN (1c)

)

[σ0](i)
i
(

λN (1)

N

)[σ0](1)

.
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This implies that:

lim
N→∞

mσc
0

(

GN
k

)

= αnc(σ0∨id)−[σ0](1)−1

(

k
∏

i=2

(λ(i))
[σ0](i)

i

)

(1− α)[σ0](1).

Let us remark that, since σ0 6= idk, nc(σ0 ∨ idk)− [σ0](1)− 1 is always non negative. So
the following formula has a meaning even if α = 0. Using these calculations, we recover
the system of differential equations in Theorem 2.5.

At last, let us suppose that (λN )N∈N is evanescent and let us prove that (SN
t )t≥0 does

not converge toward a free multiplicative Lévy process. In order to do so, we will prove
that the increments of

(

SN
t

)

t≥0
are not asymptotically free as N goes to infinity. Let t1

and t2 be two positive reals. For any positive integer N , let S
′N
t2

be a random variable

which has the same law as SN
t2

and which is independent with SN
t1
. Since

(

SN
t

)

t≥0
is a

Lévy process, it is enough to prove that SN
t1

and S
′N
t2

are not asymptotically free asN goes

to infinity. Using Theorem 2.3, we already know that SN
t1

and S
′N
t2

are asymptotically
P-free. Besides, for any real t ≥ 0, Emid1 [St] = Emidc1

[St]: using the differential system

of equations proved in Theorem 2.5, for any t0 > 0, Emid1 [St0 ] = e−t0 /∈ {0, 1}. In the
following, we will see that the asymptotic P-factorization property holds for

(

SN
t1

)

N∈N

and
(

S
′N
t2

)

N∈N
: using Proposition 2.3, SN

t1
and S

′N
t2

are not asymptotically free.

We have proved the convergence in P-distribution: let us understand when the con-
vergence holds in probability or not.

Theorem 2.6. — Let us suppose that (λN ) is macroscopic. The second equation in
Theorem 2.1 implies that Emid2 [St] = Emidc2

[St]. Using this equality and the system of
differential equations satisfied by the limits of the observables, it is easy to see that the
family

(

SN
t

)

N∈N
does not satisfy the asymptotic P-factorization property: for any t > 0:

lim
N→∞

Emid2

[

SN
t

]

6=
(

lim
N→∞

Emid1

[

SN
t

]

)2

.(10)

Let us suppose that (λN )N∈N is evanescent. Let p be a partition in Pk; we can suppose,
up to a permutation of the columns, that there exist r irreducible partitions p1, ..., pr
such that p is equal to p1 ⊗ ... ⊗ pr. We saw in the proof of Theorem 2.5 that for any
integer N :

mp

(

GN
k

)

=

r
∑

i=1

(

mpi

(

GN
k

)

r
∏

l=i+1

mpl

(

σ⊗k
N

)

)

,

where σN ∈ λN . Using Equation (9), lim
N→∞

mp

(

σ⊗k
N

)

= 1. Thus, denoting by mp (Gk)

the limit of mp

(

GN
k

)

:

mp (Gk) =

r
∑

i=1

mpi (Gk) .
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The last equation implies that
(

GN
k

)

k,N
weakly condensates. By Theorem 2.4, the pro-

cess
(

(

SN
t

)

t≥0

)

N∈N
satisfies the asymptotic P-factorization property and, using Theo-

rem 2.2, it converges in probability in P-distribution.

For a positive real t, let µλN
t the random eigenvalue distribution of SN

t . Since
(

SN
t

)

N∈N

converges in P-distribution, the measures µλN
t converge in law to a random measure on

U, denoted by µλt . The measure µλt is not random if and only if
(

(

SN
t

)

t≥0

)

N∈N
satisfies

the asymptotic P-factorization property: the measure µλt is not random if and only if
(λN )N∈N is evanescent.

From now on, we will suppose that (λN )N∈N is evanescent: the limit of the eigenvalue
distributions is non-random. Let us compute this limiting measure.

Theorem 2.7. — We recall that we already used the following notation: for any positive

integer k, any σ ∈ Sk and any t ≥ 0, we denote bymσc(t) the limit lim
N→∞

Emσc

[

(

SN
t

)⊗k
]

.

Besides, we proved that the family (mσc(t))t,σ satisfies the system of differential equa-

tions stated in Theorem 2.5. Since we suppose that (λN )N∈N is evanescent, for any
t0 ≥ 0 and any σ0 ∈ Sk,

d
dt |t=t0

mσc
0(t)

is equal to:

−kmσc
0
(t0) +

∑

σ∈Sk\{id},σ≤σ0

0nc(σ∨id)−[σ](1)−1

(

k
∏

i=2

(λ(i))
[σ](i)

i

)

m(tσσ0)c(t0),

yet nc(σ ∨ id) − [σ](1) − 1 = 0 if and only if σ is a cycle. Thus, if we set mnc(t) =
m(1,...,n)c(t), for any t0 ≥ 0 and any positive integer n:

d

dt |t=t0
mnc(t) = −nmnc(t0) +

n
∑

k=2

∑

σ∈Sn, σ is a k-cycle,σ≤(1,...,n)

λ(k)m(tσ(1,...,n))c(t0).(11)

Using Theorem 2.6, the asymptotic P-factorization property holds: we can wite Equation
(11) only in terms of (mnc(t))n,t. For any positive integer n, any t0 ≥ 0:

d

dt |t=t0
mnc(t) = −nmnc(t) +

n
∑

k=2

λ(k)
n

k

∑

(n1,...,nk)∈(N∗)k|
∑k

i=1 ni=n

k
∏

i=1

mnc
i
.(12)

Let us introduce the generating formal series of
(

entmnc(t)
)

n≥1
:

R(t, z) =
∑

n≥1

entmnc(t)zn.

Let us remark that R(0, z) = z. The Equation (12) can be written as:

∂tR(t, z) = z∂R(t, z)LS(R)(t, z),(13)

where we defined:

LS(z) =
∑

n≥1

λ(n+ 1)zn.
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Let us define S(t, z) the reciprocal formal series such that for any t ≥ 0:

S(t,R(t, z)) = z.

Let us remark that S(0, z) = z. The Equation (13) implies an equation on S:

∂tS(t, z) = −LS(z)S(t, z).

Thus S(t, z) is given by S(t, z) = ze−tLS(z). Let t ≥ 0 and let n be a positive integer.
Using the usual notations, since entmnc(t) = [zn]R(t, •), we can compute entmnc(t) by
using the Lagrange inversion. This implies that:

[zn]R(t, •) = 1

n

[

zn−1
]

etnLS(z),

thus m1c(t) = e−t and for n > 1:

mnc(t) = e−nt
n−1
∑

k=1

tk
nk−1

k!

∑

(i1,...,ik)∈(N∗)k,i1+...+ik=n−1

k
∏

j=1

λ(ij + 1),

hence the assertions in Theorem 2.7.

Let us prove the assertion on the existence of a phase transition for the random walks
on the symmetric group.

Theorem 2.10. — Let us suppose that the sequence (λN )N∈N is evanescent. Let us show
that the function f(t) =

∑∞
n=1mnc(t), which is equal to 1 −m∞c(t) is continuous and

converges to 0 as t goes to infinity. Indeed, we have:

f(t) =
∞
∑

k,n=0

1

n
e−nttk

nk

k!
p(k, n),

where p(k, n) =
∑

(i1,...,ik)∈N∗,
∑k

j=1 ij=n−1

∏k
j=1 λ(ij +1). For any k and n in N, fk,n(t) =

1
n
e−nttk nk

k! p(k, n) is continuous and goes to zero as t goes to infinity, besides fk,n is non-

negative and maximal at tk,n = k
n
and using Stirling’s formula, there exists a constant

C such that fk,n(tk,n) = 1
n
e−k kk

k! p(k, n) ≤ C 1
k3/2

p(k, n). In order to finish, one has to
remark that:

∑

n∈N

p(k, n) =
∑

(i1,...,ik)∈N∗

k
∏

j=1

λ(ij + 1) =

(

∑

i∈N∗

λ(i+ 1)

)k

≤ 1,

thus
∑

k,n fk,n(tk,n) < ∞. This allows to apply the dominated convergence theorem,
thus f is a continous function and converges to zero as t goes to infinity.

Recall the definition of tλc given by Equation (6). Let us prove that f(t) = 1 for any
t ≤ tλc and f(t) < 1 for any t > tλc . Using the generating function R(t, •) of entmnc(t),
we know that for any real t ≥ 0:

f(t) = R
(

t, e−t
)

.
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Using the fact that S(t,R(t, e−t)) = e−t, and given that S(t, z) = ze−tLS(z), we get that:

R(t, e−t)e−tLS(R(t,e−t)) = e−t.

Thus for any t ≥ 0, f(t) is a solution in [0, 1] of Φt(z) = ze−t(LS(z)−1) = 1. The function

Φt is log-concave on [0, 1], Φt(0) = 0 and Φt(1) = e−(tLS(1)−1). If LS(1) =
∑∞

i=2 λ(i)
is not equal to one it must be stricly smaller than 1, thus in this case for any t > 0,
Φt(1) > 1 and thus there exists a unique solution of Φt(z) = 1 in [0, 1] which is in fact
in ]0, 1[. Thus we recover the delta function in Equation (6). Let us suppose now that
∑∞

i=2 λ(i) = 1. Then LS(1) = 1: thus, since Φt is log-concave, there exists a solution νt
(which is unique) of Φt(z) = 1 on ]0, 1[ if and only if Φ′

t(1) < 0. Since Φ′
t(1) = 1−tLS′(1),

we get that the critical time after which one observes a solution in [0, 1] which is different
from the trivial solution 1 is equal to 1

LS′(1)
which is the value of tc given by Equation

(6). Since f(t) is a continuous function which must converge to zero as t goes to infinity,
it must be equal to 1 if t ≤ tc and then it must be equal to νt if t > tc.

Let us finish with the proof of Corollary 2.1.

Corollary 2.1. — Let t be a non-negative real number, let N be a positive integer, we
have to understand:

1

N
dS(N)

(

idN , S
N
t

)

= 1− nc
(

SN
t ∨ idN

)

N
.

Recall that:

1

N
nc
(

SN
t ∨ idN

)

=
∑

k≥1

1

k
m(1,...,k)c

(

SN
t

)

since m(1,...,k)c
(

SN
t

)

is the fraction of integers in {1, ..., N} whose period in SN
t is equal

to k. It remains to see if one can interchange the limit and the sum. For any positive
integer N , for any σ ∈ S(N), if ck(σ) is the numbers of cycles of size k in σ, we have
for any K ∈ N

∗:
∑

k≥K

1

k
m(1,...,k)c

(

σ⊗k
)

=
1

N

∑

k≥K

ck(σ) ≤
1

N

N

K
=

1

K
,

since there can not be more than N
K

cycles in σ of size bigger than K. Thus:

sup
N

∑

k≥K

1

k
m(1,...,k)c

(

SN
t

)

−→
K→∞

0,

almost surely. We can interchange limits and, since for any integer k ≥ 1, m(1,...,k)c
(

SN
t

)

converges in probability to mkc(t), we have the convergence in probability:

lim
N→∞

1

N
nc
(

SN
t ∨ idN

)

=
∑

k≥1

lim
N→∞

1

k
m(1,...,k)c

(

SN
t

)

=
∞
∑

k=1

1

k
mkc(t).

This allows us to conclude the proof.

2.5. Log-cumulant calculations. —
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2.5.1. Brief reminder. — In the article [15], we studied the log-cumulant invariant of
free multiplicative infinitely divisible measures, defined by Equation (20) of [15]. The log-
cumulant transform is also an important tool in order to characterize free multiplicative
Lévy processes. Since it could also be the case for more general P-free multiplicative Lévy
processes, we are interested in defining and computing the log-cumulant transform for
some examples of multiplicative P-Lévy processes. The theorem proved in this section
is the first computation of the log-cumulants of multiplicative P-Lévy processes which
are not free multiplicative Lévy processes.

We can generalize the definition of log-cumulants in the setting of multiplicative P-
Lévy processes: this notion was actually already defined in Definition 3.10 of [14] under
an other name. Let (at)t≥0 be a multiplicative P-free Lévy process which takes values
in a P-tracial algebra. The infinitesimal ⊠-transform of (at)t≥0 is also called the log-
cumulant transform of (at)t≥0. This definition can be applied to sequences of matricial
Lévy processes which converge in P-distribution.

For any integer N , let (XN
t )t≥0 be a Lévy process in the vector space of matrices of

size N . Let us suppose that (XN
t )t≥0 converges in P-distribution. In this section, we

will always add the asumption that it satisfies the asymptotic P-factorization property.
Recall Section 4 of [14] where we defined a convolution ⊠ on (

⊕∞
k=0C[Pk])

∗. The reader
can skip at first the definition of ⊠ since it will not be needed later. Recall the notion of
R-transform explained in Section 2.1: the family (R[Xt])t≥0 is a continuous semi-group
for the ⊠-convolution.

Definition 2.4. — The log-cumulant transform of
(

(XN
t )t≥0

)

N∈N
is the unique element

in (
⊕∞

k=0C[Pk])
∗, denoted by LR ((Xt)t≥0), such that for any t0 ≥ 0:

d

dt |t=t0
R(Xt) = LR ((Xt)t≥0)⊠R(Xt0).

We have an other characterization of the log-cumulant transform which is a conse-
quence of the results in Section 6.2 of [15].

Lemma 2.5. — Let us consider GN
k = d

dt |t=0
E

[

(

XN
t

)⊗k
]

seen as an element of

C[Pk(N)]. Let us suppose that for any integer k, (GN
k )N converges as N goes to infinity,

then for any positive integer k, any p ∈ Pk, LR ((Xt)t≥0) (p) = κp(Gk).

Let ǫ⊠ be the linear form which sends, for any k ∈ N, idk on 1 and any other partition p
on 0. Since we supposed that (XN

t )t≥0 satisfies the asymptotic P-factorization property,
the linear form LR ((Xt)t≥0) is a ⊠-infinitesimal character. This means that for any
partitions p1 and p2,

LR ((Xt)t≥0) (p1 ⊗ p2) = LR ((Xt)t≥0) (p1)ǫ⊠(p2) + ǫ⊠(p1)LR ((Xt)t≥0) (p2).

This is equivalent to say that:

1. for any positive integer k, LR ((Xt)t≥0) (idk) = kLR ((Xt)t≥0) (id1),
2. for any partition p which can be written, up to a permutation of the columns, as
p′ ⊗ idl with nc(p′ ∨ id) = 1, LR ((Xt)t≥0) (p) = LR ((Xt)t≥0) (p

′),
3. for all the other partitions, LR ((Xt)t≥0) (p) = 0.
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In the two first cases, we say that p is weakly irreducible. We will also need a link
between the coordinate numbers and the exclusive moments. For that, we need to recall
the notion of finer-compatible which was defined in Definition 2.4 of [14]. Let p and p′

be two partitions in Pk. We say that p′ is finer-compatible than p and we denote it by
p′ = p if and only if p′ if finer than p and nc(p′)− nc(p′ ∨ id) = nc(p)− nc(p ∨ id). The
following lemma is a consequence of Theorem 5.4 of [14].

Lemma 2.6. — For any positive integer k, any p ∈ Pk, mpc(Gk) =
∑

p′=p κp′(Gk).

2.5.2. The log-cumulants of the limit of random walks on the symmetric group. — For
any positive integer N , let λN be a conjugacy of S(N) and let us consider

(

SN
t

)

N∈N
a

λN -random walk on S(N). For any positive integer t, let us denote by Sλt the family
(

SN
t

)

N∈N
. Let us suppose that (λN )N∈N converges as N goes to infinity and that it is

evanescent. As we already did, for any i ≥ 2, we set λ(i) = lim
N→∞

λN (i)
λN (1c) and λ(1) = 1.

In the following, we will need the notion of ears.

Definition 2.5. — Let k be a positive integer, let i be an element of {1, ..., k} and let
p ∈ Pk. We say that {i, i′} is an ear of p if {i, i′} are in the same block of p. The set of
ears of p is denoted by E(p). The head of p, denoted by H(p), is the extraction of p to
{1, ..., k, 1′ , ..., k′} \ ∪{i,i′}∈E(p){i, i′}.

Let us state the main result about the log-cumulant functional. Recall the notion of
true-length defined in Definition 2.3.

Theorem 2.11. — The log-cumulant transform of
(

Sλt
)

t≥0
, denoted by LRλ, is char-

acterized by:

1. LRλ is a ⊠-infinitesimal character,
2. for any positive integer k, for any irreducible partition p ∈ Pk, if H(p) is not a

parure then LRλ(p) = 0,
3. for any positive integer k, for any irreducible partition p ∈ Pk, if H(p) is a necklace

then:

LRλ(p) = (−1)#E(p)λ(|H(p)|),
with the convention that |∅| = 0 and λ(0) = 1 and if H(p) is a chain then:

LRλ(p) = (−1)#E(p)



1−
|H(p)|
∑

i=2

λ(i)



 .

Proof. — Since we supposed in this section that (λN )N∈N converges and is evanescent,
the family of random walks satisfy the asymptotic P-factorization property. We have
seen that it implies that LRλ is a ⊠-infinitesimal character. Using the usual notations
and Lemma 2.5, for any partition p ∈ Pk, LRλ(p) = κp(Gk). Yet we have computed the
exclusive moments of the generator in Section 2.4: using Lemma 2.6, for any partition p
we known the value of

∑

p′=pLRλ(p′) which is equal to mpc(Gk). Besides, since LRλ is a

⊠-infinitesimal character, it is uniquely characterized by the equalites
∑

p′=p LRλ(p′) =

mpc(Gk) for any irreducible partition p ∈ Pk and any integer k. Recall that |p| is the
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true-length of a partition p. Using the calculations in the proof of Theorem 2.5, for any
irreducible partition p:

1. if p is not a parure then mpc(Gk) = 0,
2. if p is a necklace of true-length equal to 1 then mpc(Gk) = −1,
3. if it is a necklace of true-length greater than 1 then mpc(Gk) = λ(|p|),
4. if p is a chain then mpc(Gk) = 1−∑|p|

k=2 λ(k).

Let us consider the unique ⊠-infinitesimal character E in (
⊕∞

k=0C[Pk])
∗ which satisfies

the conditions 2. and 3. of the theorem. Let p be an irreducible partition in Pk, it
remains to prove that:

mpc(Gk) =
∑

p′=p

E(p′).

Let us recall that E(p′) = 0 if p′ is not weakly irreducible. Yet if p′ = p and p′ is
weakly irreducible, this means that one can get p′ by choosing a certain number of
ears of p and by cutting each of them in p. Let us consider the two possible cases
p = 0k := {{1, ..., k, 1′ , ..., k′}} or p 6= 0k. If p = 0k, then using the fact that E(idk) = −k:

∑

p′=0k

E(p′) = −





∑

I⊂{1,...,k},#I>1

(−1)#I−1



− k

= −
((

k
∑

l=0

(−1)l−1 k!

l!(k − l)!

)

+ 1

)

= −1 = m0ck
(Gk),

the last equality coming from the fact that 0k is a necklace of true-length equal to 1.
If p 6= 0k, then:
∑

p′=p

E(p′) =
∑

I⊂E(p)

(−1)#E(p)−#IE(H(p)) = δ#E(p)=0E(H(p)) = δ#E(p)=0E(p)

= δ#E(p)=0mpc(Gk)

= mpc(Gk),

the last equality coming from the fact that the only irreducible parure in Pk which has
ears is 0k.

Let us remark that we could have tried to prove the last theorem by computing
directly the coordinate numbers of GN

k . For example, if one considers the random walk
by transpositions:

GN
k =

1

N − 1

∑

τ∈TN

(

τ⊗k − Id⊗k
N

)

=
1

2(N − 1)

N
∑

i,j=1

(

(

IdN − Ei
i − Ej

j + Ej
i + Ei

j

)⊗k

− Id⊗k
N

)

,

where IdN is the identity matrix of size N . We used the same notations as in Section 2.1
and TN is the set of transpositions. One can develop the tensor product and compute
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the coordinate numbers and their limits. Yet, it becomes less tractable as soon as one
considers general random walks.

3. Large N limit of the S(N)-Yang-Mills measure

We will not go into all the details of the theory of planar Yang-Mills fields: one can
read [13] and [20] for an introduction on this subject. Yet, our presentation will be
adequate so that the reader does not have to read other articles in order to understand
the main result of this section, namely Theorem 3.3. The general ideas are all taken
from the article [8] where asymptotics of unitary Yang-Mills measures are proved. In
this article, the Yang-Mills measure with S(N) gauge group is the planar Markovian
holonomy field associated with the TN -random walk, where TN is the set of transposition
in S(N). Yet, this section can easily be generalized to planar Markovian holonomy fields
associated with any λN -random walk.

The set of paths P in the plane is the set of rectifiable oriented curves drawn in R
2

up to increasing reparametrization. The set of loops based at 0, denoted by L0, is the
set of paths l such that the two endpoints of l are 0. A loop is simple if it does not
intersect with itself, except at the endpoints. We will consider Aff and Aff0 respectively
the set of piecewise affine paths in R

2 and the set of piecewise affine loops based at 0.
We can define two operations on P : the concatenation and the inversion. Given two
paths p1 and p2 such that the starting point of p2 is the arrival point of p1, it is natural
to concatenate p1 and p2 by gluing them at the arrival point of p1: it defines a new path
p1p2. The inversion of p1, denoted by p−1

1 , is defined by changing the orientation of p1.
T. Lévy defined in [20], the notion of convergence with fixed endpoints. For any p ∈ P ,
p denotes the starting point of p and p denotes the arrival point of p. Let (pn)n∈N be a
sequence of paths. The sequence (pn)n∈N converges with fixed endpoints if and only if
there exists a path p such that for any integer n, pn and p have the same endpoints and:

|l(pn)− l(p)|+ inf sup
t∈[0,1]

|pn(t)− p(t)| −→
n→∞

0,

where the infimum is taken on the parametrizations of the paths pn and p and where
l(p) is the length of p.

Let J be a subset of P , let G be a group. The set of multiplicative functions
Mult (J,G) from J to G is the subset of functions f in GJ such that for any p1, p2, p3 ∈ J
such that p1p2 ∈ J and p−1

3 ∈ J , one has:

f(p1p2) = f(p2)f(p1),

f
(

p−1
3

)

= f(p3)
−1.

For any p ∈ P , we define hp or, with an abuse of notation, h(p), as the evaluation on p:

hp : Mult(J,G) → G

h 7→ h(p).

We are going to define a gauge-invariant measure on the set of multiplicative functions
from J to S(N). Thus we endow Mult(J,S(N)) with the cylinder σ-field B which is
the trace on Mult(J,G) of the cylinder σ-field on S(N)J . Let us denote by V the
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set {x ∈ R
2,∃ p ∈ J, x = p or x = p}. For any function j : V → S(N) and any

h ∈ Mult(J,S(N)), we define j • h ∈ Mult(J,S(N)) such that:

∀c ∈ J, (j • h)(c) = j−1
c h(c)jc.

A measure µ on Mult (J,S(N)) is gauge-invariant if for any measurable function f from
(Mult(J,S(N)),B) to R, for any function j : V → S(N):

∫

Mult(P,G)
f(j • h)dµ(h) =

∫

Mult(P,G)
f(h)dµ(h).

In [8], the author and his co-authors proved a version of the following theorem which
is a generalization of Theorem 3.3.1 proved by T.Lévy in [20]. The original formulation
by T. Lévy of this theorem is the first part of Theorem 3.1. Let us denote by dx the
Lebesgue measure on R

2.

Theorem 3.1. — Let (ΓN , dN )N∈N be a sequence of complete metric groups such that
for any N ∈ N, translations and inversion are isometries on ΓN . For any integer N ,
let HN ∈ Mult(Aff,ΓN ) be a multiplicative function. Assume that there exists KN ≥ 0
such that for any N ∈ N, for all simple loop l ∈ Aff bounding a disk D, the inequality:

dN (1,HN (l)) ≤ KN

√

dx(D)(14)

holds. Then for each integer N , the function HN admits a unique extension as an
element of Mult(P,G), also denoted by HN , which is continuous for the convergence
with fixed endpoints.

Let (E, d) be a complete metric space. For any integer N , let ψN : ΓN → E be
a Lipchitz function of Lipchitz norm ||ψN ||Lip. Let us assume that the three following
conditions hold:

1. for any l ∈ Aff0, ψN (HN (l)) converges to a limit as N goes to infinity,
2. sup

N∈N
||ψN ||Lip <∞,

3. sup
N∈N

KN <∞,

then for any l ∈ L0,
(

ψN (HN (l))
)

N∈N
converges to a limit φ(l). Besides, the function:

φ : L0 → E

l 7→ φ(l)

is continuous for the convergence with fixed endpoints.

Recall that TN is the set of transpositions in S(N). Let
(

SN
t

)

t≥0
be a TN random

walk on S(N). Let us explain how the first part of Theorem 3.1 allows us to construct
the Yang-Mills field associated with

(

SN
t

)

t≥0
. In order to do so, we need the notion of

finite planar graph: it will be the usual notion, except that we ask that the bounded
faces are homeomorphic to an open disk. Let G be a finite planar graph: the set of
bounded of faces of G is denoted by F. For any finite planar graph G, we define P (G)
as the set of paths that one can draw by concatenating edges of G. Let us define also
G(Aff) the set of finite planar graphs G whose edges are piecewise affine.

In order to construct a measure on (Mult(P,S(N)),B), first we construct for any
G ∈ G(Aff) an associated measure µG on

(

Mult(P (G),S(N)),B
)

. We will give the
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construction given by the author in [13], but one can have a look at [20] where a
different formulation is given.

We need to introduce the loop paradigm for two dimensional Yang-Mills fields. Let
us consider a finite planar graph G in G(Aff), let us consider v0 a vertex of G and T a
covering tree of G. Let us consider for any bounded face F of G a loop cF ∈ P (G) which
represents the anti-clockwise-oriented boundary ∂F . For any vertex v of G, we denote
by [v0, v]T the unique injective path in T which goes from v0 to v. Let Lv0(G) be the
set of loops l in P (G) such that l = v0. We define the facial lasso lF ∈ Lv0(G) by:

lF = [v0, v]T cF [v0, v]
−1
T .

It was proved in Proposition 5.12 of [13] that the application:

ΦT,(cF)F∈F
: Mult (Lv0(G),S(N)) → (S(N))F

h 7→ (h (lF ))F∈F ,

is a bijection and for any loop l ∈ Lv0(G), there exists a word w in the letters (lF )F∈F

and
(

l−1
F

)

F∈F
such that hl = w

(

(hlF )F∈F ,
(

h
l−1
F

)

F∈F

)

.

Using Proposition 7.2 proved by the author in [13], we have the following proposition.

Proposition 3.1. — There exists a unique gauge-invariant measure µ
v0,T,(cF )F∈F

G
on

Mult (P (G),S(N)) such that under this measure:

1. the random variables (h (lF ))F∈F are independent,

2. for any F ∈ F, h (lF ) has the same law as SN
dx(F ).

This measure does not depend neither on the choice of v0 nor T nor on the choice of
(cF )F∈F: we denote it µG.

Let G and G
′ be two finite planar graphs in G(Aff) such that G′ is coarser than G: this

means that P (G′) ⊂ P (G). Any function in Mult(P (G),S(N)) allows us to define, by
restriction, an element of Mult(P (G′),S(N)). The measures (µG)G are compatible with
the applications of restriction: the family of measures

(

Mult(P (G),S(N)), µG
)

G∈G(Aff)

is a projective system and, as explained in Proposition 1.22 of [13] and in [20], we can
take the projective limit.

Definition 3.1. — The affine Yang-Mills measure associated to
(

SN
t

)

t≥0
, denoted by

YM
S(N)
Aff , is the projective limit of:

(

Mult(P (G),S(N)), µG
)

G∈G(Aff)
.

It is a gauge-invariant measure on Mult(Aff,S(N)).

Let us consider a simple loop l in Aff and let Gl be the finite planar graph in G(Aff)
which has l as unique edge. In this case, Mult(P (Gl),S(N)) ≃ S(N) and for any
continuous function f : S(N) → R:

YM
S(N)
Aff [f(hl)] = E

[

f
(

SN
dx(Int(l))

)]

,(15)

where Int(l) is the bounded component of R2 \ l. This last equality shows that under

YM
S(N)
Aff , hl has the same law as SN

dx(Int(l)). This will allow us to use the first part of
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Theorem 3.1 in order to construct the Yang-Mills measure, as it was done by T. Lévy
in [20] and then by the author in [13]. We need some estimates on the walk

(

SN
t

)

t≥0
:

in order to do so, let us define a distance on S(N) by considering any element of S(N)
as a permutation matrix of size N .

Definition 3.2. — For any σ, σ′ ∈ S(N):

dN (σ, σ′) =

[

2

(

1− 1

N
Tr
(

σσ′−1
)

)]
1
2

.

Since the permutation matrices are orthogonal, for any σ and σ′ in S(N):

dN
(

σ, σ′
)

=

[

1

N
Tr
((

σ − σ′
)

t
(

σ − σ′
))

] 1
2

.

This shows that dN is a distance on S(N). Let us control the distance of
(

SN
t

)

t≥0
to

the identity.

Lemma 3.1. — For any real t ≥ 0, E
[

dN
(

idN , S
N
t

)]

≤
√
2t.

Proof. — Let t be a non-negative real. By definition:

E

[

dN
(

idN , S
N
t

)2
]

= 2

[

1− E

[

1

N
Tr
(

SN
t

)

]]

.

A simple calculation allows us to see that 1
N

∑

τ∈TN
(τ − idN ), seen as a matrix of size

N , is equal to ρN
[

1
N
e1 − id

]

, where we recall that ρN is the representation defined in
Section 2.1 and e1 is the partition {{1}, {1′}}. This implies that for any t0 ≥ 0:

d

dt |t=t0
E
[

SN
t

]

= ρN

(

1

N
e1 − id1

)

E
[

SN
t0

]

.

Thus, by linearity:

d

dt |t=t0
E

[

1

N
Tr
(

SN
t

)

]

=
1

N
E

[

1

N
Tr
(

ρN (e1)S
N
t0

)

]

− E

[

1

N
Tr
(

SN
t0

)

]

,

and, using the fact that 1
N
Tr (ρN (e1)σ) = 1 for any σ ∈ S(N), we get the differential

equation:

d

dt |t=t0
E

[

1

N
Tr
(

SN
t0

)

]

=
1

N
− E

[

1

N
Tr
(

SN
t0

)

]

,

E

[

1

N
Tr
(

SN
0

)

]

= 1.

The solution is given by the function t 7→ 1
N

+
(

1− 1
N

)

e−t: for any real t ≥ 0:

E

[

1

N
Tr
(

SN
t

)

]

=
1

N
+

(

1− 1

N

)

e−t,(16)

and thus:

E

[

dN
(

idN , S
N
t

)2
]

= 2

[

1− 1

N

]

[1− e−t].
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This implies that for any t ≥ 0 and any positive integer N ,
(

E
[

dN
(

idN , S
N
t

)])2 ≤ E

[

dN
(

idN , S
N
t

)2
]

≤ 2t.

This allows us to finish the proof.

Using Lemma 3.1, we can prove the following theorem.

Theorem 3.2. — The measure YM
S(N)
Aff can be extended by continuity to a measure on

Mult(P,S(N)). This means that there exists a measure YMS(N) on Mult(P,S(N))
such that:

1. the restriction of YMS(N) on Mult(Aff,S(N)) is equal to YM
S(N)
Aff ,

2. for any sequence of paths (pn)n∈N and any path p ∈ P such that (pn)n∈N converges
with fixed endpoints to p, we have:

YMS(N) [dN (hpn , hp)] −→
n→∞

0.

We only recall the proof given in [20].

Proof. — Let (Ω,A,P) be equal to
(

Mult(Aff,S(N)),B, Y MS(N)
Aff

)

. For any path p ∈
Aff, hp is a function on Mult(Aff,S(N)) thus it can be seen as a G-valued random
variable on (Ω,A,P). For any positive integer N , let ΓN = L(Ω,A,P;S(N)) be the
set of S(N)-valued random variables defined on Ω: this is a group for the pointwise
multiplication of random variables. We endow ΓN with the distance:

dN (X,Y ) = E [dN (X,Y )] .

It is a distance which is invariant by translations and inversion. Let us consider the
mapping:

HN : Aff → ΓN

l → hl,

whih is a multiplicative function. Using Lemma 3.1 and Equality (15), we get that for

any simple loop l: dN (1, hl) ≤
√
2
√

dx(Int(l)). We can apply Theorem 3.1: there exists
an extension:

HN : P → ΓN

p 7→ H(p)

which is continuous for the convergence with fixed endpoints: for any sequence of paths
(pn)n∈N and any path p ∈ P such that (pn)n∈N converges with fixed endpoints to p, we
get:

dN (HN (pn) ,HN (p)) = YM
S(N)
Aff

[

dN (HN (pn),HN (p))
]

−→
n→∞

0.

Thus we have constructed a S(N)-valued process (HN (p))p∈P on Ω which is stochasti-

cally continuous in law and such that for any p and p′ in P such that p = p′, almost surely

HN (pp′) = HN (p′)HN (p), HN (p−1) = HN(p)−1. Using Proposition 1.22 in [13] this al-

lows us to construct a measure on Mul(P,S(N)) called YMS(N), such that the process
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(hp)p∈P has the same law under YMS(N) as the process (HN (p))p∈P under YM
S(N)
Aff .

The measure YMS(N) satisfies the desired properties.

Now that we have defined the Yang-Mills measure YMS(N) for any positive integer
N , we are interested in the convergence of the Wilson loops under these measures as N
goes to infinity.

Definition 3.3. — Let l0 be a loop based at 0, the Wilson loop on l0 is the function:

WN
l0

: Mult(P,S(N)) → R

(hp)p∈P 7→ 1

N
Tr(hl0).

seen as a random variable on (Mult(P,S(N)),B, Y MS(N)).

The main result about the limit of Yang-Mills measure on the symmetric group is
given by the following result.

Theorem 3.3. — For any loop l based at 0 the Wilson loop on l converges in probability
to a constant denoted by φ(l) as N goes to infinity. The function:

φ : L0 → R

l 7→ φl,

is continuous for the convergence with fixed endpoints.
The asymptotic factorization property holds: for any positive integer k, any k-tuple of

loops l1, ..., lk in L0:

YMS(N)
[

WN
l1
...WN

lk

]

−→
N→∞

φ(l1)...φ(lk).

The function φ in Theorem 3.3 is called the S(∞)-master field.

Remark 3.1. — The vector space C[L0] can be endowed with a structure of algebra with
the concatenation of loops and can be endowed with a ∗-operation defined by:

(λl)∗ = λl−1.

The function φ can be extended by linearity on C[L0] and it satisfies some interesting
properties:

– φ is continuous for the convergence with fixed endpoints,
– φ is invariant by the homeomorphisms which preserves the Lebesgue measure,
– φ defines an application on C[L0]:

Φ : (l, l′) 7→ φ(ll′∗).

which satisfies the conjugate symmetry, the linearity in the first argument and the

positiveness properties: for any (ai)
k
i=1 ∈ C and (li)

k
i=1,

∑k
i,j=1 aiajφ(lil

∗
j ) is non

negative.

Let us prove Theorem 3.3 when one considers only piecewise affine loops.

Proposition 3.2. — For any loop l in Aff0 the Wilson loop WN
l converges in expecta-

tion and in probability as N tends to infinity to a constant φ(l).
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Proof. — Let l0 be a loop in Aff0. Let G be a graph in G(Aff) such that l0 is a loop in G.
Let us consider T a covering tree of G, let us consider for any bounded face F of G a loop
cF ∈ P (G) which represents ∂F in the anti-clockwise orientation and let us consider the

facial lassos lF associated with these choices of tree and loops. Let w
(

(lF )F∈F ,
(

l−1
F

)

F∈F

)

be a word in the letters (lF )F∈F and
(

l−1
F

)

F∈F
such that hl0 = w

(

(hlF )F∈F ,
(

hl−1
F

)

F∈F

)

.

Using Proposition 3.1, the random variables (hlF )F∈F defined on the probability space
(

Mult(L0,G),B, Y MS(N)
)

are independent and for any F ∈ F, hlF has the same law

as SN
dx(F ). For all positive integer N , let

(

S
(1)
t,N

)

t≥0
, ...,

(

S
(#F)
t,N

)

t≥0
be #F independent

random walks identically distributed as (SN
t )t≥0. The discussion we just had implies that

there exist i1, ..., ik, j1, ..., jk′ in {1, ...,#F} and σ a k + k′-cycle such that the Wilson
loop WN

l is equal to:

mσ

(

S
(i1)
t,N , ..., S

(ik)
t,N ,

(

S
(j1)
t,N

)−1
, ...,

(

S
(jk′ )
t,N

)−1
)

,

where we recall that mσ are the observables defined in Section 2.1. The Theorem 2.9,
applied to the evanescent family ((N − 2, 2, 0, ..., 0))N∈N allows us to conclude.

In order to generalize Proposition 3.2 and to prove Theorem 3.3, we need an estimate
on the Lipschitz norm of the function which gives the fraction of fixed points of a
permutation. Recall Definition 3.2 where we defined a distance dN on S(N).

Lemma 3.2. — For any positive integer N and any permutations σ and σ′ in S(N),
one has:

1

N

∣

∣Tr(σ)− Tr(σ′)
∣

∣ ≤ dN (σ, σ′).

Proof. — It is a consequence of the Cauchy-Schwarz’s inequality:

1

N

∣

∣Tr(σ)− Tr(σ′)
∣

∣=
1

N

∣

∣Tr(σ − σ′)
∣

∣≤
[

1

N
Tr
(

(σ−σ′)t(σ−σ′)
)

] 1
2

=dN (σ, σ′),

hence the result.

We can finish the proof of Theorem 3.3.

Theorem 3.3. — We will use the second part of Theorem 3.1. For this, we consider
(Ω,A,P) a probability space on which is defined for each positive integer N a process
(

hNp
)

p∈P
whose law is the law of the canonical process (hp)p∈P under the S(N)-Yang-

Mills measure associated with the TN -random walk on S(N). Recall the notations
defined in the proof of Theorem 3.2: we consider ΓN = L (Ω,A,P;S(N)) endowed with
the distance dN and we consider the mappings HN defined from P to ΓN .

Let us denote by E the space L (Ω,A,P;R) of real valued random variables defined on
Ω. Let us endow E with the distance d (X,Y ) = E [|X − Y |]. For any positive integer
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N , let:

ψN : ΓN → E

S 7→ 1

N
Tr (S) .

Using Lemma 3.2, for any positive integer N , ψN is a Lipschitz function and
sup
N∈N

||ψN ||Lip ≤ 1. Besides, using Proposition 3.2, and using the dominated convergence

theorem, we know that for any l ∈ Aff0, ψN (HN (l)) converges in E to a limit which is
the non-random variable φ(l). At last, Lemma 3.1 shows that the constant KN in (14)
can be taken equal to

√
2 for any positive integer N . Thus we can apply the second

part of Theorem 3.1: for any l ∈ L0, ψN (HN (l)) = WN
l converges in E to a limit φ(l)

and the function:

φ : L0 → E

l 7→ φ(l)

is continuous for the convergence with fixed endpoints.
Let l be a loop based at 0: one can approximate l ∈ L0 by a sequence of loops (ln)n∈N

in Aff0. Since for any positive integer n, φ(ln) is almost surely constant then φ(l) is
almost surely constant. Besides, the convergence of WN

l to φ(l) in probability holds
since we proved that:

dN (WN
l , φ(l)) = E

[

|WN
l − φ(l)|

]

−→
N→∞

0.

The asymptotic factorization property is a simple consequence of the dominated conver-
gence theorem.

Remark 3.2. — Theorem 3.3 is also true for more general sequences of Yang-Mills
measures, the proof follows exactly the same steps.

4. Random ramified coverings

In this section, we present a natural model of random ramified coverings on the unit
disk D. This model was first defined in [20], in Chapter 5 in the general setting of
ramified G-bundles when G is a finite group. We translate the results for random
ramified coverings without any conditions on the monodromy on the boundary. This
needs some simple verifications which will not be further discussed here. Let Y be a
finite subset of D \ ∂D.
Definition 4.1. — A ramified covering of the disk with ramification locus Y is a con-
tinuous mapping π : R→ D from a surface R such that the following conditions hold:

1. the restriction of π to π−1 (D \ Y ) is a covering,
2. for all y ∈ Y and any p ∈ π−1(y), one can find a neighborhood U of p and an

integer n ≥ 1 such that the mapping:

π|U : (U, p) → (π(U), y)

x 7→ π(x)

is conjugated to the mapping z 7→ zn: (C, 0) → (C, 0).
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The integer n is the order of ramification of p and will be denoted by or(p).
Let N be a positive integer. A ramified covering π : R→ D with ramification locus Y

has degree N if the restriction π to π−1 (D \ Y ) is a covering of degree N .

For sake of simplicity, in this paper, we will only consider simple ramified coverings
but it is easy to extend the results to general ramified covering by using Chapter 5
of [20].

Definition 4.2. — Let R be a ramified covering of the disk with ramification locus Y .
Let x ∈ Y be a ramification point of R. It is a simple ramification point if there exists
p0 ∈ π−1(x) such that or(p) = 2, and for any other p ∈ π−1(x), or(p) = 1. The ramified
covering R is simple if for any x ∈ Y , x is a simple ramification point.

Often we will denote the covering π : R → D just by R. The set of simple ramified
coverings of the disk is too big to be interesting. As one does for the theory of random
maps, we will only work with the isomorphism classes of simple ramified coverings.

Definition 4.3. — Let π : R → D and π′ : R′ → D be two simple ramified coverings.
They are isomorphic if there exists a homeomorphism h : R→ R′ such that π′ ◦ h = π.

Let N be a positive integer. We denote by RN (Y ) the set of isomorphism classes
of simple ramified coverings of degree N of D with ramification locus equal to Y . In
fact, it is even easier to work with labelled simple ramified coverings since the set of
automorphisms of a labelled ramified covering is trivial.

Definition 4.4. — Let π : R → D be a simple ramified covering of the disk of degree
N with ramification locus equal to Y . Let x be in D \ Y . A labelling l of R at the point
x is a bijection from {1, ..., n} to π−1 (x). The pair (R, l) is a labelled simple ramified
covering based at x.

Let (R, l), (R, l′) be two labelled simple ramified coverings based at x. They are iso-
morphic if there exists an isomorphism of simple ramified coverings h : R → R′ such
that h ◦ l = l′.

Let x be a point of D \ Y . The set of isomorphism classes of labelled simple ramified
coverings of D with ramification locus Y based at x and with degree N is denoted by
RN

x (Y ). In order to define a measure on RN (Y ) or RN
x (Y ), we need to define a σ-field.

The σ-field we will consider will be a Borel σ-field.

Definition 4.5. — We consider on RN
x (Y ) the topology generated by:

V ((R, l) , U) =
{

R′ ∈ RN
x (Y )|R|M\U ≃ R′

|M\U

}

,

where U is any open subset such that Y ⊂ U ⊂ D \ x.
Also, we consider on RN (Y ) the topology generated by:

V(R,U) =
{

R′ ∈ RN (Y )|R|M\U ≃ R′
|M\U

}

,

where U is any open subset such that Y ⊂ U ⊂ D.
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Let TN be the set of transpositions in S(N). The set RN
x (Y ) is in bijection with

(TN )#Y : this is a finite set, and thus we can consider the uniform measure on RN
x (Y ).

When one wants to define a measure on a finite set of objects, it is common to take into
account the size of the automorphism group: in case of labelled ramified coverings, the
uniform measure is the natural one.

Definition 4.6. — The uniform measure on RN
x (Y ) is:

UN
x,Y =

1

(#Tn)#Y

∑

(R,l)∈RN
x (Y )

δ(R,l).

The natural measure on RN (Y ) is:

UN
Y =

1

(#Tn)#Y

∑

R∈RN (Y )

n!

#Aut(R)
δR.

Using the Equation (63) of [20], one gets the following lemma.

Lemma 4.1. — Let F : RN
x (Y ) → RN (Y ) be the application where one forgets about

the labelling. We have UN
Y = UN

x,Y ◦ F−1.

Let PN (dY ) be a Poisson point process on D of intensity equal to N
2 dx. On the set

of finite subsets of D, F (D), we will consider the topology which makes the bijection
F (D) ≃ ∪k≥0(D

k \∆k)/Sk continuous. In [20], Proposition 5.3.3, T. Lévy showed that:

Lemma 4.2. — The application which sends Y , a finite subset of D, on UN
Y and the

one which sends Y , a finite subset of D \ {x}, on UN
x,Y are continuous.

Thus we can define the following measures on simple ramified coverings on the disk
(labelled or not).

Definition 4.7. — We consider on RN (Y ) and RN
x (Y ) respectively the Borel mea-

sures:

UN =

∫

UN
Y PN (dY ) and UN

x =

∫

UN
x,Y PN (dY ).

The main result in this article is that, in some sense, the measuresUN or UN
x converge

as N goes to infinity. This assertion has to be taken non-rigorously as the measures are
not supported by the same space and the limiting object is not defined. What we will
show instead is that the monodromies of the ramified coverings converge in probability.
From now on, we will only consider the measure UN

x on labelled ramified coverings. The
case of non labelled ramified coverings could be also studied, yet it would be necessary to
be a little more careful on how we define the associated holonomy process thus, for sake
of clarity, we prefered to present the results in the setting of labelled ramified coverings.

Let R be a ramified covering in RN
x (Y ) and let l be the labelling of the sheets of R

at x. Let c be a rectifiable loop in D based at x. We can transport the labelling l along
the path c: it gives us an other labelling l′ of the sheets above x. The unique element
σ ∈ S(N) such that l′ = lσ is called the monodromy of R along c with respect to l and
is denoted by monR,l(c). Suppose that we label R at x with l ◦ η where η ∈ S(N), then
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c transports the labelling lη on lmonR,l(c)η: it shows that for any curves c1 and c2 based
at x,

monR,l(c1) = η−1monR,l◦η(c1)η,(17)

monR,l(c
−1
1 ) = (monR,l(c1))

−1 ,(18)

monR,l(c1c2) = monR,l(c2)monR,l(c1),(19)

where we recall that c1c2 is the concatenation of c1 with c2 and c−1
1 is the curve c1 with

reversed orientation.
If c is a rectifiable curve, PN (dY )-a.s. the range of c is inside D \ Y . We can thus

define the holonomy process associated with UN
x by using the monodromy along any

rectifiable loop based at x. The set of rectifiable loops in D based at x is denoted by
Lx(D).

Definition 4.8. — The random holonomy field on Lx(D) associated with UN
x is the

process (m(c))c∈Lx(D)
defined on

(

RN
x ,U

N
x

)

where:

mN (c) : RN
x → S(N)

(R, l) 7→ monR,l(c).

For any c1 and c2 in Lx(D), U
N
x -a.s,

mN (c1c2) = mN (c2)mN (c1),

mN

(

c−1
1

)

= mN (c1)
−1.

It is quite natural to wonder how a change of the base point x changes the random
holonomy field: in order to do so, we need to consider the same index set for the random
processes.

Definition 4.9. — Let c0→x be a path from 0 to x. The random holonomy field
on L0(D) associated with UN

x is the process
(

mN

(

c−1
0→x c c0→x

))

c∈L0(D)
defined on

(

RN
x ,U

N
x

)

.

Its law does not depend on the choice of c0→x and it was also proved by Lévy that the
laws of the random holonomy field on L0(D) associated with UN

x do not depend on the
choice of x. From now on, we will only consider the random holonomy field on L0(D)
associated with UN

0 . Let us state a theorem which is a direct consequence of Proposition
5.4.4 of [20].

Theorem 4.1. — Let
(

SN
t

)

t≥0
be a TN -random walk on S(N). The holonomy field

on L0(D) associated with UN
0 has the same law as the process (h(l))l∈L0(D)

under the

S(N)-valued Yang-Mills measure associated with
(

SN
t

)

t≥0
.

In a nutshell we have the following “equality”:

Monodromy of random ramified coverings = S(N) valued Yang−Mills measure.

Using Theorems 3.3 and 4.1, we have proved in this article that the traces of the mon-
odromies of random ramified coverings of the disk of degree N converge in probability
as N goes to infinity.
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Theorem 4.2. — There exists an non-random application:

φ : L0(D) → R

l 7→ φ(l),

which is continuous for the convergence with fixed endpoints such that for any loop
l ∈ L0(D),

1
N
Tr (mN (l)) converges in probability to φ(l) as N goes to infinity. The

application φ is the S(∞)-master field associated with the transpositions.

5. Computation of the S(∞)-master field

Let us remark that the proofs of the existence of the S(∞)-master field allows us
to compute explicitely the S(∞)-master field on loops which can be drawn on graphs.
Indeed, given such a loop l0, there exists a graph G and facial lassos (lF )F∈F defined on
this graph such that the random variable hl0 is a product of random variables of the form
hlF or h−1

lF
, with F ∈ F. Yet, the random variables (hlF )F∈F are independent and for any

F ∈ F, hlF has the same law as SN
dx(F ). When N goes to infinity, the family (hlF )F∈F

converges in P-distribution and hlF0
is asymptotically P-free with (hlF )F∈F\{F0}

for any

bounded face F0. This P-freeness allows us to compute the S(∞)-master field.
Let us give an exemple of a computation of φ(l), where φ is the S(∞)-master field.

Let us consider the loop l as drawn in Figure 2. Let us consider the loops a, b and c as
drawn in Figure 3.

s

t

u

Figure 2. The loop l.

a b c

Figure 3. The decomposition in facial lassos.

We have the decomposition:

l = aba−1bc.
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Thus, we have the decomposition for the holonomy field:

h(l) = h(c)h(b)h(a−1)h(b)h(a).

For any N , under the Yang-Mills measure with S(N) structure group, the random
variables h(a), h(b) and h(c) are independent and they have respectively the law of SN

s ,
SN
t and SN

u , where (SN
t )t≥0 is the walk by transpositions on S(N). For any integer N ,

let AN , BN , CN be three independent variables which have respectively the law of SN
s ,

SN
t and SN

u . We want to compute:

φ(l) = lim
N→∞

1

N
E[Tr(CNBNA

−1
N BNAN )].

Let us recall a consequence of Theorem 3.4 of [15].

Lemma 5.1. — Let M and L be two elements of L∞− ⊗M(C) which converge in P-
distribution and which are asymptotically P-free. Then:

Emid1 [ML] = Emid1 [M ]Emid1 [L]

Em(1,2)[ML,ML−1] = Eκid2 [M ] + Eκ02 [M ]Em02 [L,L
−1]

+ Eκ(1,2)[M ]Emid2 [L,L
−1],

where (1, 2) is the transposition and 02 = {1, 2, 1′, 2′}.

Using this lemma, we get that limN→∞
1
N
E[Tr(CNBNA

−1
N BNAN )] is equal to:

(

lim
N→∞

1

N
E[Tr(CN )]

)(

lim
N→∞

1

N
E[Tr(BNA

−1
N BNAN )]

)

.

We already computed
(

limN→∞
1
N
E[Tr(CN)]

)

in the proof of Lemma 3.1: it is equal to

e−u. Besides:
(

lim
N→∞

1

N
E[Tr(BNA

−1
N BNAN )]

)

= Em(1,2)[BA,BA
−1].

After some easy computations similar to the one we did in Lemma 2.3, using the results
given in Theorem 2.7 and in Lemma 5.1, we get that:

φ(l) = e−u
[

e−2t + e−te−s − e−2te−s + e−2te−2s − e−2te−2st
]

.
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[19] Lévy, T.: Schur-Weyl duality and the heat kernel measure on the unitary group. Advances
in Mathematics 218, 2, 537–575 (2008)
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