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A COMBINATORIAL THEORY OF RANDOM MATRICES III:

RANDOM WALKS ON S(N), RAMIFIED COVERINGS AND

THE S(∞) YANG-MILLS MEASURE

by

Franck Gabriel

E-mail: franck.gabriel@normalesup.org

Abstract. — The aim of this article is to study some asymptotics of a natural model
of random ramified coverings on the disk of degree N . We prove that the monodromy
field, called also the holonomy field, converges in probability to a non-random field as N

goes to infinity. In order to do so, we use the fact that the monodromy field of random
uniform labelled simple ramified coverings on the disk of degree N has the same law as the
S(N)-Yang-Mills measure associated with the random walk by transposition on S(N).

This allows us to restrict our study to random walks on S(N): we prove theorems
about asymptotics of random walks on S(N) in a new framework based on the geometric
study of partitions and the Schur-Weyl-Jones’s dualities. In particular, given a sequence of
conjugacy classes (λN ⊂ S(N))N∈N, we define a notion of convergence for (λN)N∈N which
implies the convergence in non-commutative distribution and in P-expectation of the λN -
random walk to a P-free multiplicative Lévy process. This limiting process is shown not
to be a free multiplicative Lévy process and we compute its log-cumulant functional. We
give also a criterion on (λN)N∈N in order to know if the limit is random or not.
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1. Intoduction

Yang-Mills theory was introduced by Yang and Mills, in 1954, in [26] as a theory of
random connections on a principal bundle with gauge symmetry. In two dimensions, it
has been defined by mathematicians ([3], [4], [5], [6], [8], [9], [14], [15], [17], [19], [24],
[25]) and it has become well understood that it was a theory of random multiplicative
functions from the set of paths of a two dimentional surface to a compact group G. In
[13], the author proved that an axiomatic formulation of planar Yang-Mills measures,
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similar to the axioms for Lévy processes, could be set: this allowed to prove a correspon-
dance between Yang-Mills measures and a set of Lévy processes on G. In the following,
by Yang-Mills measure, we consider the one given by chosing a Brownian motion on G.

When the structure group G is a discrete group, T. Lévy proved in [19] that the
Yang-Mills measure could be seen as the random monodromy field of a random ramified
G-bundles. Since ramified S(N)-bundles are in bijection with ramified coverings with
N sheets, one recovers the link explained by A. D’Adda and P. Provero in [1] and [2]
between S(N)-Yang Mills measure and random branched S(N) coverings. It has to be
noticed that this link is different from the U(N)-Yang Mills measure/ramified coverings
partly explained in [18] and also known as the Yang-Mills/String duality. The theory of
random ramified coverings has also some interesting and challenging links with quantum
gravity ([27]).

In this article, we study the asymptotic of the theory of random ramified coverings
coming from the S(N)-Yang Mills measure as N goes to infinity: we construct the
S(∞)-master field. The rigorous study of the asymptotics of Yang-Mills measures driven
by the Brownian motion on the unitary group begun with M. Anshelevich and A.N.
Sengupta in [7] where the convergence was proved for a weak Yang-Mills measure and
T. Lévy in [16] where asymptotics and Makeenko-Migdal equations were proved for the
full Yang-Mills measure. In this last article, the unitary, orthogonal and sympleptic
groups were considered, and the convergence of the Yang-Mills measure driven by the
different Brownian motions, as the dimension of the group goes to infinity, was proved by
using estimates for the speed of convergence in non-commutative distribution of arbitrary
words in independent Brownian motions. In the article [10] in preparation, the author
and his co-author show how to prove asymptotics of Yang-Mills measures driven by
Lévy processes on the unitary and orthogonal groups without using any estimates for
the speed of convergence: the asymptotic of Yang-Mills measure is a consequence of
the convergence in non-commutative distribution of the Lévy processes considered and
a kind of two-dimensional Kolmogorov’s continuity theorem proved by T. Lévy in [19].

Using similar arguments, we prove convergence of Yang-Mills measure driven by ran-
dom walks on the symmetric groups by proving the convergence in non-commutative
distribution of some continuous-time random walks on the symmetric groups. For sake
of simplicity, for any integer N , we only consider random walks which jump by an element
which is drawn uniformly from a conjugacy class λ(N) of S(N). If the conjugacy class
λ(N) converges in some sense, then the random walks will converge in non-commutative
distribution. In particular, the eigenvalue distribution will converge when N goes to
infinity. When λN is the set of transpositions, this result was shown using representa-
tion theory [22]. Besides, it seems possible that some of these results could be deduced
from the proofs of articles like [20], [21] where the distance from the identity was proved
to converge. The study of asymptotics linked with random walks was also one of the
concern of the article [23]. In these last articles, the heuristic idea was to consider the
symmetric group as a “Lie group” whose “Lie algebra” would be in some sense Z[C]
where C = ∪∞

k=2

(

[1, N ]k/ ∼
)

where (i1, ..., ik) ∼ (j1, ..., jk) if the second one is obtained
by a cyclic permutation of the first one. In this picture, the exponential of c ∈ C would
just be the permutation which has c as a single non-trivial cycle. The interesting fact
about this is that, one can link easily the Brownian motion on the “Lie algebra” which
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drives the Brownian motion on the symmetric group (the random walk by transposition)
with some Erdös-Renyi random graph process. Using the natural coupling between the
two processes, one can then transfer results from Erdös-Renyi random graph processes
to the study of random walks on the symmetric graph.

In this article, we use a generalization of the non-commutative probability ideas,
defined in [11] and [12], in order to prove asymptotics and phase transitions for the
random walks on the symmetric group without using the coupling with the Erdös-Renyi
random graph processes. This allows us to show that asymptotics of random walks on
the symmetric groups can be studied with the same tools than the one used for the
study of multiplicative unitary Lévy processes (Section 10 of [12]). This method is a
generalization of the method used by T. Lévy in [18] or [16] in order to study the large
N asymptotics of the Brownian motions on U(N), O(N) and Sp(N). In particular, we
do not use any theory of representations, as opposed to [22] where some results where
given for the random walk by transpositions. We prove results in a more general setting,
in particular we do not ask that the elements of λN have bounded support when N goes
to infinity. This allows us to show that there exist two behaviors for the eigenvalues
empirical distribution: if the size of the support is o(N) then it converges in probability
to a non random probability measure we are able to compute explicitely, and if the
support is growing like αN , the eigenvalues empirical distribution converges in law to
a random measure. As an application of asymptotic P-freeness of matrices which are
invariant by the symmetric group, we get that the whole random walk converges in
distribution in non-commutative distribution to a process whose increments are not free
but P-free. This gives the first non-trivial example of P-free multiplicative Lévy process
which log cumulant functional is computed.

1.1. Layout. — The results we present in this article are based on the study of the
asymptotic of random walks on the symmetric group (Section 2). The theorems about
convergence of random walks on the symmetric group S(N) are presented in Section
2. After some preliminary results explained in Section 2.2, we give the proofs of these
theorems in Section 2.3. The log-cumulant functional for the limit of random walks on
the symmetric group is computed in Section 2.4.

A short presentation of Yang-Mills measure with S(N)-gauge group is explained in
Section 3. In the same section, we prove that the Wilson loops in S(N)-Yang-Mills
measure converge in probability as N goes to infinity to a non-random field: the S(∞)-
master field.

Based on the results of T. Lévy in [19], we explain in Section 4 how to link the study
of random coverings of the disk and the study of S(N)-Yang-Mills measure. This allows
us to prove that the monodromy field of a model of random simple ramified labelled
covering of the unit disk with N sheets converges in probability to a non-random field
as N goes to infinity.

2. Convergence of random walks on S(N)

2.1. General theorems of convergence. — In this section, we state the general
theorems about convergence of random walks on the symmetric group. The proofs will
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be given in Section 2.3. Let N be a positive integer, let us consider λN a conjugacy
class of S(N), the symmetric group on N elements. We denote by #λN the size of the
conjugacy class λN . Let σ be in λN and let i be in {1, ..., N}. For any k ∈ {1, ..., N},
the period of k in σ is the smallest positive integer n such that σn(k) = k. We denote by
λN (i) the number of elements in {1, ..., N} which period in σ is equal to i: this number
does not depend on the choice of σ. Thus, we can see λN as a partition of N :

λ = (λN (i))∞i=1 and
∞
∑

i=1

λN (i) = N.

Definition 2.1. — We define the λN -random walk on S(N), denoted by
(

SN
t

)

t≥0
, as

the Markov process on S(N) such that SN
0 = idN and whose generator is given by:

∀f ∈ R
S(N),∀σ0 ∈ S(N),HNf(σ0) =

N

λN (1c)

1

#λN

∑

σ∈λN

[

f(σσ0)− f(σ0)
]

,

where we used the following notation:

λN (1c) = N − λN (1).

This random walk is invariant by conjugation by S(N).

Lemma 2.1. — Let σ be in S(N), let
(

SN
t

)

t≥0
be a λN -random walk on S(N). We

have the equality in law:
(

σSN
t σ

−1
)

t≥0
=
(

SN
t

)

t≥0
.

Proof. — It is a consequence of the fact that the generator of
(

SN
t

)

t≥0
is invariant by

conjugation by S(N).

For any positive integer N , let λN be a conjugacy class of S(N).

Definition 2.2. — The sequence (λN )N∈N converges if and only if there exists:

(λ(i))i≥2 ∈
{

(ai)i∈N\{0,1} | ∀i ≥ 2, ai ≥ 0,

∞
∑

i=2

ai ≤ 1

}

such that for any integer i ≥ 2:

λN (i)

λN (1c)
−→
N→∞

λ(i),

and there exists α ∈ [0, 1] such that:

λN (1)

N
−→
N→∞

1− α.

The sequence (λN )N∈N is evanescent if α = 0 and it is macroscopic if α > 0.
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Moreover we say that (λN )N∈N converges at any order of fluctuations if one can find
(

(λ(m)(i))m∈N

)

i≥2
and

(

β(m)
)

m∈N
such that for any k ≥ 0

λN (i)

λN (1c)
−

k
∑

m=0

λ(m)(i)

Nm
= o

(

1

Nk

)

,

λN (1)

N
−

k
∑

m=0

β(m)

Nm
= o

(

1

Nk

)

.

For any positive integer N , let us consider
(

SN
t

)

t≥0
a λN -random walk on S(N).

Recall Definition 5.1 of [12]. Let us suppose that the sequence (λN )N∈N converges.

Theorem 2.1. — For any t ≥ 0, the mean empirical eigenvalues distribution of
(

SN
t

)

N∈N
converges as N goes to infinity to a probability measure µλt which has the

form:

µλt =
∑

n∈N∗

n−1
∑

k=0

mnc(t)

n
δ
e
2ikπ
n

+m∞c(t)λU,

with m∞c(t) = 1−∑∞
k=0mnc(t) ≥ 0 and mnc(t) ≥ 0 for any integer n.

Recall that [σ] is the conjugacy class of σ which can be seen as a partition of N . Let us

take the convention that for any positive integer k:
((1−0)k−1)

0 = −k. Let us consider the

unique solution
(

(mσc(t))σ∈∪kSk

)

t≥0
of the system of differential equations: ∀k ∈ N

∗,

∀σ0 ∈ Sk, ∀t0 ≥ 0:

d

dt |t=t0
mσc

0
(t)=

(

(1− α)k − 1
)

α
mσc

0
(t0)

+
∑

σ∈Sk\{idk},σ≤σ0

αnc(σ∨id)−[σ](1)−1

(

k
∏

i=2

(λ(i))
[σ](i)

i

)

(1− α)[σ](1)m(tσσ0)c(t0),

with the initial conditions: ∀k ∈ N
∗,∀σ ∈ Sk:

mσc(0) = δσ=idk .

Then for any positive integer n, for any real t ≥ 0:

mnc(t) = m(1,...,n)c(t),

where (1, ..., n) ∈ Sn is a n cycle. Besides for any t ≥ 0 and any σ ∈ Sk:

mσc(t) = lim
N→∞

Emσc

[

(

SN
t

)⊗k
]

.

This theorem can be extended to the whole process
(

SN
t

)

t≥0
. Recall the notion of

convergence in P-expectation defined in Definition 2.2 of [12]. Recall also the Definition
7.5 in [12].
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Theorem 2.2. — The family
(

SN
t

)

t≥0
converges in P-expectation as N goes to infinity.

The process
(

(

SN
t

)

N∈N

)

t≥0
is a matricial P-free multiplicative Lévy process. It is not

a S-free multiplicative Lévy process. In particular, if (λN )N∈N is evanescent, it is not a
free multiplicative Lévy process in the sense of Voiculescu: the multiplicative increments
are not asymptotically free.

Besides, if (λN )N∈N converges at any order of fluctuations, then the family
(

SN
t

)

t≥0
converges in P-expectation up to any order of fluctuations as N goes to infinity.

In fact, the proof of Theorem 2.1 will show that the empirical eigenvalues distribution
of
(

SN
t

)

N∈N
converges in law as N goes to infinity to a random measure: depending on

the behavior of (λN )N∈N, one can know if the limit is or is not non-random.

Theorem 2.3. — Let t be a positive real. The empirical eigenvalues distribution µλN
t

of SN
t converges in law to a random measure on U, denoted by µλt . Two behaviors are

possible:

1. if the sequence (λN )N∈N is evanescent then the limiting measure is a non-random
measure on U, µλt = µλt , and the convergence holds in probability. The family
(

SN
t

)

N∈N
satisfies the asymptotic P-factorization and thus it converges in proba-

bility in P-normalized moments,
2. if the sequence (λN )N∈N is macroscopic, then the limiting measure is not a non-

random measure on U and the family
(

SN
t

)

N∈N
does not satisfy the asymptotic

P-factorization.

In the case where the sequence (λN )N∈N is evanescent, we can compute explicitly the
measure µλt . Given Theorem 2.1, we only need to compute its moments or equivalently
mnc(t).

Theorem 2.4. — Let us suppose that (λN )N∈N is evanescent. Let us use the same
notations as in Theorem 2.1 and in Definition 2.2. Let n be a positive integer and let
t ≥ 0. We have:

mnc(t) = e−nt
n−1
∑

k=0

tk
nk−1

k!

∑

(i1,...,ik)∈N∗,
∑k

j=1 ij=n−1

k
∏

j=1

λ(ij + 1).(1)

We used the usual conventions for the products and the sums, thus m1c(t) = e−t. In
particular for any positive integer n, and any t ≥ 0:

mn(t) :=

∫

z∈U
zndµλt (z) =

∑

d|n

e−dt
d−1
∑

k=0

tk
dk−1

k!

∑

(i1,...,ik)∈N∗,
∑k

j=1 ij=d−1

k
∏

j=1

λ(ij + 1).

In particular, let us consider a positive integer k, let us suppose that λ(k) = 1 and
for any positive integer l 6= k, λ(l) = 0. This means that we are considering a random
walk which jumps by multiplication by a uniform k-cycle. Let t be a non-negative real.
If there does not exist any positive integer u such that n = u(k−1)+1, then mnc(t) = 0.
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Besides, for any u ∈ N:

m(u(k−1)+1)c(t) = e−(u(k−1)+1)ttu
(u(k − 1) + 1)u−1

u!
.(2)

Let us suppose for this discussion that (λN )N∈N is evanescent. In Theorem 2.1, we
saw that the measure µλt is the sum of an atomic part and m∞c(t) times the Lebesgue
measure on the unit circle. In fact there exists a real tλc ≥ 0 such that µλt is purely
atomic for t < tλc and for any t > tc, µ

λ
t is a sum of a purely atomic and a multiple of

the Lebesgue measure. This critical time is the same critical as found by N. Berestycki
in [21] for the phase transition for the distance to the identity.

Theorem 2.5. — Let us suppose that (λN )N∈N is evanescent. The function t 7→ m∞c(t)
is continuous and converges to 1 as t goes to infinity. Besides, if we define:

tλc = δ∑∞

j=2 λ(j)=1
1

∑∞
j=2(j − 1)λ(j)

,(3)

for any 0 ≤ t ≤ tλc , m∞c(t) = 0 and for any t > tλc , m∞c(t) > 0.

Using the theorems already explained, we recover Theorem 3 of [20], Theorem 4 of
[22]. We recommend the reader to have also a look at Theorem 3 of [21].

Corollary 2.1. — Let us suppose that (λN )N∈N converges and is evanescent. For any
positive integer N , let

(

SN
t

)

t≥0
be a λN -random walk on the symmetric group. For any

permutations σ and σ′ in S(N), let dS(N) (σ, σ
′) be the distance in S(N) between σ and

σ′ defined as N − nc (σ ∨ σ′), where nc is the function which gives the number of cycles.
Then for any t ≥ 0, 1

N
dS(N)

(

idN , S
N
t

)

converges in probability when N goes to infinity
to the non-random continuous function:

dλ(t) = 1−
∞
∑

k=1

1

k
mkc(t),

where mkc(t) is given by Equation (1).

Using the Equation (2), we recover Equation (5) of [21], yet this expression of dλ(t) for
general λ seems to be new. The function dλ(t) was studied in [21], when (λN (1c))N∈N

is constant and equal to a positive integer a: using tλc defined before, it was shown that
dλ(t) is C∞ on a subset of the form R

+ ⊂ I, with I a bounded interval of ]t0,∞[, for

any t < tλc , d
λ(t) = t

a
and

(

dλ
)′′ (

(tλc
)+

) = −∞. Using the Stirling’s formula, it is easy
to see that for the random walk which only jumps by multiplication by a k-cycle, the
set I is empty.

In the second part of the article, in order to construct the Yang-Mills S∞-field, we will
need the following result whose proof will not be given since it is an easy consequence of
Theorems 2.2, 2.3, Lemma 2.1 of this article and the Theorem 7.8 and Proposition 2.1
of [12].

Let n be a positive integer and for any positive integer N , let us consider
(

S1,N
t

)

t≥0
,

. . . ,
(

Sn,N
t

)

t≥0
, n independent λN -random walks on S(N). Recall the Equation (4) of

[12] and Section 2.2 of [11].
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Theorem 2.6. — The family of random matrices:

F =

(

(

Sk,N
t

)

N∈N
,

(

(

Sk,N
t

)−1
)

N∈N

)

t≥0,k∈{1,...,n}

converges in P-expectation as N goes to infinity. Besides, if (λN )N∈N is evanescent, then
F satisfies the asymptotic P-factorization property as N goes to infinity. This implies
that F converges in probability in P-normalized moment: for any positive integer k, for

any p ∈ Pk, for any k-uple
(

(

BN
1

)

N∈N
, ...,

(

BN
k

)

N∈N

)

of elements of A (F):

1

Nnc(p∨id)
Trk

(

(

BN
1 ⊗ ...⊗BN

k

)

ρPk
N (p)

)

converges in probability to the limit of its expectation as N goes to infinity.

Besides, for any i ∈ {1, ..., k},
(

Si,N
t

)

t≥0
∪
(

(

Si,N
t

)−1
)

t≥0

is asymptotically P-free

but not asymptotically free in the sense of Voiculescu from
(

(

Sk,N
t

)

N∈N
,

(

(

Sk,N
t

)−1
)

N∈N

)

t≥0,k∈{1,...,n}\{i}

.

2.2. Preliminary results. — Before we prove the theorems we just stated, we need
some preliminary results. We could have written them in [12], yet since most of them
are specific to permutation matrices we prefered to explain them in this article.

2.2.1. Exclusive moments for permutation matrices. — Let k be a positive integer.
Recall the notions of irreducible partition and of extraction defined in Definitions 2.9
and 2.12 of [11]. Let p be a partition, we recall that l(p) is the lengh of p: it is the
unique integer such that p ∈ Pl(p).

Definition 2.3. — Let I = {b1, ..., bs} be a partition of {1, ..., k}, let σ be an irreducible
permutation of {1, ..., s}. For any integer l ∈ {1, ..., s}, we denote by b′l the set {j ∈
{1′, ..., k′},∃i ∈ bl, j = i′}. The partition:

p =
{

bl ∪ b′σ(l), l ∈ {1, ..., s}
}

is called the necklace associated with (I, σ). The true-length of p, denoted | p |, is equal
to s.

Let p be an irreducible partition in Pk: it is a chain if and only if there exist two
blocks s and r of p such that the partition p̃ = p \ {r, s} ∪ {r ∪ s} is a necklace. The
true-length of p, denoted |p |, is equal to the true-length of p̃.

A partition p in Pk is a parure if for any cycle c of p the extraction of p on c is either
a chain or a necklace. The true-length of p is defined by:

|p |=
∑

c cycle of p

|pc | .

Let N be a positive integer, let S be a permutation in S(N). Recall Sections 2.2 and
2.3 of [11]. For sake of clarity, in the following we will denote by mpc(S) the number

1
Nnc(p∨id)Tr(S

⊗k ◦ ρPk
N (pc)).
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Proposition 2.1. — Let S be a permutation in S(N), let p be a partition in Pk. If p
is not a parure then mpc (S) = 0. If p is a necklace, then mpc (S) = m(1,...,|p|)c (S), and
if p is a chain, then:

mpc (S) = 1−
|p|
∑

l=1

m(1,...,l)c (S) .

Proof. — Let S be a permutation in S(N). Let p be a partition in Pk. Let us consider
a block b of p. Let u and v (resp. u′ and v′) be in {1, ..., k} (resp. {1′, ..., k′}) which are
in the same block of p. Then u′ and v′ (resp. u and v) must be in the same block of p
if one wants mpc(S) not to be equal to zero. This is a consequence of the fact that for
any i, j, l ∈ {1, ..., N},

Sj
i S

l
i = Sj

i δl=j and Si
jS

i
l = Si

jδl=j .(4)

Yet, if p is not a parure, these conditions on the blocks of p are not satisfied, thus
mpc (S) = 0.

The assertion about the exclusive moments when p is a necklace is a consequence of
the Equations 4. Let us suppose that p is a chain. Using the Equations (4), we get that
mpc (S) is the fraction of elements of {1, ..., N} which period in S is strictly greater than
|p |. Thus it is equal to one minus the fraction of elements of {1, ..., N} which period in
S is less than |p |. Since for any positive integer l, m(1,...,l)c (S) is the fraction of elements
of {1, ..., N} which period in S is equal to l, we get the following equality:

mpc (S) = 1−
∑

l≥1,l≤|p|

m(1,...,l)c(S),

which is the equality we had to prove.

2.2.2. Link between moments and exclusive moments for permutation matrices. —
When one considers permutation matrices, an interesting link occurs between normal-
ized moments and normalized exclusive moments. Let N be a positive integer and let S
be a permutation in S(N). For any positive integer l, (1, ..., l) is the l-cycle in Sl.

Proposition 2.2. — For any positive integer k,

Tr
[

S⊗k ◦ ρPk
N ((1, ..., k))

]

=
∑

d∈N∗,d|k

Tr
[

S⊗d ◦ ρPk
N ((1, ..., d)c)

]

.

Proof. — This is due to the fact that for any positive integer k,

Tr
[

S⊗k ◦ ρPk
N ((1, ..., k))

]

=
1

N
Tr
(

Sk
)

is equal to the fraction of elements i ∈ {1, ..., N} whose period divides k and

Tr
[

S⊗d ◦ ρPk
N ((1, ..., d)c)

]

is equal to the fraction of elements i ∈ {1, ..., N} whose

period is equal to d.
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2.2.3. Measures. — The following lemma is a special and easy case of the problem of
moments.

Lemma 2.2. — Let (κn)n∈N be a sequence of positive numbers such that
∑∞

i=1 κi ≤ κ0.
There exists a unique measure µ on U whose weight is equal to κ0 such that:

∀n ∈ N
∗,

∫

U

zndµ(z) =
∑

d∈N∗,d|n

κd.

Besides µ is equal to:

∑

n∈N∗

n−1
∑

k=0

κn
n
δ
e
2ikπ
n

+

[

κ0 −
∞
∑

i=1

κi

]

λU.

Proof. — Any measure on the unit circle U is characterized by its non-negative mo-
ments as we saw in the proof of Theorem 2.1 of [12]. Let (κn)n∈N be a sequence of
positive numbers such that

∑∞
i=1 κi ≤ κ0. It is enough to see that the moments of

∑

n∈N∗

∑n−1
k=0

κn(t)
n
δ
e
2ikπ
n

+ [κ0 −
∑∞

i=1 κi]λU are equal to the ones expected.

Let (κn)n∈N be a sequence of positive numbers such that
∑∞

i=1 κi ≤ κ0. Let µ be
the unique measure associated to (κn)n∈N which is given by Lemma 2.2. By looking at
the form of µ, one can see that the weight of the purely atomic part of µ is equal to
∑

n≥1 κn.

2.2.4. Criterion for non S-freeness. — In the article [12], we saw that the Voiculescu
asymptotic freeness and the asymptotic P-freeness are not the same notions. Let us
state some consequence of Proposition 7.1 of [12] when one considers random matrices
whose entries are equal either to zero or one. Recall that 02 is the partition {{1, 2, 1′, 2′}}
in P2. Recall that the notion of L∞− ⊗M(C) was defined at the beginning of Section
2.1 of [12]. At last, recall Definition 2.1 and Notation 2.1 of [12].

Lemma 2.3. — Let S =
(

SN
)

N∈N
be an element of L∞−⊗M({0, 1}). Let us suppose

that S converges in expectation in P-moments then:

Eκ02P [S, S] = Emid1 [S]− Emid2 [S, S].

If the asymptotic S-factorization property holds for S, then:

Eκ02P [S, S] = Emid1 [S] (1− Emid1 [S]) .

Proof. — Indeed, we have Eκ02P [S, S] = Em02 [S, S] − Emid2 [S, S]. Yet, one does not

forget that for any integer N , SN is a matrix of zeros and ones, thus for any positive
integer N , Em02

[

SN ⊗ SN
]

= Emid1

[

SN
]

. This implies that:

Eκ02P [S, S] = Emid1 [S]− Emid2 [S, S].

The second assertion is a direct consequence of the S-factorization property.

Proposition 2.3. — Let S1 and S2 be two elements of L∞−⊗M({0, 1}) which converge
in expectation in P-moments and which are asymptotically P-free. If for i ∈ {1, 2},
Emid2 [Si, Si] 6= Emid1 [Si], which is equivalent to say that 1

N
Tr
(

SN
i

)

does not converge
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in law to a random variable which takes value in {0, 1}, then S1 and S2 are not asymp-
totically S-free.

In particular, if the asymptotic P-factorization property holds for both of them, if
Emid[S1] /∈ {0, 1} and Emid[S2] /∈ {0, 1}, then S1 and S2 are not asymptotically free in
the sense of Voiculescu.

Proof. — This is a consequence of Proposition 7.1 of [12], of Lemma 2.3 of this article
and also of the fact that under the hypothesis of asymptotic factorization the S-freeness
is equivalent to the usual freeness as explained in Section 7.1.3 of [12].

2.3. Proofs of the theorems of Section 2.1. — We can now prove the theorems
of Section 2.1.

Proof of Theorem 2.1 and Theorem 2.2. — For any positive integer N , let us consi;der
λN a conjugacy class of S(N). Let us suppose that (λN )N∈N converges as N goes to

infinity. For any positive integer N , let us consider
(

SN
t

)

t≥0
a λN -random walk on S(N).

Let N and k be two positive integers and let us define:

GN
k =

d

dt |t=0
E

[

(

SN
t

)⊗k
]

=
N

λN (1c)

1

#λN

∑

σ∈λN

[

σ⊗k − id⊗k
]

.

Let p be a partition in Pk. Let σN ∈ λN , let us remark that:

mpc
(

GN
k

)

=
N

λN (1c)

[

mpc

(

σ⊗k
N

)

−mpc

(

id⊗k
)]

,

thus, using Proposition 2.1, if p is not a parure, then mpc
(

GN
k

)

= 0.
Let us suppose that p is an irreducible parure, then it is either a necklace or a chain.

Yet, using Proposition 2.1, it is enough to consider the case when p is a necklace, and
thus when it is a cycle. Let us suppose that p = (1, ..., k), then:

mpc
(

GN
k

)

=
N

λN (1c)

[

m(1,...,k)c

(

σ⊗k
N

)

−m(1,...,k)c

(

id⊗k
)]

.

If k = 1, then:

mpc
(

GN
k

)

=
N

λN (1c)

[

λN (1)

N
− N

N

]

= −1.

If k 6= 1, then:

mpc
(

GN
k

)

=
N

λN (1c)

[

λN (k)

N

]

=
λN (k)

λN (1c)
−→
N→∞

λ(k).

If p is a chain, let us remark that, using again Proposition 2.1:

mpc
(

GN
k

)

=
N

λN (1c)
mpc

(

σ⊗k
N

)

=
N

λN (1c)



1−
|p|
∑

l=1

m(1,...,l)c

(

σ⊗l
N

)



 −→
N→∞

1−
|p|
∑

l=2

λ(l).
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Thus, for any irreducible partition, mpc
(

GN
k

)

converges as N goes to infinity. Yet, if
p is irreducible, any partition p′ which is coarser than p is also irreducible. This implies
that, for any irreducible partition, mp

(

GN
k

)

converges as N goes to infinity.
Let us remark that for any partition p in Pk:

mp

(

GN
k

)

=
N

λN (1c)

[

mp

(

σ⊗k
N

)

− 1
]

.(5)

Thus, we have proved that for any irreducible partition p, mp(σ
⊗k
N ) converges as N goes

to infinity, and besides, if (λN )N∈N is evanescent, then lim
N→∞

mp(σ
⊗k
N ) = 1. Let r be a

positive integer, let us consider r irreducible partitions p1, ..., pr, we have:

mp1⊗...⊗pr

(

GN
k

)

=
N

λN (1c)

[

mp1⊗...⊗pr

(

σ⊗k
N

)

− 1
]

=
N

λN (1c)

[

r
∏

i=1

mpi

(

σ⊗k
N

)

− 1

]

=
r
∑

i=1

(

N

λN (1c)

[

mpi

(

σ⊗k
N

)

− 1
]

r
∏

l=i+1

mpl

(

σ⊗k
N

)

)

=

r
∑

i=1

(

mpi

(

GN
k

)

r
∏

l=i+1

mpl

(

σ⊗k
N

)

)

.

This proves that mp1⊗...⊗pr

(

GN
k

)

converges as N goes to infinity. Thus for any positive

integer k, for any partition p ∈ Pk, mp

(

GN
k

)

converges as N goes to infinity.

Using Theorem 10.1 of [12], the family
(

SN
t

)

t≥0
converges in P-expectation and

(

(

SN
t

)

N∈N

)

t≥0
is a P-matricial free Lévy process. It is easy to see that the last as-

sertion of Theorem 2.2 holds.
In particular, for any t ≥ 0,

(

SN
t

)

N∈N
converges in P-expectation as N goes to infinity.

Using Theorem 2.1 of [12], we deduce that the mean empirical eigenvalues distribution
of
(

SN
t

)

N∈N
converges as N goes to infinity to a probability measure µλt defined on the

circle U. Besides, the measure µλt is characterized by the fact that for any positive integer
n:

∫

U

zndµλt = lim
N→∞

Em(1,...,n)

[

(

SN
t

)⊗n
]

.

Using Proposition 2.2, we get that:
∫

U

zndµλt =
∑

d∈N∗,d|n

lim
N→∞

Em(1,...,d)c

[

(

SN
t

)⊗d
]

.

We are in the setting of Lemma 2.2 thus µλt is equal to:

µλt =
∑

n∈N∗

n−1
∑

k=0

mnc(t)

n
δ
e
2ikπ
n

+m∞c(t)λU,

where for any integer n ∈ N
∗, mnc(t) = lim

N→∞
Em(1,...,n)c

[

(

SN
t

)⊗n
]

.
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For any positive integer k, any σ ∈ Sk and any t ≥ 0, let us denote by mσc(t) the

limit lim
N→∞

Emσc

[

(

SN
t

)⊗k
]

. Using Theorem 5.2 of [12], we know that:

mσc(t) = EκσP [St, ..., St] .

Using Theorem 10.2 of [12], and using the same notations as for this theorem, we get
that mσc(t) satisfies the system of equations, ∀t0 ≥ 0, ∀k ∈ N

∗, ∀σ0 ∈ Sk:

d

dt |t=t0
mσc

0
(t) =

∑

p1∈Pk,p2∈Pk|p1◦p2=σ0,p1≺σ0

(RP [G])p1 (RP [St])p2 .

Yet, we saw, in Lemma 6.3 of [11], that if p1 and p2 are two partitions such that
p1 ◦p2 = σ0 and p1 ≺ σ0, then p1 and p2 are two permutations and p1 ∈ [id, σ0]Sk

. Thus
∀t0 ≥ 0, ∀k ∈ N

∗, ∀σ0 ∈ Sk:

d

dt |t=t0
mσc

0
(t) =

∑

σ∈Sk |σ≤σ0

(RP [G])σmtσσ0
(t0).

Using again Theorem 5.2 of [12] and thus the fact that for any permutation σ,
(RP [G])σ = lim

N→∞
mσc

(

GN
k

)

, we see that we only need to compute lim
N→∞

mσc

(

GN
k

)

for

any permutation in Sk in order to finish the proof of Theorem 2.1.
Let σ0 be a permutation in Sk and let us compute mσc

0

(

GN
k

)

. If σ0 is equal to idk,
then:

midck

(

GN
k

)

=
N

λN (1c)

1

#λN

∑

σ∈λN

[

midck

(

σ⊗k
)

−midck

(

id⊗k
)]

=
N

λN (1c)

[

midck

(

σ⊗k
)

−midck

(

id⊗k
)]

,

where σ is any permutation in λN .
In the following, we will use the following convention: for any n ∈ N for any m ∈ N:

n!

(n−m)!
=

∏

n−m+1≤i≤n

i,

with of course the fact that
∏

i∈∅ i = 1. This is not of course a convention if n−m+1 > 0.
Now, if σ is a permutation in λN :

midck

(

σ⊗k
)

=
1

Nk

λN (1)!

(λN (1) − k)!
.

Besides, midck

(

id⊗k
)

= N !
(N−k)! . Thus:

midck

(

GN
k

)

=
N

λN (1c)

1

Nk

[

λN (1)!

(λN (1)− k)!
− N !

(N − k)!

]

=
N

λN (1c)

[

k−1
∏

i=0

(

1− λN (1c) + i

N

)

−
k−1
∏

i=0

(

1− i

N

)

]

.
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Let us denote by α the limit of λN (1c)
N

as N goes to infinity. We get:

lim
N→∞

midck

(

GN
k

)

=

{

−k if (λN )N∈N is evanescent,
1
α
((1 − α)k − 1) if (λN )N∈N is macroscopic.

Now, let us suppose that σ0 is not equal to idk. Let σ be in λN , since mσ0

(

id⊗k
)

= 0,
we get that:

mσc
0

(

GN
k

)

=
N

λN (1c)
mσc

0

(

σ⊗k
)

.

Yet, by denoting by [σ0] the conjugacy class of σ0, it is easy to see that:

mσc
0

(

σ⊗k
)

=
1

Nnc(σ0∨id)

k
∏

i=1

(

λN (i)
i

)

!
(

λN (i)
i

− [σ0](i)
i

)

!
i
[σ0](i)

i ,

thus:

mσc
0

(

GN
k

)

=
N

λN (1c)

1

Nnc(σ0∨id)

k
∏

i=1

(

λN (i)
i

)

!
(

λN (i)
i

− [σ0](i)
i

)

!
i
[σ0](i)

i ,

Let us notice that nc(σ0 ∨ id) =
∑k

i=1
[σ0](i)

i
. Thus:

mσc
0

(

GN
k

)

=
N

λN (1c)





k
∏

i=2

1

N
[σ0](i)

i

(

λN (i)
i

)

!
(

λN (i)
i

− [σ0](i)
i

)

!
i
[σ0](i)

i





1

N [σ0](1)

λN (1)!

(λN (1)− [σ0](1))!
.

We recall that for any i ≥ 2, there exists λ(i) such that λN (i)
λN (1c) converges to λ(i) when

N goes to infinity, and limN→∞
λN (1)
N

→ 1−α. Thus, when N goes to infinity, mσc

(

GN
k

)

has the same limit as:

N

λN (1c)





k
∏

i=2

(

λN (i)

λN (1c)

λN (1c)

N

)

[σ0](i)
i





(

λN (1)

N

)[σ0](1)

,

or the same limit as:
(

λN (1c)

N

)nc(σ0∨id)−[σ0](1)−1 k
∏

i=2

(

λN (i)

λN (1c)

)

[σ0](i)
i
(

λN (1)

N

)[σ0](1)

.

This implies that:

lim
N→∞

mσc
0

(

GN
k

)

= αnc(σ0∨id)−[σ0](1)−1

(

k
∏

i=2

(λ(i))
[σ0](i)

i

)

(1− α)[σ0](1).

Let us remark that, since σ0 6= idk, nc(σ0 ∨ id) − [σ0](1) − 1 is always non negative. So
the following formula has a meaning even if α = 0. Using these calculations, we recover
the system of differential equations stated in Theorem 2.1.

At last, let us prove that
(

SN
t

)

t≥0
is not a S-free multiplicative Lévy process. In order

to do so, we will prove that the increments of
(

SN
t

)

t≥0
are not asymptotically S-free

as N goes to infinity. Let t1 and t2 be two positive reals. For any positive integer N ,
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let S
′N
t2

be a random variable which has the same law as SN
t2

and which is independent

with SN
t1
. Since

(

SN
t

)

t≥0
is a Lévy process, it is enough to prove that SN

t1
and S

′N
t2

are not asymptotically free as N goes to infinity. We already know that SN
t1

and S
′N
t2

are asymptotically P-free. Besides, using the relation between moments and exclusive
moments, we know that for any real t ≥ 0, Emid1 [St] = Emidc1

[St] and Emid2 [St, St] =
Emidc2

[St, St]. Using the differential system of equations proved in Theorem 2.1, we know
that for any t0 ≥ 0,

d

dt |t=t0
Emid1 [St] = −Emid1 [St0 ]

d

dt |t=t0
Emid2 [St, St] = (−2 + α)Emid2 [St0 , St0 ],

and Emid1 [S0] = Emid2 [S0, S0] = 1. Since α ∈ [0, 1], this implies that for any positive
real t, Emid1 [St] 6= Emid2 [St, St]. An application of Proposition 2.3 allows to conclude

that SN
t1

and S
′N
t2

are not asymptotically S-free. Moreover, we will see that if (λN )N∈N

is evanescent, then the asymptotic P-factorization property holds for
(

SN
t1

)

N∈N
and

(

S
′N
t2

)

N∈N
. Using again Proposition 2.3, this shows that if (λN )N∈N is evanescent then

the process
(

(

SN
t

)

N∈N

)

t≥0
is not a free multiplicative Lévy process in the sense of

Voiculescu.

Now we have proved the convergence in P-expectation, let us understand when the
convergence holds in probability or not, and let us consider the consequences for the
empirical eigenvalues distribution.

Proof of Theorem 2.3. — Let us remark that if (λN ) is macroscopic, we already saw
that midck

(Gk), which is also the limit of the coordinate numbers of GN
k on idk, is equal

to
((1−α)k−1)

α
6= k.midc1

(Gk): the generator does not condensate weakly, thus the family
(

SN
t

)

N∈N
does not satisfy the asymptotic P-factorization property. Besides, by looking

at the system of differential equations satisfied by the limits of the observable, this
implies actually that for any t > 0:

lim
N→∞

Emid2

[

SN
t ⊗ SN

t

]

6=
(

lim
N→∞

Emid1

[

SN
t

]

)2

.

Thus, if (λN ) is macroscopic, for any positive real t the S-asymptotic factorization
property does not hold for

(

SN
t

)

N∈N
.

Let p be a partition in Pk ; we can suppose, up to a permutation of the columns, that
there exist r irreducible partitions p1, ..., pr such that p = p1 ⊗ ...⊗ pr. We saw in the
proof of Theorem 2.1 that for any integer N :

mp

(

GN
k

)

=

r
∑

i=1

(

mpi

(

GN
k

)

r
∏

l=i+1

mpl

(

σ⊗k
N

)

)

,
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where σN ∈ λN . Besides, using Equation (5), lim
N→∞

mp

(

σ⊗k
N

)

= 1+α

(

lim
N→∞

mp

(

GN
k

)

)

,

where we recall that α = lim
N→∞

λN (1c)
N

. Thus, denoting by mp (Gk) the limit of mp

(

GN
k

)

:

mp (Gk) =

r
∑

i=1

(

mpi (Gk)

r
∏

l=i+1

[1 + αmpl (Gk)]

)

.

Recall Theorem 10.3 of [11]: this last equation implies that if (λN ) is evanescent then
((

GN
k

)

k

)

N
weakly condensates. Thus, if (λN ) is evanescent, then by Theorem 10.3 of

[12], we know that
(

(

SN
t

)

t≥0

)

N∈N
satisfies the asymptotic P-factorization property.

Using Theorem 2.2 of [12], this implies that, in this case,
(

(

SN
t

)

t≥0

)

N∈N
converges in

probability in P-moments.
Let us translate these results for the empirical eigenvalues distribution. Let t be a

positive real. Let us denote by µλN
t the random empirical eigenvalues distribution of SN

t .
Let r be a positive integer, let (n1, ..., nr) be in Z

r and let σ be a permutation which
has r cycles, the ith having size |ni |. Then using the definitions and the fact that any
permutation matrice is real valued, we get:

E

[

r
∏

i=1

(
∫

U

zniµλN
t (dz)

) r
∏

i=1

(
∫

U

zn
′

iµλN
t (dz)

)

]

= Emσ

[

(

SN
t

)⊗r
]

.(6)

Since
(

SN
t

)

N∈N
converges in S-expectation, we get that the measures µλN

t converge in

law to a random measure on U, denoted by µλt .
The measure µλt is not random if and only if for any positive integer r, and any

(n1, ..., nr) in Z
r:

E

[

r
∏

i=1

(
∫

U

zniµλt (dz)

) r
∏

i=1

(
∫

U

zn
′

iµλt (dz)

)

]

=
r
∏

i=1

E

[
∫

U

zniµλt (dz)

] r
∏

i=1

E

[
∫

U

zn
′

iµλt (dz)

]

.

Using the Equation (6), this means that the measure µλt is not random if and only if the
asymptotic S-factorization holds for

(

SN
t

)

N∈N
. Using the results previously obtained,

we get that measure µλt is not random if and only if (λN )N∈N is evanescent.

From now on, we will suppose that (λN )N∈N is evanescent: the limiting empirical
eigenvalues distribution is not-random. Let us compute this limiting measure.

Proof of Theorem 2.4. — We recall that in the proof of Theorem 2.1, we used the fol-
lowing notation: for any positive integer k, any σ ∈ Sk and any t ≥ 0, we denote by

mσc(t) the limit lim
N→∞

Emσc

[

(

SN
t

)⊗k
]

. Besides, we proved that the family (mσc(t))t,σ

satisfies the system of differential equations stated in Theorem 2.1. Since we suppose
that (λN )N∈N is evanescent, for any t0 ≥ 0 and any σ0 ∈ Sk, one has:

d

dt |t=t0
mσc

0(t)
= −kmσc

0
(t0) +

∑

σ∈Sk\{idk},σ≤σ0

0nc(σ∨id)−[σ](1)−1

(

k
∏

i=2

(λ(i))
[σ](i)

i

)

m(tσσ0)c(t0),
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yet nc(σ ∨ id) − [σ](1) − 1 = 0 if and only if σ is weakly irreducible, thus if and only if
this is a cycle. Thus, if we set mnc(t) = m(1,...,n)c(t), for any t0 ≥ 0 and any positive
integer n:

d

dt |t=t0
mnc(t) = −nmσc

0
(t0) +

n
∑

k=2

∑

σ∈Sn\{idk}, σ is a k cycle ,σ≤(1,...,n)

λ(k)m(tσσ0)c(t0).(7)

Yet, using Theorem 2.3, the S-asymptotic factorization holds when (λN )N∈N is evanes-
cent. This implies that we can wite Equation (7) only in terms of (mnc(t))n,t. For any
positive integer n, any t0 ≥ 0:

d

dt |t=t0
mnc(t) = −nmnc(t) +

n
∑

k=2

λ(k)
n

k

∑

(n1,...,nk)∈(N∗)k|
∑k

i=1 ni=n

k
∏

i=1

mnc
i
.(8)

Let us introduce the generating formal series of
(

entmnc(t)
)

n≥1
:

R(t, z) =
∑

n≥1

entmnc(t)zn.

Let us remark that R(0, z) = z. The Equation (8) can be written as:

∂tR(t, z) = z∂R(t, z)LS(R)(t, z),(9)

where we defined:

LS(z) =
∑

n≥1

λ(n+ 1)zn.

Let us define S(t, z) the reciprocal formal series such that for any t ≥ 0:

S(t,R(t, z)) = z.

Let us remark that S(0, z) = z. The Equation (9) implies an equation on S:

∂tS(t, z) = −LS(z)S(t, z).

Thus S(t, z) is given by S(t, z) = ze−tLS(z). Let t ≥ 0 and let n be a positive integer.
Using the usual notations, since entmnc(t) = [zn]R(t, •), we can compute entmnc(t) by
using the Lagrange inversion. This implies that:

[zn]R(t, •) = 1

n

[

zn−1
]

etnLS(z),

thus m1c(t) = e−t and for n > 1:

mnc(t) = e−nt
n−1
∑

k=1

tk
nk−1

k!

∑

(i1,...,ik)∈(N∗)k,i1+...+ik=n−1

k
∏

j=1

λ(ij + 1),

hence the assertions in Theorem 2.4.

Let us prove the assertion on the existence of a phase transition for the random walks
on the symmetric group.
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Proof of Theorem 2.5. — Let us suppose that the sequence (λN )N∈N is evanescent. Let
us show that the function f(t) =

∑∞
n=1mnc(t), which is equal to 1−m∞c(t) is continuous,

converges to 0 as t goes to infinity. Indeed, we have:

f(t) =

∞
∑

k,n=0

1

n
e−nttk

nk

k!
p(k, n),

where p(k, n) =
∑

(i1,...,ik)∈N∗,
∑k

j=1 ij=n−1

∏k
j=1 λ(ij +1). For any k and n in N, fk,n(t) =

1
n
e−nttk nk

k! p(k, n) is continuous and goes to zero as t goes to infinity, besides fk,n is non-

negative and maximal at tk,n = k
n
and using Stirling’s formula, there exists a constant

C such that fk,n(tk,n) = 1
n
e−k kk

k! p(k, n) ≤ C 1
k3/2

p(k, n). In order to finish, one has to
remark that:

∑

n∈N

p(k, n) =
∑

(i1,...,ik)∈N∗

k
∏

j=1

λ(ij + 1) =

(

∑

i∈N∗

λ(i+ 1)

)k

≤ 1,

thus
∑

k,n fk,n(tk,n) < ∞. This allows to apply the dominated convergence theorem,
thus f is a continous function and converges to zero as t goes to infinity.

Recall the definition of tλc given by Equation (3). Let us prove that f(t) = 1 for any
t ≤ tλc and f(t) < 1 for any t > tλc . Using the generating function R(t, •) of entmnc(t),
we know that for any real t ≥ 0:

f(t) = R
(

t, e−t
)

.

Using the fact that S(t,R(t, e−t)) = e−t, and given that S(t, z) = ze−tLS(z), we get that:

R(t, e−t)e−tLS(R(t,e−t)) = e−t.

Thus for any t ≥ 0, f(t) is a solution in [0, 1] of Φt(z) = ze−t(LS(z)−1) = 1. The function

Φt is log-concave on [0, 1], Φt(0) = 0 and Φt(1) = e−(tLS(1)−1). If LS(1) =
∑∞

i=2 λ(i)
is not equal to one it must be stricly smaller than 1, thus in this case for any t > 0,
Φt(1) > 1 and thus there exists a unique solution of Φt(z) = 1 in [0, 1] which is in fact
in ]0, 1[. Thus we recover the delta function in Equation (3). Let us suppose now that
∑∞

i=2 λ(i) = 1. Then LS(1) = 1: thus, since Φt is log-concave, there exists a solution νt
(which is unique) of Φt(z) = 1 on ]0, 1[ if and only if Φ′

t(1) < 0. Since Φ′
t(1) = 1−tLS′(1),

we get that the critical time after which one observes a solution in [0, 1] which is different
from the trivial solution 1 is equal to 1

LS′(1)
which is the value of tc given by Equation

(3). Since f(t) is a continuous function which must converge to zero as t goes to infinity,
it must be equal to 1 if t ≤ tc and then it must be equal to ν(t) if t > tc.

Let us finish with the proof of Corollary 2.1.

Proof of Corollary 2.1. — Let t be a non-negative real number, let N be a positive
integer, we have to understand:

1

N
dS(N)

(

idN , S
N
t

)

= 1− nc
(

SN
t ∨ idN

)

N
.
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Recall that:

1

N
nc
(

SN
t ∨ idN

)

=
∑

k≥1

1

k
m(1,...,k)c

(

(

SN
t

)⊗k
)

since m(1,...,k)c

(

(

SN
t

)⊗k
)

is the fraction of integers in {1, ..., N} whose period in SN
t is

equal to k. It remains to see if one can interchange the limit and the sum. For any
positive integer N , for any σ ∈ S(N), if ck(σ) is the numbers of cycles of size k in σ, we
have for any K ∈ N

∗:

∑

k≥K

1

k
m(1,...,k)c

(

σ⊗k
)

=
1

N

∑

k≥K

ck(σ) ≤
1

N

N

K
=

1

K
,

since there can not be more than N
K

cycles in σ of size bigger than K. Thus:

sup
N

∑

k≥K

1

k
m(1,...,k)c

(

(

SN
t

)⊗k
)

−→
N→∞

0,

almost surely. Thus we can interchange limits and thus, since for any integer k ≥ 1,

m(1,...,k)c

(

(

SN
t

)⊗k
)

converges in probability to mkc(t), then we have the convergence in

probability:

lim
N→∞

1

N
nc
(

SN
t ∨ idN

)

=
∑

k≥1

lim
N→∞

1

k
m(1,...,k)c

(

(

SN
t

)⊗k
)

=

∞
∑

k=1

1

k
mkc(t).

This allows to conclude the proof.

2.4. Log-cumulant calculations. — In the article [12], we studied the log-cumulant
invariant of a free multiplicative infinitely divisible measure. The log-cumulant was
defined in Definition 10.18. We can generalize the definition of log-cumulant in the
setting of P-free multiplicative Lévy processes. Recall the notion of matricial P-free
multiplicative Lévy process defined in Definition 7.4 of [12].

Definition 2.4. — Let (St)t≥0 be a matricial P-free multiplicative Lévy process. The
log-cumulant invariant of (St)t≥0 is the unique element LR ((St)t≥0) ∈ E [P] such that:

∀t ≥ 0,
d

dt |t=t0
R(St) = LR

(

(St)t≥0

)

⊠R(St0).

Let (St)t≥0 =
(

(

SN
t

)

N≥1

)

t≥0
be a matricial P-free multiplicative Lévy process. For

any positive integer k and N , we consider GN
k = d

dt |t=0
E

[

(

SN
t

)⊗k
]

. Recall that, using

the same notation as in Definition 10.3 of [11], LR
(

(St)t≥0

)

= RP [G].

In the setting of P-free multiplicative Lévy processes which are invariant by conju-
gation by the unitary group, the log-cumulant invariant is an important tool in order
to caracterize them. We hope that this could also be the case for more general P-free
multiplicative Lévy processes. We are thus interested in computing the log-cumulant
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invariant for some examples of P-free multiplicative Lévy processes: the following theo-
rem is the first computation of the log-cumulants of P-free multiplicative Lévy processes
which are not free Lévy processes in the sense of Voiculescu.

For any positive integerN , let λN be a conjugacy ofS(N) and let us consider
(

SN
t

)

N∈N

a λN -random walk on S(N). For any positive integer t, let us denote by Sλt the family
(

SN
t

)

N∈N
. Let us suppose that (λN )N∈N converges as N goes to infinity and that it is

evanescent. As we already did, for any i ≥ 2, we set λ(i) = lim
N→∞

λN (i)
λN (1c) .

We need to define the notion of ears.

Definition 2.5. — Let k be a positive integer, let i be an element of {1, ..., k} and let
p ∈ Pk. We say that {i, i′} is an ear of p if {i, i′} are in the same block of p. The set of
ears of p is denoted by E(p). The head of p, denoted by H(p), is the extraction of p to
{1, ..., k, 1′ , ..., k′} \ ∪i,i′∈E(p){i, i′}.

Let us state the main result about the log-cumulant functional. Recall the notion of
true-length that we defined in Definition 2.3.

Theorem 2.7. — The log-cumulant invariant of
(

Sλt
)

t≥0
, denoted by LRλ, is charac-

terized by:

1. LRλ ∈ me⊠[P],
2. for any positive integer k, for any irreducible partition p ∈ Pk, if H(p) is not a

parure then
(

LRλ
)

p
= 0,

3. for any positive integer k, for any irreducible partition p ∈ Pk, if H(p) is a necklace
then:

(

LRλ
)

p
= (−1)#E(p)λ(|H(p) |),

with the convention that | ∅ |= 0 and λ(0) = 1, and if H(p) is a chain then:

(

LRλ
)

p
= (−1)#E(p)



1−
|H(p)|
∑

i=2

λ(i)



 .

Proof. — Let us denote E = LRλ. Let us consider F ∈ me⊠[P] which satisfies the
conditions 2. and 3. of the theorem. Since we supposed in this section that (λN )N∈N

converges and is evanescent, by the proof of Theorem 2.3 we know that the generator
of
(

SN
t

)

N∈N
weakly condensates as N goes to infinity. By definition, this implies that

E ∈ me⊠ [P]. Besides, we have computed the exclusive moments of the generator in
Section 2.3. Using the notations of [11], we know M→c (E): the goal is to invert the
transformation M→c.

It remains to show that for any weakly irreducible partition p, Ep = Fp. Let us denote
by Ec the element M→c(E). Recall that | p | is the true-length of a partition p. Using
the calculations in the proof of Theorem 2.1, we know for any irreducible partition p,
if p is not a parure then Ec

p = 0 and if p is a necklace of true-length equal to 1 then
Ec

p = −1, if it is a necklace of true-length greater than 1 then Ec
p = λ(|p |), and if p is a

chain then Ec
p = 1−∑|p|

k=2 λ(k). Recall Definition 3.11 of [11]. Since E ∈ me⊠ [P], E is
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characterized by the fact that for any irreducible partition p, Ec
p =

∑

p′=pEp′ . Let p be
an irreducible partition in Pk, it remains to prove that:

Ec
p =

∑

p′=p

Fp′ .

Let us recall that Fp′ = 0 if p′ is not weakly irreducible. Yet if p′ = p and p′ is weakly
irreducible, this means that one can get p′ by chosing a certain number of ears of p and
by cutting each of them in p. Let us consider the two possible cases p = 0k or p 6= 0k. If
p = 0k, then:

∑

p′=0k

Fp′ =





∑

I⊂{1,...,k},#I>1

(−1)#I−1



 (−1)− k

= −
((

k
∑

l=0

(−1)l−1 k!

l!(k − l)!

)

+ 1

)

= −1 = Ec
0k
,

the last equality coming from the fact that 0k is a necklace of true-length equal to 1.
If p 6= 0k, then:

∑

p′=p

Fp′ =
∑

I⊂E(p)

(−1)#E(p)−#IFT(p) = δ#O(p)=0FT(p) = δ#O(p)=0Fp = δ#O(p)=0Epc = Epc ,

since the only irreducible parure in Pk which has ears is 0k.

Let us remark that, since we saw that LR
(

(St)t≥0

)

= RP [G], we could have try to

prove the last theorem by computing the coordinate numbers of GN
k for any positive

integer k and N . For example, if one considers the random walk by transposition, if TN
is the set of transpositions in S(N):

GN
k =

1

N − 1

∑

τ∈TN

(

τ⊗k − Idk

)

=
1

2(N − 1)

N
∑

i,j=1

(

(

IdN − Ei
i − Ej

j + Ej
i + Ei

j

)⊗k

− Id⊗k

)

,

where Ej
i is the usual elementary matrix which sends ej on ei and where (e1, ..., eN ) is

the canonical basis of CN . Then one can develop the tensor product and compute the
coordinate numbers and their limits. Yet, one can see that it becomes less tractable as
soon as one considers general random walks on the symmetric group.

3. Convergence of YM(S(N))

We will not go into all the details of the theory of planar Yang-Mills fields, one can read
[13] and [19] to have an introduction on planar Yang-Mills fields and planar Markovian
holonomy fields. Yet, our presentation will be adequate so that the reader does not have
to read other articles in order to understand the main result of this section, namely
Theorem 3.2. The general ideas are all taken from the article [10] where asymptotics
of unitary Yang-Mills measures are proved. In this article, the Yang-Mills measure with
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S(N) gauge group will denote for us the planar Markovian holonomy field associated
with the TN -random walk, where TN is the set of transposition in S(N). Yet, this
section can easily be generalized to planar Markovian holonomy fields associated with
any λN -random walk.

Definition 3.1. — The set of paths P in the plane is the set of rectifiable oriented
curves drawn in R

2 up to increasing reparametrization. The set of loops based at 0,
denoted by L0, is the set of paths l such that the two endpoints of l are 0. A loop is
simple if it does not intersect with itself, except at the endpoints.

We will consider Aff and Aff0 respectively the set of piecewise affine paths in R
2 and

the set of piecewise affine loops based at 0.

We can define two operations on P : the concatenation and the inversion. Given two
paths p1 and p2 such that the starting point of p2 is the arrival point of p1, it is natural
to concatenate p1 and p2 by gluing them at the arrival point of p1: it defines a new path
p1p2. The inversion of p1, denoted by p−1

1 , is defined by changing the orientation of p1.
T. Lévy defined in [19], the notion of convergence with fixed endpoints. For any p ∈ P ,
p denotes the starting point of p and p denotes the arrival point of p. Let (pn)n∈N be a
sequence of paths. The sequence (pn)n∈N converges with fixed endpoints if and only if
there exists a path p such that for any integer n, pn and p have the same endpoints and:

| l(pn)− l(p) | + inf sup
t∈[0,1]

| pn(t)− p(t) | −→
n→∞

0,

where the infimum is taken on the parametrization of the paths pn and p and where l(p)
is the length of p.

Let J be a subset of P , let G be a group. The set of multiplicative functions
Mult (J,G) from J to G is the subset of functions f in GJ such that for any p1, p2, p3 ∈ J
such that p1p2 ∈ J and p−1

3 ∈ J , one has:

f(p1p2) = f(p2)f(p1),

f
(

p−1
3

)

= f(p3)
−1.

For any p ∈ P , we define hp or h(p) as the evaluation on p:

hp : Mult(J,G) → G

h 7→ h(p).

Let N be a positive integer. We are going to define a gauge-invariant measure on
the set of multiplicative functions from P to S(N). Thus we endow Mult(J,S(N))
with the cylinder σ-field B which is the trace on Mult(J,G) of the cylinder σ-field on
S(N)J . Let us denote by V the set {x ∈ R

2,∃p ∈ J, x = p or x = p}. For any function
j : V → S(N) and any h ∈ Mult(J,S(N)), we define j •h ∈ Mult(J,S(N)) such that:

∀c ∈ J, (j • h)(c) = j−1
c h(c)jc.

A measure µ on Mult (J,S(N)) is gauge-invariant if for any continuous function f from
(Mult(J,S(N)),B) to R, for any function j : V → S(N):

∫

Mult(P,G)
f(j • h)dµ(h) =

∫

Mult(P,G)
f(h)dµ(h).



THE S(∞) YANG-MILLS MEASURE 23

In the up-coming paper [10], the author and his co-authors proved the following
theorem which is a slight generalization of Theorem 3.3.1 proved by T.Lévy in [19]. The
original formulation by T. Lévy of this theorem is the first part of Theorem 3.1.

Theorem 3.1. — Let us denote by dx the Lebesgue measure on R
2. Let (ΓN , dN )N∈N be

a sequence of complete metric groups such that for any N ∈ N, translations and inversion
are isometries on ΓN . For any integer N , let HN ∈ Mult(Aff,ΓN ) be a multiplicative
function. Assume that there exists KN ≥ 0 such that for any N ∈ N, for all simple loop
l ∈ Aff bounding a disk D and such that l(l) ≤ K−1

N , the inequality:

dN (1,HN (l)) ≤ KN

√

dx(D)(10)

holds.
Then for each integer N , the function HN admits a unique extension as an element

of Mult(P,G), also denoted by HN , which is continuous for the convergence with fixed
endpoints.

Let (E, d) be a metric space. For any integer N , let ψN : ΓN → E be a Lipchitz
function of Lipchitz norm ||ψN ||Lip. Let us assume that the three following conditions
hold:

1. for any l ∈ Aff0, ψN (HN (l)) converges to a limit when N goes to infinity,
2. sup

N∈N
||ψN||Lip≤ ∞,

3. sup
N∈N

KN <∞,

then for any l ∈ L0,
(

ψN (HN (l))
)

N∈N
converges to a limit φ(l). Besides, the function:

φ : L0 → E

l 7→ φ(l)

is continuous for the convergence with fixed endpoints.

Recall that TN is the set of transpositions in S(N). Let
(

SN
t

)

t≥0
be the TN random

walk on S(N). Let us explain how the first part of Theorem 3.1 allows us to construct
the Yang-Mills field associated with

(

SN
t

)

t≥0
. In order to do so, we need the notion of

finite planar graph: it will be the usual notion, except that we ask that the bounded
faces are homeomorphic to an open disk. Let G be a finite planar graph: the set of
bounded of faces of G is denoted by F. For any finite planar graph G, we define P (G)
as the set of paths that one can draw by concatenating edges of G. Let us define also
G(Aff) the set of finite planar graphs G whose edges are piecewise affine.

In order to construct a measure on (Mult(P,S(N)),B), first we construct for any
finite planar graph G ∈ G(Aff) an associated measure µG on

(

Mult(P (G),S(N)),B
)

.
We will give the construction given by the author in [13], but one can have a look at
[19] where a different formulation is given.

We need to introduce the loop paradigm for two dimensional Yang-Mills fields. Let
us consider a finite planar graph G in G(Aff), let us consider v0 a vertex of G and T a
covering tree of G. Let us consider for any bounded face F of G a loop cF ∈ P (G) which
represents ∂F . For any vertex v of G, we denote by [v0, v]T the unique injective path in
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T which goes from v0 to v. Let Lv0(G) be the set of loops l in P (G) such that l = v0.
We define the facial lasso lF ∈ Lv0(G) by:

lF = [v0, v]T cF [v0, v]
−1
T .

It was proved in Proposition 6.1 that the application:

ΦT,(cF)F∈F
: Mult (Lv0(G),S(N)) → (S(N))F

h 7→ (h (lF ))F∈F ,

is a bijection and for any loop l ∈ Lv0(G), there exists a word w
(

(lF )F∈F ,
(

l−1
F

)

F∈F

)

in

the letters (lF )F∈F and
(

l−1
F

)

F∈F
such that hl = w

(

(hlF )F∈F ,
(

h
l−1
F

)

F∈F

)

.

Using the fact that for any σ ∈ S(N), σ−1 is in the same conjugacy class as σ, we

know that for any non-negative real t, SN
t has the same law as

(

SN
t

)−1
. This implies,

with Proposition 8.1 proved by the author in [13], the following proposition.

Proposition 3.1. — There exists a unique gauge-invariant measure µ
v0,T,(cF )F∈F

G
on

Mult (P (G),S(N)) such that under this measure:

1. the random variables (h (lF ))F∈F are independent,

2. for any F ∈ F, h (lF ) has the same law as SN
dx(F ).

This measure does not depend neither on the choice of v0 nor T nor on the choice of
(cF )F∈F, we denote it by µG.

Let G and G
′ be two finite planar graphs in G(Aff) such that G

′ is coarser than
G. Any function in Mult(P (G),S(N)) allows us to define, by restriction, an element
of Mult(P (G′),S(N)). The measures (µG)G are compatible with the applications of
restriction we have just described. The family

(

Mult(P (G),S(N)), µG
)

G∈G(Aff)
is thus

a projective system and, as explained in Proposition 2.1 of [13] and in [19], we can take
the projective limit.

Definition 3.2. — The affine Yang-Mills measure associated to (SN,t)t≥0 is the pro-
jective limit of:

(

Mult(P (G),S(N)), µG
)

G∈G(Aff)
.

The affine Yang-Mills measure YM
S(N)
Aff is a gauge-invariant measure on Mult(Aff,S(N)).

Let us consider a simple loop l in Aff and let Gl be the finite planar graph in G(Aff)
which has l as unique edge. In this case, Mult(P (Gl,S(N))) ≃ S(N) and for any
continuous function f : S(N) → R:

YM
S(N)
Aff [f(hl)] = E

[

f
(

SN
dx(Int(l))

)]

,(11)

where Int(l) is the bounded component of R2 \ l. This last equality shows that under

YM
S(N)
Aff , hl has the same law as SN

dx(Int(l)). This will allow us to use the first part of

Theorem 3.1 in order to construct the Yang-Mills measure, as it was done by T. Lévy
in [19] and then by the author in [13]. Before doing so, we need some estimates on the
walk

(

SN
t

)

t≥0
: in order to do so, let us define a distance on S(N).
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Definition 3.3. — We will consider any element of S(N) as a permutation matrix of
size N . Let us consider for any σ, σ′ ∈ S(N):

dN (σ, σ′) =

[

2

(

1− 1

N
Tr
(

σσ′−1
)

)]
1
2

,

where we recall that Tr is the usual trace on MN (C) which satisfies Tr (IdN ) = N .

Since the permutation matrices are orthogonal, for any σ and σ′ in S(N):

dN
(

σ, σ′
)

=

[

1

N
Tr
((

σ − σ′
)

.t
(

σ − σ′
))

] 1
2

.

This shows that dN is a distance on S(N). Let us control the distance of
(

SN
t

)

t≥0
to

the identity.

Lemma 3.1. — For any real t ≥ 0, E
[

dN
(

id, SN
t

)]

≤
√
2t.

Proof. — Let t be a non-negative real. By definition:

E

[

dN
(

id, SN
t

)2
]

= 2

[

1− E

[

1

N
Tr
(

SN
t

)

]]

.

A simple calculation allows us to write that:

1

N

∑

τ∈TN

(τ − Id) = ρPk
N

[

1

N
01 − id

]

,

where we recall that 01 is the partition {{1}, {1′}}. This implies that for any t0 ≥ 0:

d

dt |t=t0
E
[

SN
t

]

= ρPk
N

(

1

N
01 − Id

)

E
[

SN
t0

]

.

Thus, by linearity:

d

dt |t=t0
E

[

1

N
Tr
(

SN
t

)

]

=
1

N
E

[

1

N
Tr
(

ρPk
N (01)S

N
t0

)

]

− E

[

1

N
Tr
(

SN
t0

)

]

,

and, using the fact that 1
N
Tr
(

ρPk
N (01)σ

)

= 1 for any σ ∈ S(N), we get the differential

equation:

d

dt |t=t0
E

[

1

N
Tr
(

SN
t0

)

]

=
1

N
− E

[

1

N
Tr
(

SN
t0

)

]

,

E

[

1

N
Tr
(

SN
0

)

]

= 1.

The solution is given by the function t 7→ 1
N

+
(

1− 1
N

)

e−t. Thus for any real t ≥ 0:

E

[

1

N
Tr
(

SN
t

)

]

=
1

N
+

(

1− 1

N

)

e−t,(12)

and thus:

E

[

dN
(

id, SN
t

)2
]

= 2

[

1− 1

N

]

[1− e−t].
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This implies that for any t ≥ 0, and any positive integer N ,
(

E
[

dN
(

id, SN
t

)])2 ≤ E

[

dN
(

id, SN
t

)2
]

≤ 2t.

This allows us to finish the proof.

Using Lemma 3.1, we can prove the following proposition.

Proposition 3.2. — The measure YM
S(N)
Aff can be extended by continuity to a measure

on Mult(P,S(N)). This means that there exists a measure YMS(N) on Mult(P,S(N))
such that:

1. the restriction of YMS(N) on Mult(Aff,S(N)) is equal to YM
S(N)
Aff ,

2. for any sequence of paths (pn)n∈N and any path p ∈ P such that (pn)n∈N converges
with fixed endpoints to p, we have:

YMS(N) [dN (hpn , hp)] −→
n→∞

0.

We only recall the proof given in [19].

Proof. — Let (Ω,A,P) be equal to
(

Mult(Aff,S(N)),B, Y MS(N)
Aff

)

. For any p ∈ Aff,

hp is a function on Mult(Aff,S(N)) thus it can be seen as a G-valued random variable
on (Ω,A,P). For any positive integer N , let ΓN = L(Ω,A,P;S(N)) be the set of S(N)-
valued random variables defined on Ω: this is a group for the pointwise multiplication
of random variables. We endow ΓN with the distance:

dN (X,Y ) = E [dN (X,Y )] .

It is a distance which is invariant by translations and inversion. Let us consider the
mapping:

HN : Aff → ΓN

l → hl.

This is a multiplicative function. Besides, using Lemma 3.1 and Equality 11, we get
that for any simple loop l: dN (1, hl) ≤

√
2
√

dx(Int(l)). We can apply Theorem 3.1:
there exists an extension:

HN : P → ΓN

p 7→ H(p)

which is continuous for the convergence with fixed endpoints. For any sequence of paths
(pn)n∈N and any path p ∈ P such that (pn)n∈N converges with fixed endpoints to p, we
get:

dN (H (pn) ,H (p)) = YM
S(N)
Aff

[

dN (H(pn),H(p))
]

−→
n→∞

0.

Thus we have constructed aS(N)-valued process (H(p))p∈P on Ω such that for any p and

p′ in P such that p = p′, almost surely H(pp′) = H(p′)H(p), H(p−1) = H(p)−1. Using
Proposition 2.1 in [13] this allows us to construct a measure on Mul(P,S(N)) called

YMS(N), such that the process (hp)p∈P has the same law under YMS(N) as the process

(H(p))p∈P under YM
S(N)
Aff . The measure YMS(N) satisfies the desired properties.
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Now that we have defined the Yang-Mills measure YMS(N) for any positive integer
N , we are interested in the convergence of these measures as N goes to infinity. Let us
define the notion of Wilson loops. Using the gauge-invariance of the Yang-Mills measure,
we can restrict ourself to the study of Wilson loops based at 0 instead of studying all
the Wilson loops.

Definition 3.4. — Let l0 be a loop based at 0, the Wilson loop on l0 is the function:

WN
l0

: Mult(P,S(N)) → R

(hp)p∈P 7→ 1

N
Tr(hl0).

The main result about the limit of Yang-Mills measure on the symmetric group is
given by the following result.

Theorem 3.2. — For any loop l based at 0 the Wilson loop on l converges in probability
to a constant denoted by φ(l) when N goes to infinity. The function:

φ : L0 → R

l 7→ φl,

is continuous for the convergence with fixed endpoints.
The asymptotic factorization property holds: for any positive integer k, any k-tuple of

loops l1, ..., lk in L0:

YMS(N)
[

WN
l1
...WN

lk

]

−→
N→∞

φ(l1)...φ(lk).

The function φ in Theorem 3.2 is called the S(∞)-master field. Let us prove Theorem
3.2 when one considers only piecewise affine loops.

Proposition 3.3. — For any loop l in Aff0 the Wilson loop WN
l converges in expecta-

tion and in probability as N tends to infinity to a constant φ(l).

Proof. — Let l0 be a loop in Aff0. Let G be a graph in G(Aff) such that l0 is a loop in
G. Let us consider T a covering tree of G, let us consider for any bounded face F of G
a loop cF ∈ P (G) which represents ∂F and let us consider the facial lassos lF associated

with these choices of tree and loops. Let w
(

(lF )F∈F ,
(

l−1
F

)

F∈F

)

be a word in the letters

(lF )F∈F and
(

l−1
F

)

F∈F
such that hl0 = w

(

(hlF )F∈F ,
(

hl−1
F

)

F∈F

)

: the random variable

hl0 is a product of random variables of the form hlF or h−1
lF

, with F ∈ F.

Using Proposition 3.1, the random variables (hlF )F∈F on
(

Mult(L0,G),B, Y MS(N)
L0

)

are independent and for any F ∈ F, hlF has the same law as SN
dx(F ). For all positive

integer N , let
(

S
(1)
t,N

)

t≥0
, . . . ,

(

S
(#F)
t,N

)

t≥0
be #F independent random walks identically

distributed as (SN
t )t≥0. The discussion we just had implies that there exist two sequences

of non-negative integers (ki)
#F

i=1 and (k′i)
#F

i=1 such that the Wilson loop WN
l is equal to:

1

Nnc(σ∨id)
TrK

(

(

S
(1)
t,N

)⊗k1⊗
(

(

S
(1)
t,N

)−1
)⊗k′1

⊗. . .⊗
(

S
(#F)
t,N

)⊗k#F⊗
(

(

S
(#F)
t,N

)−1
)⊗k′#F

◦ σ
)

,
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where K =
∑#F

i=1(ki + k′i) and σ is a K-cycle. An application of Theorem 2.6, applied
to the evanescent family ((N − 2, 2, 0, ..., 0))N∈N allows us to conclude.

In order to generalize Proposition 3.3 and to prove Theorem 3.2, we need to have
an estimate on the Lipschitz norm of the function which gives the expectation of the
fraction of fixed points of a random permutation. Recall Definition 3.3 where we defined
a distance dN on S(N).

Lemma 3.2. — For any positive integer N and any S(N)-valued random variables S
and S′, one has:

∣

∣

∣

∣

E

[

1

N
Tr(S)

]

− E

[

1

N
Tr
(

S′
)

]∣

∣

∣

∣

≤ E
[

dN
(

S, S′
)]

.

Proof. — It is a consequence of the Cauchy-Schwarz’s inequality. Indeed, for any positive
integer N and any σ, σ′ ∈ S(N):

1

N

∣

∣Tr(σ)− Tr(σ′)
∣

∣=
1

N

∣

∣Tr(σ − σ′)
∣

∣≤
[

1

N
Tr
(

(σ−σ′)t(σ−σ′)
)

]
1
2

=dN (σ, σ′),

hence the result by taking the expectation.

We can finish the proof of Theorem 3.2.

Proof of Theorem 3.2. — We will use the second part of Theorem 3.1. For this, we
consider (Ω,A,P) a probability space on which is defined for each positive integer N a
process

(

hNp
)

p∈P
whose law is the law of the canonical process (hp)p∈P under the S(N)-

Yang-Mills measure associated with the TN -random walk on S(N). Recall the notations
defined in the proof of Proposition 3.2: we consider ΓN = L (Ω,A,P : S(N)) endowed
with the distance dN and we consider the mappings HN defined from Aff to ΓN .

Let us denote by E the space L (Ω,A,P : R) of real valued random variables defined
on Ω. Let us endow E with the distance d (X,Y ) = E [|X − Y |]. For any positive
integer, let:

ψN : ΓN → E

S 7→ 1

N
Tr (S) .

Using Lemma 3.2, for any positive integer N , ψN is Lipschitz and sup
N∈N

||ψN ||Lip≤ 1.

Besides, using Proposition 3.3, and using the dominated convergence theorem, we know
that for any l ∈ Aff0, ψN (HN (l)) converges in E to a limit which is the non-random
variable φ(l). At last, the Lemma 3.1 shows that the constant KN in (10) can be taken
equal to

√
2 for any positive integer N . Thus we can apply the second part of Theorem

3.1: for any l ∈ L0, ψN (HN (l)) =WN
l converges to a limit φ(l) and the function:

φ : L0 → E

l 7→ φ(l)

is continuous for the convergence with fixed endpoints. Let l be a loop based at 0. One
can approximate the loop l ∈ L0 by a sequence of loops (ln)n∈N in Aff0. Since for any
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positive integer n, φ(ln) is almost surely constant then φ(l) is almost surely constant.
The convergence in probability holds since we proved that:

E
[

|WN
l − φ(l) |

]

−→
N→∞

0.

The asymptotic factorization property is a simple consequence of the dominated conver-
gence theorem.

Remark 3.1. — Theorem 3.2 is also true for more general sequence of Yang-Mills mea-
sures, the proof follows exactly the same steps. For any integer positive N , let us consider
a conjugacy class λN of S(N), and let (SN

t )t≥0 be a λN -random walk on S(N). One

can define for any positive integer N , a Yang-Mills measure YM
S(N)
λN

associated with

(SN
t )t≥0. If the sequence (λN )N∈N is evanescent, then Theorem 3.2 holds without any

modification.
If the sequence (λN )N∈N is macroscopic, then Proposition 3.3 already does not hold:

since the random walk does not satisfy the asymtotic P-factorization property, for any
loop l ∈ Aff0, the Wilson loop WN

l converges in law to a random variable φ(l) which
is not almost surely constant. A slight modification of Theorem 3.1 in order to con-
sider functions of several loops and not only one (in order to consider the functions

(l1, .., lk) 7→ E

[

WN
l1
...WN

lk

]

) allows to prove in a similar way that the process (h(l))l∈L0

under YM
S(N)
λN

converges in law to a real valued random process indexed by L0.

4. Random ramified coverings

In this section, we present a natural model of random ramified coverings on the unit
disk D. This model was first defined in [19], in Chapter 5 in the general setting of
ramified G-bundles when G is a finite group. We translate the results for random
ramified coverings without any conditions on the monodromy on the boundary. This
needs some simple verifications which will not be further discussed here.

Let Y be a finite subset of D \ ∂D.

Definition 4.1. — A ramified covering of the disk with ramification locus Y is a con-
tinuous mapping π : R→ D from a surface R such that the following conditions hold:

1. the restriction of π to π−1 (D \ Y ) is a covering,
2. for all y ∈ Y and any p ∈ π−1(y), one can find a neighborhood U of p and an

integer n ≥ 1 such that the mapping:

π|U : (U, p) → (π(U), y)

x 7→ π(x)

is conjugated to the mapping z 7→ zn: (C, 0) → (C, 0).

The integer n is the order of ramification of p and will be denoted by or(p).
Let N be a positive integer. A ramified covering π : R→ D with ramification locus Y

has degree N if the restriction π to π−1 (D \ Y ) is a covering of degree N .
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For sake of simplicity, in this paper, we will only consider simple ramified coverings
but it is easy to extend the results to general ramified covering by using Chapter 5
of [19].

Definition 4.2. — Let R be a ramified covering of the disk with ramification locus Y .
Let x ∈ Y be a ramification point of R. It is a simple ramification point if there exists
p0 ∈ π−1(x) such that or(p) = 2, and for any other p ∈ π−1(x), or(p) = 1. The ramified
covering R is simple if for any x ∈ Y , x is a simple ramification point.

Often we will denote the covering π : R → D just by R. The set of simple ramified
covering of the disk is too big to be interesting. As one does for the theory of random
maps, we will only work with the isomorphism classes of simple ramified coverings.

Definition 4.3. — Let π : R → D and π′ : R′ → D be two simple ramified coverings.
They are isomorphic if there exists a homeomorphism h : R→ R′ such that π′ ◦ h = π.

Let N be a positive integer. We denote by RN (Y ) the set of isomorphism classes
of simple ramified coverings of degree N of D with ramification locus equal to Y . In
fact, it is even easier to work with labelled simple ramified coverings since the set of
automorphism of a labelled ramified covering is trivial.

Definition 4.4. — Let π : R → D be a simple ramified covering of the disk of degree
N with ramification locus equal to Y . Let x be in D \ Y . A labelling l of R at the point
x is a bijection from {1, . . . , n} to π−1 (x). The pair (R, l) is a labelled simple ramified
covering based at x.

Let (R, l), (R, l′) be two labelled simple ramified coverings based at x. They are iso-
morphic if there exists an isomorphism of simple ramified coverings h : R → R′ such
that h ◦ l = l′.

Let x be a point of D \ Y . The set of isomorphism classes of labelled simple ramified
coverings of D with ramification locus Y based at x and with degree N is denoted by
RN

x (Y ). In order to define a measure on RN (Y ) or RN
x (Y ), we need to define a σ-field.

The σ-field we will consider will be a Borel σ-field.

Definition 4.5. — We consider on RN
x (Y ) the topology generated by:

V ((R, l) , U) =
{

R′ ∈ RN
x (Y ) | R|M\U ≃ R′

|M\U

}

,

where U is any open subset such that Y ⊂ U ⊂ D \ x.
Also, we consider on RN (Y ) the topology generated by:

V(R,U) =
{

R′ ∈ RN (Y ) | R|M\U ≃ R′
|M\U

}

,

where U is any open subset such that Y ⊂ U ⊂ D.

Let TN be the set of transpositions in S(N). The set RN
x (Y ) is in bijection with

(TN )#Y : this is a finite set, and thus we can consider the uniform measure on RN
x (Y ).

When one wants to define a measure on a finite set of objects, it is common to take into
account the size of the automorphism group: in case of labelled ramified coverings, the
uniform measure is the natural one.
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Definition 4.6. — The uniform measure on RN
x (Y ) is:

UN
x,Y =

1

(#Tn)#Y

∑

(R,l)∈RN
x (Y )

δ(R,l).

The natural measure on RN (Y ) is:

UN
Y =

1

(#Tn)#Y

∑

(R,l)∈RN (Y )

n!

#Aut(R)
δR.

Using the Equation (63) of [19], one gets the following lemma.

Lemma 4.1. — Let F : RN
x (Y ) → RN (Y ) be the application where one forgets about

the labelling. We have UN
Y = UN

x,Y ◦ F−1.

Let PN (dY ) be a Poisson point process on D of intensity equal to N
2 dx. On the set

of finite subsets of D, F (D), we will consider the topology which makes the bijection
F (D) ≃ ∪k≥0(D

k \∆k)/Sk continuous. In [19], Proposition 5.3.3, Lévy showed that:

Lemma 4.2. — The application which sends Y , a finite subset of D, on UN
Y and the

one which sends Y , a finite subset of D \ {x}, on UN
x,Y are continuous.

Thus we can define the following measures on simple ramified coverings on the disk
(labelled or not).

Definition 4.7. — We consider on RN (Y ) and RN
x (Y ) respectively the Borel mea-

sures:

UN =

∫

UN
Y PN (dY ) and UN

x =

∫

UN
x,Y PN (dY ).

The main result in this article is that, in some sense, the measures UN or UN
x converge

when N goes to infinity. This assertion has to be taken non-rigorously as the measures
are not supported by the same space and the limiting object is not defined. What we will
show instead is that the monodromies of the ramified coverings converge in probability.
From now on, we will only consider the measure UN

x on labelled ramified coverings. The
case of non labelled ramified coverings could be also studied, yet it would be necessary to
be a little more careful on how we define the associated holonomy process thus, for sake
of clarity, we prefered to present the results in the setting of labelled ramified coverings.

Let R be a ramified covering in RN
x (Y ) and let l be the labelling of the sheets of R

at x. Let c be a rectifiable loop in D based at x. We can transport the labelling l along
the path c: it gives us an other labelling l′ of the sheets above x. The unique element
σ ∈ S(N) such that l′ = lσ is called the monodromy of R along c with respect to l and
is denoted by monR,l(c). Suppose that we label R at x with l ◦ η where η ∈ S(N), then
c transports the labelling lη on lmonR,l(c)η: it shows that for any curve c1 and c2 based
at x,

monR,l(c1) = η−1monR,l◦η(c1)η,(13)

monR,l(c
−1
1 ) = (monR,l(c1))

−1 ,(14)

monR,l(c1c2) = monR,l(c2)monR,l(c1),(15)
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where c1c2 is the concatenation of c1 with c2 and c−1
1 is the curve c1 with reversed

orientation.
If c is a rectifiable curve, PN (dY )-a.s. the range of c is inside D \ Y . We can thus

define the holonomy process associated with UN
x by using the monodromy along any

rectifiable loop based at x. The set of rectifiable loops in D based at x is denoted by
Lx(D).

Definition 4.8. — The random holonomy field on Lx(D) associated with UN
x is the

process (m(c))c∈Lx(D)
defined on

(

RN
x ,U

N
x

)

where:

mN (c) : RN
x → S(N)

(R, l) 7→ monR,l(c).

For any c1 and c2 in Lx(D), U
N
x -a.s,

mN (c1c2) = mN (c2)mN (c1),

mN

(

c−1
1

)

= mN (c1)
−1.

It is quite natural to wonder how a change of the base point x changes the random
holonomy field: in order to do so, we need to consider the same index set for the random
processes.

Definition 4.9. — Let c0→x be a path from 0 to x. The random holonomy field
on L0(D) associated with UN

x is the process
(

mN

(

c−1
0→x c c0→x

))

c∈L0(D)
defined on

(

RN
x ,U

N
x

)

.

Its law does not depend on the choice of c0→x and it was also proved by Lévy that the
laws of the random holonomy field on L0(D) associated with UN

x do not depend on the
choice of x. From now on, we will only consider the random holonomy field on L0(D)
associated with UN

0 . Let us state a theorem which is a direct consequence of Proposition
5.4.4 of [19]. One can see also this theorem as a consequence of the results of [13].

Theorem 4.1. — Let
(

SN
t

)

t≥0
be a TN -random walk on S(N). The holonomy field on

L0(D) associated with UN
0 has the same law as the holonomy process (h(l))l∈L0((D) under

the S(N)-valued Yang-Mills measure associated with
(

SN
t

)

t≥0
.

As already said, one can easily generalize this theorem in order to study any λN -
random walk. In a nutshell we have the following “equality”.

Monodromy of random ramified coverings = Yang−Mills measure with S(N) gauge group.

Using this equality and Theorem 3.2, we have proved in this article that the traces
of the monodromies of random ramified coverings of the disk of degree N converge in
probability when N goes to infinity.

Theorem 4.2. — There exists an application:

φ : L0(D) → R

l 7→ φ(l),
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which is continuous for convergence with fixed endpoints such that for any l ∈ L0(D),
1
N
Tr (mN (l)) converges in probability to φ(l) as N goes to infinity.
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