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Improved error bounds for quantization based numerical
schemes for BSDE and nonlinear filtering

GILLES PAGÈS ∗ ABASS SAGNA † ‡

Abstract

We take advantage of recent results on optimal quantization theory (see [24, 44]) to improve the
quadratic optimal quantization error bounds for backward stochastic differential equations (BSDE
in short) and nonlinear filtering problems. To achieve it, one of the main ideas used for both prob-
lems is the use the orthogonality property of the conditional expectation for the mean-quadratic
norm. When permitting some involving functions to be less regular than what is usually needed,
the analysis of the nonlinear filtering error bounds brings into play the so-called mismatch property,
namely the fact that the quadratic optimal quantizers of sizeN used to approximateRd-valued ran-
dom vectors in L2 by a nearest neighbor projection (Voronoi quantization) at a N− 1

d still perform
this approximation at the same rate in Ls, 2 ≤ s ≤ 2 + d.

1 Introduction

In this work we propose improved error bounds for quantization based numerical schemes introduced
in [4] and [41] to solve BSDEs and nonlinear filtering problems. For BSDE, we consider equations
where the driver depends on the “Z” term (see Equation (1) below) and for nonlinear filtering, we
extend existing results to locally Lipschitz continuous densities (see Section 5). For both problems, we
also improve the error bounds themselves by using a Pythagoras like theorem for the approximation
of conditional expectations introduced in [44] (see also [40]). These problems have a wide range of
applications, in particular in Financial Mathematics, when modeling the price of financial derivatives
or in stochastic control, in credit risk modeling, etc.

BSDEs were first introduced in [9] but raised a wide interest mostly after the extension in work [47].
In this latter paper, the existence and the uniqueness of a solution have been established for the follow-
ing backward stochastic differential equation with Lipschitz continuous driver f (valued in Rd) and
terminal condition ξ:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T, (1)

where W is a q-dimensional brownian motion. We mean by a solution a pair (Yt, Zt)t≤T (valued in
Rd × Rd×q) of square integrable progressively measurable (with respect to the augmented Brownian
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filtration (Ft)t≥0) and satisfying Equation (1). Extensions of these existence and uniqueness results
have been investigated in more general situations (less regular drivers f (see [19] for driver having a
little regularity in time, called rough path driver, [1, 26] for locally Lipschitz driver, [32] for quadratic
BSDEs and [33] for superlinear quadratic BSDEs), randomized horizon (see [46]), introduction of
Poisson random measure component subject to constraints on the jump component (see [31, 30]),
extension to second order BSDEs (see [37])).

Since the pioneering work [38] in which the link between BSDE and hedging portfolio of European
(and American) derivatives has been first established, various other applications have been developed,
as risk-sensitive control problems, risk measure theory, etc.

However, even if it can be established in many cases that a BSDE has a unique solution, this
solution admits no closed form in general. This led to devise tractable approximation schemes of the
solution. In the Markovian case (see (2) below) for example, where the terminal condition is of the
form ξ = h(XT ) for some forward diffusion X , a first numerical method has been proposed in [20]
for a class of forward-backward stochastic differential equations, based a four step scheme developed
later on in [35].

In [51], a numerical scheme for BSDEs with possible path-dependent terminal condition has been
investigated. Many others approximation methods of a solution of some classes of BSDEs such as
coupled BSDE, Reflected BSDE, BSDE for quasilinear PDEs, BSDE applied to control problems or
nonlinear PDEs, etc, have also be considered (we refer for e.g. to [2, 13, 14, 18]). Note in fact that
in [14], the authors consider a slightly modified usual dynamical programming equation to propose a
numerical approximation of (1) when the generator f has a quadratic growth with respect to z. They
investigate the time discretization error and use optimal quantization to implement their algorithm.
However, they do not study the induced quantization error.

In the present work, we consider the following Markovian BSDE

Yt = ξ +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
Zs · dWs, t ∈ [0, T ], (2)

where W is a q-dimensional Brownian motion, (Zt)t∈[0,T ] is a square integrable progressively measur-
able process taking values in Rq, f : [0, T ]×Rd ×R×Rq → R. We suppose a terminal condition of
the form ξ = h(XT ), for a given Borel function h : Rd → R, where XT is the value at time T of a
Brownian diffusion process (Xt)t≥0, strong solution to the stochastic differential equation:

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, x ∈ Rd. (3)

In this case, the approximating methods of the solution of the BSDE are written (for a given time
discretization at instants t0 = 0, · · · , tn = T ) as a functional of the paths of (Xtk)k=0,··· ,n and involve
in particular conditional expectations E(gk+1(Xtk+1

)|Xtk), where gk+1 is a known function. The
sequence (Xtk+1

)0≤k≤n is either a “sampling" of the diffusion X at times (tk)0≤k≤n or, most often, a
discretization scheme of (Xt)t≥0, typically the Euler scheme, when the solution of (3) is not explicit
enough to be simulated in an exact way.

In this paper, we will consider an explicit time discretization scheme, recursively defined in a
backward way as:

Ỹtn = h(X̄tn) (4)

Ỹtk = E(Ỹtk+1
|Ftk) + ∆nf

(
tk, X̄tk ,E(Ỹtk+1

|Ftk), ζ̃tk
)
, k = 0, . . . , n− 1, (5)

with
ζ̃tk =

1

∆n
E
(
Ỹtk+1

(Wtk+1
−Wtk)|Ftk

)
. (6)
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The process (X̄tk)k=0,··· ,n is the discrete time Euler scheme of the diffusion process (Xt)t∈[0,T ] with
step ∆n = T

n . It is defined recursively by

X̄tk = X̄tk−1
+ ∆nb(tk−1, X̄tk−1

) + σ(tk−1, X̄tk−1
)(Wtk −Wtk−1

), k = 1, · · · , n, X̄0 = x.

Under some smooth assumptions on the coefficients of the diffusions one shows (see Theorem 3.1
further on for a precise statement, see also [10]) that there is a real constant C̃b,σ,f,T > 0 such that, for
every n ≥ 1,

max
k∈{0,··· ,n}

E|Ytk − Ỹtk |
2 +

∫ T

0
E|Zt − Z̃t|2dt ≤ C̃b,σ,f,T∆n,

where Z̃ = Z̃(n) comes from the martingale representation of
∑n

k=1 Ỹtk − E(Ỹtk |Ftk−1
). A proof of

this result is provided in the appendix for self completeness.
At this stage, since the scheme (4)-(5) involves the computation of conditional expectations for

which no analytical expression is available, its solution (Ỹ , ζ̃) has in turn to be approximated. A
possible approach is to rely on regression methods involving the Monte Carlo simulations (see e.g. [10,
22]). Other method using on line Monte Carlo simulations has been developed in a Malliavin calculus
framework (conditional expectations are “regularized” by integration by parts from which “Malliavin”
weights come out, see [10, 16, 27]).

In this paper, we propose to use an optimal quantization tree approach originally introduced in [5]
and developped in [4, 3, 6] (in fact for Reflected BSDEs). This approach is based on an optimally
fitting approximation of the Markovian dynamics of the discrete time Markov chain (X̄tk)0≤k≤n (or
a sampling of X at discrete times (tk)k=0,··· ,n) with random variables having a finite support. More
precisely, the quantization tree is defined recursively by mimicking (4)-(5) as follows:

Ŷtn = h(X̂tn) (7)

Ŷtk = Êk(Ŷtk+1
) + ∆nf

(
tk, X̂tk , Êk(Ŷtk+1

), ζ̂tk
)

(8)

with ζ̂tk =
1

∆n
Êk(Ŷtk+1

∆Wtk+1
), k = 0, · · · , n− 1,

where ∆Wtk+1
= Wtk+1

−Wtk , Êk = E(·|X̂tk), and X̂tk is a quantization of X̄tk on a finite grid Γk,
i.e., X̂tk = πk(X̄tk), where πk : Rd → Γk are Borel functions, k = 0, · · · , n. Our aim is to include
the Z term in the driver and to significantly improve the error bounds in [3, 6].

So, the question of interest will be to estimate the quadratic quantization error (E|Ỹtk − Ŷtk |2)1/2

induced by the approximation of Ỹtk by Ŷtk , for every k = 0, · · · , n, where Ŷtk is the quantized version
of Ỹtk given by (7)-(8). Under more general assumptions than [4, 5], we show in Theorem 3.2 that at
every step k of the procedure,

∥∥Ỹtk − Ŷtk∥∥2

2
≤

n∑
i=k

K̃i

∥∥X̄ti − X̂ti

∥∥2

2
, (9)

for positive real constants K̃i depending on T and on the regularity of the coefficients of b, σ and the
driver f . The presence of the squared norms in (9) improve the control of the time discretization effect,
compared with [4, 5]. In fact, we switch from a global error of order n×max0≤k≤n ‖Xtk − X̂tk‖2 to
an order

√
nmax0≤k≤n ‖Xtk − X̂tk‖2 without damaging the constants.

In the second part of the paper, we consider a (discrete time) nonlinear filtering problem and im-
prove (in the quadratic setting) the results obtained in [41], where the error bounds associated to the
estimation of a discrete filter by optimal quantization has been investigated.
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The discrete time nonlinear filtering problem involves two processes: the signal process and the
observation process. The signal process denoted in this paper by (Xk)k≥0 is modeled by an Rd-
valued discrete time random process whereas the observation process (Yk)k≥0 is an Rq-valued dis-
crete time random process, both defined on a probability space (Ω,A,P). We assume that both se-
quences (Xk)0≤k≤n and (Xk, Yk)0≤k≤n share the Markov property. The nonlinear filtering problem
consists in computing the conditional distribution Πy,n of Xn given the observation (y0, . . . , yn) =
(y0, · · · , yn). If we assume that the distribution of Yk given (Xk−1, Yk−1, Xk) has a density given by
y′ 7→ gk(Xk−1, Yk−1, Xk, y

′) for every k ∈ {1, · · · , n}, then it is well-known (see e.g. [41]) that, for
every bounded Borel function f : Rd → R,

Πy,nf =
πy,nf

πy,n1
(10)

where πy,nf is computed by the following recursive formula:

πy,kf = πy,k−1Hy,kf, k = 1, · · · , n, πy,0 = Hy,0,

with
Hy,kf(x) = E(f(Xk)gk(x, yk−1, Xk, yk)|Xk−1 = x)

and
Hy,0f(x) = E(f(X0)).

In spite of the previous recursive formula, Πy,nf cannot be computed explicitly in general and has to
be approximated using numerical approximation methods. One efficient method to solve numerically
this problem is to rely again on an optimal quantization scheme as proposed in [41]. It consists in
quantizing the process (Xk)k=0,··· ,n by a process (X̂k) where, for every k = 0, · · · , n, X̂k is a marginal
quantization of Xk of size Nk. The idea at this stage is to substitute in the formula which defines the
above kernels Hy,kf(x) the variables Xk by their marginal quantizations X̂k. We denote by Π̂y,n the
resulting approximation of the conditional distribution Πy,n. It has been shown in [41] that for every
bounded function f , the absolute error |Πy,nf − Π̂y,nf | is bounded (up to a positive constant) by the
cumulated quantization errors ‖Xk− X̂k‖r from k = 0 to n, for r ≥ 1 (in practice, for every r = 1, 2).

We propose to improve this result in the quadratic framework (r = 2) in two ways. We show that
for every bounded function f , the square-absolute error |Πy,nf − Π̂y,nf |2 is bounded by the sum of
the square-quadratic quantization errors ‖Xk − X̂k‖22 from k = 0 to n. Secondly, taking advantage of
recent new results on optimal vector quantization, namely, the distortion mismatch problem (see [24]
and Theorem 4.3 Appendix B), we show the same improved result (asymptotically with respect to the
quantization grid sizes Nk) under local Lipschitz instead of global Lipschitz continuity assumption on
the density functions gk.

The paper is divided into two parts. The first part is devoted to the analysis of the optimal quan-
tization error associated to the BSDE of consideration. We recall first, in Section 2, the discretization
scheme we consider for the BSDE. Then, in Section 3, we investigate error analysis for the time
discretization and the quantization scheme. We perform some numerical tests in dimension one and
illustrate the rate of convergence of the quantization error for a Call price in the Black-Scholes model.
Then, some results about optimal quantization are recalled in Section 4. Section 5 is devoted to the
nonlinear filtering problem analysis when estimating the nonlinear filter by optimal quantization.
NOTATIONS: • | . | denotes the canonical Euclidean norm on Rd.

• For every f : Rd → R, set [f ]Lip = supx 6=y
|f(x)−f(y)|
|x−y| ≤ +∞.

• If A∈M(d, q) we define the norm ‖A‖ =
√

Tr(AA∗).

• For every r ≥ 0, we define Lr+(P) =
⋃
η>0L

r+η(P).
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2 Discretization of the BSDE

Let (Wt)t≥0 be a q-dimensional Brownian motion defined on a probability space (Ω,A,P) and let
(Ft)t≥0 be its augmented natural filtration. We consider the following stochastic differential equation:

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (11)

where the drift coefficient b : [0, T ]×Rd → Rd and the matrix diffusion coefficient σ : [0, T ]×Rd →
M(d, q) are Lipschitz continuous in (t, x). For a fixed horizon (the maturity) T > 0, we consider the
following Markovian Backward Stochastic Differential Equation (BSDE):

Yt = h(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
Zs · dWs, t ∈ [0, T ], (12)

where the function h : Rd → R is [h]Lip-Lipschitz continuous, the driver f(t, x, y, z) : [0, T ]×Rd
×R×Rq → R is Lipschitz continuous with respect to (x, y, z), uniformly in t∈ [0, T ], i.e. satisfies

(Lipf ) ≡ |f(t, x, y, z)− f(t, x′, y′, z′)| ≤ [f ]Lip(|x− x′|+ |y − y′|+ |z − z′|). (13)

Under the previous assumptions on b, σ, h, f , the BSDE (12) has a unique R×Rq-valued, Ft-
adapted solution (Y,Z) satisfying

E
(

sup
t∈[0,T ]

|Yt|2 +

∫ T

0
|Zs|2ds

)
< +∞

(see [47], see also [36]).
Let us consider now (X̄tk)k=0,··· ,n the discrete time Euler scheme with step ∆n = T

n of the dif-
fusion process (Xt)t∈[0,T ], where (tk)0≤k≤n is the uniform mesh of the interval [0, T ] defined by
tk := kT

n , k = 0, · · · , n. It reads

X̄tk = X̄tk−1
+ ∆nb(tk−1, X̄tk−1

) + σ(tk−1, X̄tk−1
)(Wtk −Wtk−1

), k = 1, · · · , n, X̄0 = x.

We will need to extend this Euler schemes into a continuous time process (X̄n
t )t∈[0,T ], sometimes

called genuine Euler scheme by setting (we drop the dependence in n when no ambiguity):

X̄t = X̄tk−1
+(t− tk−1)b(tk−1, X̄tk−1

)+σ(tk−1, X̄tk−1
)(Wt−Wtk−1

), t ∈ [tk−1, tk], k = 1, · · · , n.
(14)

If we set t = kT
n when t∈ [tk, tk+1), one easily checks that (X̄t)t∈[0,T ] is an Itô process satisfying

dX̄t = (t− t)b(t, X̄t) + σ(t, X̄t)dWt, X̄0 = x.

In particular (X̄t)t∈[0,T ] is a continuousFt-adapted process and, it is classical background (see e.g. [11]),
that, under the assumptions made on b and σ, one has for every p ∈ (0,+∞),∥∥∥ sup

t∈[0,T ]
|Xt|

∥∥∥
p

+ sup
n≥1

∥∥∥ sup
t∈[0,T ]

|X̄n
t |
∥∥∥
p
≤ Cb,σ,p,T

(
1 + |x|

)
,

for a positive constant Cb,σ,p,T . On the other hand, there exists a real constant C ′b,σ,p,T > 0 such that,
for every n ≥ 1 and for every p ∈ (0,+∞),∥∥∥ sup

t∈[0,T ]
|Xt − X̄n

t |
∥∥∥
p
≤ C ′b,σ,p,T

√
∆n

(
1 + |x|

)
.
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As a consequence, general existence-uniqueness results for BSDEs ensure (see [48]) that there exists a
unique solution (Ȳ , Z̄) to the Markovian BSDE associated to the genuine Euler scheme, namely

Ȳt = h(X̄T ) +

∫ T

t
f(s, X̄s, Ȳs, Z̄s)ds−

∫ T

t
Z̄sdWs, t ∈ [0, T ], (15)

such that

E
(

sup
t∈[0,T ]

|Ȳt|2 +

∫ T

0
|Z̄s|2ds

)
< +∞.

Then, we can apply the classical comparison result (Proposition 2.1 from [38]) with f1(ω, t, y, z) =
f(t, X̄t(ω), y, z) and f2(ω, t, x, y, z) = f(t,Xt(ω), y, z) which immediately yields the existence of
real constants C(i)

b,σ,f,T > 0, i = 1, 2, such that

E
(

sup
t∈[0,T ]

|Yt − Ȳt|2 +

∫ T

0
|Zt − Z̄t|2dt

)
≤ C(1)

(
E
(
h(XT )− h(X̄T )

)2
+ [f ]2LipE

∫ T

0
|Xt − X̄n

t |2dt
)

≤ C(1)
(
[h]2Lip + T [f ]2Lip

)
E
(

sup
t∈[0,T ]

|Xt − X̄n
t |
)2

≤ C
(2)
b,σ,f,T∆n.

Unfortunately, at this stage, the couple (Ȳt, Z̄t)t∈[0,T ] is still “untractable" for numerical purposes
(it satisfies no Dynamic Programming Principle due to its continuous time nature and there is no possi-
ble exact simulation, etc). This is mainly due to Z̄ on which little is known (by contrast with Z which
is closely connected to a PDE as it will be recalled further on). So we will need to go deeper in the
time discretization, by discretizing the Z term itself.
Consequently, we need to perform again a time discretization, this time on (15), only involving discrete
instants tk, k = 0, · · · , n.

We consider an explicit scheme recursively defined in a backward way as follows:

Ỹtn = h(X̄tn) (16)

Ỹtk = E(Ỹtk+1
|Ftk) + ∆nf

(
tk, X̄tk ,E(Ỹtk+1

|Ftk), ζ̃tk
)

(17)

and
ζ̃tk =

1

∆n
E
(
Ỹtk+1

(Wtk+1
−Wtk)|Ftk

)
, k = 0, . . . , n− 1. (18)

Note that in many situations, one uses the following alternative formula

ζ̃tk =
1

∆n
E
(
(Ỹtk+1

− Ỹtk)(Wtk+1
−Wtk)|Ftk

)
,

which is clearly more natural when thinking to ζk as a hedging term in discrete time. One easily shows
by a backward induction that, for every k ∈ {0, · · · , n}, Ỹtk ∈ L2(Ω,A,P) since supt∈[0,T ] |X̄tk | ∈
L2(P).

Our first aim is to adapt standard comparision theorems to compare the above purely discrete
scheme (Ỹtk , Z̃tk) with the original BSDE to derive error bounds similar to those recalled above be-
tween (Y, Z) and (Ỹ , Z̄). To this end, like for the Euler scheme, we need to extend Ỹ into a continuous
time process by an appropriate interpolation. We proceed as follows: let

MT =

n∑
k=1

Ỹtk − E
(
Ỹtk | Ftk−1

)
.
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This random variable is in L2(P). Hence, by the Brownian representation theorem, there exists an
(Ft)-progressively measurable Z̃∈ L2([0, T ]× Ω,P⊗ dt) such that

MT =

∫ T

0
Z̃t dWt.

Then Ỹtk − E
(
Ỹtk | Ftk−1

)
=

∫ tk

tk−1

Z̃s dWs. In particular

ζ̃tk =
1

∆n
E
(
Ỹtk+1

(Wtk+1
−Wtk) | Ftk

)
=

1

∆n
E
(∫ tk+1

tk

Z̃s ds | Ftk
)
, k = 0, . . . , n− 1,

so that we may define a continuous extension of (Ỹtk)0≤k≤n as follows:

Ỹt = Ỹtk − (t− tk)f
(
tk, X̄tk ,E(Ỹtk+1

|Ftk), ζ̃tk
)

+

∫ t

tk

Z̃sdWs, t ∈ [tk, tk+1]. (19)

3 Error analysis

3.1 The time discretization error

We consider the time discretization scheme (Ỹ , Z̃) defined by (16)-(33) and (19) and compute below
the discretization error bound. The result is proved in the Appendix for self-compoleteness. It closely
follows, like most results of this type, the classical method of proof devised for comparison theorems
in [38].

Theorem 3.1. (a) Assume the function f : [0, T ] × R × Rd × R → R is Lipschitz continuous in
(t, x, y, z) and that

∀t ≥ 0, |f(t, x, y, z)| ≤ C(f)(1 + |x|+ |y|+ |z|). (20)

Then, there exists a real constant Cb,σ,f,T > 0 such that, for every n ≥ 1,

max
k∈{0,··· ,n}

E|Ytk − Ỹtk |
2 +

∫ T

0
E|Zt − Z̃t|2dt ≤ Cb,σ,f,T

(
∆n +

∫ T

0
E|Zs − Zs|2ds

)
.

(b) Assume that the functions b, σ, h, f are bounded in x, uniformly Lipschitz continuous in (x, y, z)
and Hölder continuous of parameter 1/2 with respect to t. Suppose furthermore that h is of class
C2+α
b , α ∈ (0, 1) and that σσ? is uniformly elliptic. Then∫ T

0
E|Zs − Zs|2ds ≤ C(1)

b,σ,f,T∆n, (21)

so that there exists a real constant C̃b,σ,f,T > 0 such that, for every n ≥ 1,

sup
k∈{0,··· ,n}

E|Ytk − Ỹtk |
2 +

∫ T

0
E|Zt − Z̃t|2dt ≤ C̃b,σ,f,T∆n. (22)

NOTATIONS (CHANGE OF). The previous schemes (16)-(17) involve some quantities and operators
which will be the core of what follows and are of discrete time nature. So, in order to simplify the proofs
and alleviate the notations, we will identify every time step tnk by k and we will denote Ek = E(·|Ftk).
Thus, we will switch to

X̄k := X̄tk , Ỹk := Ỹtk , fk(x, y, z) = f(tk, x, y, z).

However note that, in the proof of the Appendix, we still use continuous time notations.
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3.2 Error bound for the quantization scheme

In this section, we consider the quantization scheme (7)-(8) and compute the quadratic quantization
error (E|Ỹtk − Ŷtk |2)1/2 induced by the approximation of Ỹtk by Ŷtk , for every k = 0, · · · , n. This
leads to the following result.

Theorem 3.2. Assume that the drift b and the diffusion coefficient σ of the diffusion (Xt)t∈[0,T ] defined
by (11) are Lipschitz continuous, that the driver function f satisfies (Lipf ) (Assumption(13)) and that
the function h is [h]Lip-Lipschitz continuous.

(a) For every k = 0, · · · , n,

∥∥Ỹk − Ŷk∥∥2

2
≤

n∑
i=k

e(1+[f ]Lip)tiKi(b, σ, T, f)
∥∥X̄i − X̂i

∥∥2

2
, (23)

where Kn(b, σ, T, f) := [h]2Lip and, for every i = 0, · · · , n− 1, one can choose (provided n ≥ n0),

Ki(b, σ, T, f) := κ2
1e

2κ0(T−tk) +
(

1 + ∆n0

)(
C1,k(b, σ, T, f)∆n0 + C2,k(b, σ, T, f)

)
,

with

C2,k(b, σ, T, f) = qκ2
1[f ]2Lipe

2∆nCb,σ,T+2κ0(T−tk+1)

and C1,k(b, σ, T, f) = [f ]2Lip +
C2,k(b, σ, T, f)

q
.

(b) For every k = 0, · · · , n,

∆n

n−1∑
k=0

‖ζ̃k − ζ̂k‖22 ≤
n−1∑
k=0

C2,k(b, σ, T, f)

[f ]2Lip

‖X̄k − X̂k‖22 +
n−1∑
k=0

‖Ỹk+1 − Ŷk+1‖22.

Following the usual architecture of proofs of quantization based schemes like those developed in [4]
or [41] (among others), The proof of Theorem 3.2 (which will be displayed further on) is divided in two
main steps: the first one is to establish the propagation of the Lipschitz property through the functions
yk and zk involved in the Markov representation (16)-(17) of Ỹk and ζ̃k, namely Ỹk = yk(X̄k) and
ζ̃k = ∆−1

n zk(X̄k), and to control precisely the propagation of their Lipschitz coefficients (an alternative
to this phase can be to consider the Lipchitz properties of the flow of the SDE like in [28]). As a second
step, we introduce the quantization based scheme which is the counterpart of (16) and (17) for which
we establish a backward recursive inequality satisfied by ‖Ỹk − Ŷk‖22.

3.2.1 First step toward the proof of Theorem 3.2

As a first step we need to introduce several operators which appear naturally when representing Yk.
To be more precise, we set for every k ∈ {0, · · · , n − 1} and every Borel function g : Rd → R with
polynomial growth

Ek(x, u) = x+ ∆nb(tk, x) +
√

∆nσ(tk, x)u, x∈ Rd, u∈ Rq (24)

Pk+1g(x) = E g
(
Ek(x, ε)

)
where ε ∼ N (0; Iq) (25)

Qk+1g(x) =
1√
∆n
E
(
g
(
Ek(x, ε)

)
ε
)
. (26)
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One immediately checks that for every k ∈ {0, · · · , n− 1},

Ekg(X̄k+1) = Pk+1g(X̄k) and Ek
(
g(X̄k+1)(Wtnk+1

−Wtnk
)
)

= ∆nQk+1g(X̄k).

Note that the process (X̄k)0≤k≤n is an (Fk)0≤k≤n-Markov chain with transitions Pk+1, k =
0, · · · , n − 1. Moreover, it shares the property to propagate the Lipschitz property as established
in the Lemma below.

Lemma 3.3. For every k = 0, . . . , n− 1, the transition operator Pk+1 is Lipschitz in the sense that its
Lipschitz coefficient defined by [Pk+1]Lip := sup

f, [f ]Lip≤1
[Pk+1f ]Lip is finite. More precisely, it satisfies:

[Pk+1]Lip ≤ e∆nCb,σ,T (27)

where
Cb,σ,T = [b]Lip +

1

2
([σ]2Lip + T [b]2Lip). (28)

Furthermore, if n ≥ n0, one can take Cb,σ,T = [b]Lip +
1

2

(
[σ]2Lip +

T

n0
[b]2Lip

)
.

Proof. We have for every x, x′ ∈ Rd, and for every Lipschitz continuous function g with Lipschitz
coefficient [g]Lip,

|Pk+1g(x)− Pk+1g(x′)|2 ≤ E |g
(
Ek(x, ε)

)
− E g

(
Ek(x′, ε)

)
|2

≤ [g]2LipE|Ek(x, ε)− Ek(x′, ε)|2

and elementary computations, already carried out in [4], show that

E|Ek(x, ε)− Ek(x′, ε)|2 ≤
(
1 + ∆n(2[b(tnk , .)]Lip + [σ(tnk , .)]

2
Lip) + ∆2

n[b(tnk , .)]
2
Lip

)
|x− x′|2

≤
(
1 + ∆n(2[b]Lip + [σ]2Lip) + ∆2

n[b]2Lip

)
|x− x′|2

≤ (1 + ∆nCb,σ,T )2|x− x′|2

≤ e2∆nCb,σ,T |x− x′|2

where Cb,σ,T can be e.g. taken equal to [b]Lip + 1
2([σ]2Lip + T

n0
[b]2Lip) provided n ≥ n0. It follows that

Pk+1 is Lipschitz with Lipschitz constant [Pk+1]Lip ≤ e∆nCb,σ,T .

Proposition 3.4. (see [4]) (a) The sequence of functions yk, k = 0, · · · , n, defined by the backward
induction

yn = h

yk = Pk+1yk+1 + ∆nfk
(
. , Pk+1yk+1, Qk+1yk+1

)
, k = 0, · · · , n− 1,

satisfies Ỹk = yk(X̄k) for every k∈ {0, · · · , n}.
(b) Furthermore, assume that the function h is [h]Lip-Lipschitz continuous and that the function f(t, x, y, z)
is [f ]Lip-Lipschitz continuous in (x, y, z), uniformly in t∈ [0, T ]. Then, for every k∈ {0, · · · , n}, the
function yk is [yk]Lip-Lipschitz continuous and there exists real constants κ0 = Cb,σ,T + [f ]Lip, where

Cb,σ,T is given by (28) in Lemma 3.3, and κ1 =
[f ]Lip

κ0
+ [h]Lip such that

[yk]Lip ≤ ∆n

eκ0∆n − 1
(eκ0(T−tnk ) − 1)[f ]Lip + eκ0(T−tnk )[h]Lip

≤ eκ0(T−tnk )κ1. (29)

In particular,
sup
n≥1

max
k=0,··· ,n

[yk]Lip ≤ eκ0Tκ1 < +∞. (30)
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Proof. (a) We proceed by a backward induction using (16) and (17), relying on the fact that (X̄k)k=0,··· ,n
is a Markov chain which propagates Lipschitz continuity. In fact, Ỹn = h(X̄n) := yn(X̄n). Assuming
that Ỹk+1 = yk+1(X̄k+1) and using Equation (17) and the Markov property, we get

Ȳk = E(yk+1(X̄k+1)|X̄k) + ∆nfk
(
X̄k,E(yk+1(X̄k+1)|X̄k), ζtnk

)
= Pk+1yk+1(X̄k) + ∆nfk(X̄k, Pk+1yk+1(X̄k), Qk+1yk+1(X̄k))

= yk(X̄k).

(b) We also show this claim by a backward induction. In fact, Ỹn = h(X̄n) := yn(X̄n) and h is
[h]Lip-Lipschitz. Suppose that yk+1 is [yk+1]Lip-Lipschitz continuous. Then, for every x, x′ ∈ Rd, we
can write

yk(x)− yk(x′) = E
(
yk+1

(
Ek(x, ε)

)
− yk+1

(
Ek(x′, ε)

))
+∆n

[
Ax,x′(x− x′) +Bx,x′E

(
yk+1

(
Ek(x, ε)

)
− yk+1

(
Ek(x′, ε)

))
+Cx,x′E

((
yk+1

(
Ek(x, ε)

)
− yk+1

(
Ek(x′, ε)

))
ε
)]

where ε ∼ N (0, Iq) and

Ax,x′ =
fk
(
x, Pk+1yk+1(x), Qk+1yk+1(x)

)
− fk

(
x′, Pk+1yk+1(x), Qk+1yk+1(x)

)
x− x′

1{x 6=x′},

Bx,x′ =
fk
(
x′, Pk+1yk+1(x), Qk+1yk+1(x)

)
− fk

(
x′, Pk+1yk+1(x′), Qk+1yk+1(x)

)
Pk+1yk+1(x)− Pk+1yk+1(x′)

1Px,x′ ,

Cx,x′ =
fk
(
x′, Pk+1yk+1(x′), Qk+1yk+1(x)

)
− fk

(
x′, Pk+1yk+1(x′), Qk+1yk+1(x′)

)
Qk+1yk+1(x)−Qk+1yk+1(x′)

1Qx,x′ ,

with Px,x′ = {Pk+1yk+1(x) 6= Pk+1yk+1(x′)} and Qx,x′ = {Qk+1yk+1(x) 6= Qk+1yk+1(x′)}. The
function fk being Lipschitz continuous, one clearly has |Ax,x′ |, |Bx,x′ |, |Cx,x′ | ≤ [f ]Lip. Now, taking
advantage of the linearity of expectation, we get

yk(x)− yk(x′) = E
((
yk+1

(
E(x, ε)

)
− yk+1

(
E(x′, ε)

)(
1 + ∆n

(
Bx,x′ + Cx,x′ε

)))
+Ax,x′(x− x′).

Then Schwarz’s Inequality yields

|yk(x)−yk(x′)| ≤
∥∥yk+1

(
E(x, ε)

)
−yk+1

(
E(x′, ε)

)∥∥
2

∥∥1+∆n

(
Bx,x′+Cx,x′ε

)∥∥
2
+∆n[f ]Lip |x−x′|.

Now,∥∥yk+1

(
Ek(x, ε)

)
−yk+1

(
Ek(x′, ε)

)∥∥
2
≤ [yk+1]Lip

∥∥Ek(x, ε)−Ek(x′, ε)∥∥2
≤ [yk+1]Lipe

∆nCb,σ,T |x−x′|,

by Lemma 3.3. On the other hand,∥∥1−∆n

(
Bx,x′ + Cx,x′ε

)∥∥2

2
= (1 + ∆nBx,x′)

2 + ∆2
nC

2
x,x′

≤ 1 + 2∆n[f ]Lip + 2∆2
n[f ]2Lip

≤ e2∆n[f ]Lip .

Finally, owing to the definition of κ0, we get∣∣yk(x)− yk(x′)
∣∣ ≤ (e∆nκ0 [yk+1]Lip + ∆n[f ]Lip

)
|x− x′|

i.e. yk is Lipschitz continuous with Lipschitz coefficient [yk]Lip satisfying

[yk]Lip ≤ eκ0∆n [yk+1]Lip + ∆n[f ]Lip.

The conclusion follows by induction.
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3.2.2 Second step of the proof of Theorem 3.2

Let (X̂k)k=0,··· ,n be the quantization of the Markov chain X̄ , where every quantizer X̂k is of size Nk,
for every k ∈ {0, · · · , n}. Recall that the discrete time quantized BSDE process (Ŷk)k=0,··· ,n is defined
by the following recursive algorithm:

Ŷn = h(X̂n)

Ŷk = Êk(Ŷk+1) + ∆nfk
(
X̂k, Êk(Ŷk+1), ζ̂k

)
with ζ̂k =

1

∆n
Êk(Ŷk+1∆Wtk+1

), k = 0, . . . , n− 1,

where Êk = E(· | X̂k). Owing to the previous section, we are now in position to prove Theorem 3.2.

Proof of Theorem 3.2. (a) Using the fact that, for every k ∈ {0, · · · , n}, σ(X̂k) ⊂ σ(Xk), we have

Ỹk − Ŷk = Ỹk − Êk(Ỹk) + Êk(Ỹk − Ŷk) (31)

where Ỹk − Êk(Ỹk) and Êk(Ỹk − Ŷk) are square integrable and orthogonal in L2(σ(X̂k)). As a
consequence, using the Pythagoras theorem for conditional expectation yield

‖Ỹk − Ŷk‖22 = ‖Ỹk − Êk(Ỹk)‖22 + ‖Êk(Ỹk − Ŷk)‖22.

On the other hand, it follows from the definition of the conditional expectation Êk(·) as the best
approximation in L2 among square integrable σ(X̂k)-measurable random vectors that

‖Ỹk − Êk(Ỹk)‖22 = ‖yk(X̄k)− Êk(yk(X̄k))‖22 ≤ ‖yk(X̄k)− yk(X̂k)‖22 ≤ [yk]
2
Lip‖X̄k − X̂k‖22.

Let us consider now the last term of the equality (31). We have,

Êk(Ỹk − Ŷk) = Êk
[
Ỹk+1 − Ŷk+1 + ∆n

(
fk(X̄k,Ek(Ỹk+1), ζ̃k)− fk(X̂k, Êk(Ŷk+1), ζ̂k)

)]
= Êk

[
Ỹk+1 − Ŷk+1 + ∆n

(
fk(X̄k,Ek(Ỹk+1), ζ̃k)− fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))

)
+ ∆n

(
fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))− fk(X̂k, Êk(Ŷk+1), ζ̂k)

)]
= Êk

[
Ỹk+1 − Ŷk+1 + ∆nB̂kÊk(Ỹk+1 − Ŷk+1)−∆nĈkÊk(ζ̃k − ζ̂k)

]
+ ∆nÊk

(
fk(X̄k,Ek(Ỹk+1), ζ̃k)− fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))

)
,

where

B̂k :=
fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))− fk(X̂k, Êk(Ŷk+1), Êk(ζ̃k))

Êk(Ỹk+1)− Êk(Ŷk+1)
1{Êk(Ỹk+1) 6=Êk(Ŷk+1)}

and Ĉk :=
fk(X̂k, Êk(Ŷk+1), Êk(ζ̃k))− fk(X̂k, Êk(Ŷk+1), ζ̂k))

Êk(ζ̃k)− Êk(ζ̂k)
1{Êk(ζ̃k) 6=Êk(ζ̂k)}.

As
Êk(ζ̃k)− Êk(ζ̂k) =

1

∆n
Êk((Ỹk+1 − Ŷk+1)∆Wtk+1

),

we deduce that

Êk(Ỹk − Ŷk) = Êk
[(
Ỹk+1 − Ŷk+1

)(
1−∆nB̂k − Ĉk∆Wtk+1

)]
+∆n

(
fk(X̄k,Ek(Ỹk+1), ζ̃k)− fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))

)
. (32)
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So, it remains to control each term of the above equality. Considering its last term, it follows from the
Lipschitz assumption on the driver fk that

‖fk(X̄k,Ek(Ỹk+1), ζ̃k)− fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))‖22 ≤ [f ]2Lip

(
‖X̄k − X̂k‖22

+‖Ek(Ỹk+1)− Êk(Ek(Ỹk+1))‖22
+‖ζ̃k − Êk(ζ̃k)‖22

)
.

First, the contraction property of the conditional expectation yields

‖Ek(Ỹk+1)− Êk(Ek(Ỹk+1))‖22 ≤ ‖Pk+1yk+1(X̄k)− Pk+1yk+1(X̂k)‖22
≤ [Pk+1]2Lip[yk+1]2Lip‖X̄k − X̂k‖22.

On the other hand, set

zk(x) = E
(
yk+1

(
Ek(x, ε)

)
ε
)
, k = 0, · · · , n− 1,

where ε ∼ N (0; Iq). We get

‖ζ̃k − Êkζ̃k‖22 =
1

∆2
n

‖Ek(Ỹk+1∆Wtk+1
)− Êk

(
Ek(Ỹk+1∆Wtk+1

)
)
‖22

=
1

∆n
‖zk(X̄k)− Êk(zk(X̄k))‖22

≤ 1

∆n
‖zk(X̄k)− zk(X̂k)‖22

≤ 1

∆n
[zk]

2
Lip‖X̄k − X̂k‖22. (33)

Let us determine [zk]Lip. We have, for every k = 0, · · · , n− 1,

zk(x)− zk(x′) = E
((
yk+1

(
Ek(x, ε)

)
− yk+1

(
Ek(x′, ε)

))
ε
)

so that∣∣zk(x)− zk(x′)
∣∣ ≤ [yk+1]LipE

∣∣∣((x− x′) + ∆n(b(x)− b(x′)) +
√

∆n(σ(x)− σ(x′))ε
)
ε
]∣∣∣

≤ [yk+1]LipE
∣∣(x− x′) + ∆n(b(x)− b(x′)) +

√
∆n(σ(x)− σ(x′))ε

∣∣∣∣ε∣∣
≤ [yk+1]Lip

∥∥(x− x′) + ∆n(b(x)− b(x′)) +
√

∆n(σ(x)− σ(x′))ε
∥∥

2

∥∥ε∥∥
2

≤ [yk+1]Lipe
∆nCb,σ,T

√
q|x− x′|

≤ √
q e∆nCb,σ,T κ1e

κ0(T−tnk+1)|x− x′|.

We finally deduce that

‖fk(X̄k,Ek(Ỹk+1), ζ̃k)− fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))‖2≤
(
C1,k(b, σ, T, f)

+
C2,k(b, σ, T, f)

∆n

) 1
2 ‖X̄k − X̂k‖2 (34)

since, owing to (27) and (29), we have

[f ]2Lip

(
1 + [Pk+1]2Lip[yk+1]2Lip

)
≤ C1,k(b, σ, T, f) and [f ]2Lip[zk]

2
Lip ≤ C1,k(b, σ, T, f),
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k = 0, · · · , n− 1 where

C2,k(b, σ, T, f) = qκ2
1[f ]2Lipe

2∆nCb,σ,T+2κ0(T−tk+1)

and C1,k(b, σ, T, f) = [f ]2Lip +
C2,k(b, σ, T, f)

q
.

To complete the proof, it suffices to control the remaining terms in Equation (32). Using the (condi-
tional) Schwarz’s inequality yields∣∣∣Êk[(Ỹk+1−Ŷk+1

)(
1−∆nB̂k−Ĉk∆Wtk+1

)]∣∣∣ ≤ [Êk(Ỹk+1−Ŷk+1)2
] 1

2
[
Êk(1−∆nB̂k−Ĉk∆Wtk+1

)2
] 1

2 .

Furthermore, using the fact that Êk(∆Wtk+1
) = Êk(Ek(∆Wtk+1

)) = 0 and owing to the measurability
of B̂k and Ĉk with respect to σ(X̂k), we get

Êk
[
(1−∆nB̂k − Ĉk∆Wtk+1

)2
]

= (1−∆nB̂k)
2 + Ĉ2

kÊk((∆Wtk+1
)2)

= (1−∆nB̂k)
2 + Ĉ2

k∆n

≤ (1 + ∆n[f ]Lip)2 + (∆n[f ]Lip)2

≤ e2∆n[f ]Lip .

Then, using the conditional Schwarz inequality and agains the contraction property of conditional
expectation, we get∥∥∥Êk[(Ỹk+1 − Ŷk+1

)(
1−∆nB̂k − Ĉk∆Wtk+1

)]∥∥∥
2
≤ e∆n[f ]Lip‖Ỹk+1 − Ŷk+1‖2. (35)

Using Schwarz’s Inequality for the L2-norm, we derive from (31), (32), (34) and (35) that

‖Ỹk − Ŷk‖22 = ‖Ỹk − Êk(Ỹk)‖22 + ‖Êk(Ỹk − Ŷk)‖22 (36)

≤ [yk]
2
Lip‖X̄k − X̂k‖22 +

(
e∆n[f ]Lip‖Ỹk+1 − Ŷk+1‖2 + ∆n‖fk(X̄k,Ek(Ỹk+1), ζ̃k)

−fk(X̂k, Êk(Ỹk+1), Êk(ζ̃k))‖2
)2

≤ [yk]
2
Lip‖X̄k − X̂k‖22 +

(
e∆n[f ]Lip‖Ỹk+1 − Ŷk+1‖2

+∆n

(
C1,k(b, σ, T, f) +

C2,k(b, σ, T, f)

∆n

) 1
2 ‖X̄k − X̂k‖2

)2
.

Relying on the classical identity

(a+ b)2 ≤ a2(1 + ∆n) + b2
(
1 + ∆−1

n

)
,

we derive that(
e∆n[f ]Lip‖Ỹk+1 − Ŷk+1‖2 + ∆n

(
C1,k(b, σ, T, f) +

C2,k(b, σ, T, f)

∆n

) 1
2 ‖X̄k − X̂k‖2

)2

≤ e∆n[f ]Lip(1 + ∆n)‖Ỹk+1 − Ŷk+1‖22

+
(

1 +
1

∆n

)
∆2
n

(
C1,k(b, σ, T, f) +

C2,k(b, σ, T, f)

∆n

)
‖X̄k − X̂k‖22

≤ e∆n(1+[f ]Lip)‖Ỹk+1 − Ŷk+1‖22 +
(

1 + ∆n

)(
C1,k(b, σ, T, f)∆n + C2,k(b, σ, T, f)

)
‖X̄k − X̂k‖22.

Hence (using an upper-bound for ∆n e.g. like T or T/n0, if n ≥ n0), we obtain

‖Ỹk − Ŷk‖22 ≤ e∆n(1+[f ]Lip)‖Ỹk+1 − Ŷk+1‖22 +Kk(b, σ, T, f)‖X̄k − X̂k‖22. (37)
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It follows that, for every k∈ {0, · · · , n− 1},

e∆nk(1+[f ]Lip)‖Ỹk − Ŷk‖22 ≤ e∆n(k+1)(1+[f ]Lip)‖Ỹk+1 − Ŷk+1‖22
+e∆nk(1+[f ]Lip)K̃k(b, σ, T, f)‖X̄k − X̂k‖22

where

K̃k(b, σ, T, f) := [yk+1]2Lip +
(

1 +
T

n

)(
C1,k(b, σ, T, f)

T

n0
+ C2,k(b, σ, T, f)

)
, k = 0, · · · , n− 1,

≤ Kk(b, σ, T, f)

(if n ≥ n0). Keeping in mind that ‖Ỹn − Ŷn‖22 ≤ [h]2Lip‖X̄n − X̂n‖22, we finally derive by a backward
induction that ∥∥Ỹk − Ŷk∥∥2

2
≤

n∑
i=k

Ki(b, σ, T, f)
∥∥X̄i − X̂i

∥∥2

2
.

(b) We derive from the very definition of ζ̃k and ζ̂k that

ζ̃k − ζ̂k =
(
ζ̃k − Êk(ζ̃k)

) ⊥
+
(
Êk(ζ̃k)− ζ̂k

)
.

We know from (33) in the the proof of claim (a) that

‖Êk(ζ̃k − Êk(ζ̃k))‖22 ≤
[zk]

2
Lip

∆n
‖X̄k − X̂k‖22.

On the other hand, as σ(X̂k) ⊂ σ(XX̄k), it is clear that Êk(ζ̃k) = 1
∆n
Êk(Ỹk+1∆Wtk+1

) so that

‖Êk(ζ̃k)− ζ̂k‖22 =
1

∆2
n

‖Êk
(
(Ỹk+1 − Ŷk+1)∆Wtk+1

)
‖22.

Conditional Schwarz’s Inequality applied with Êk implies that

Êk
(
(Ỹk+1 − Ŷk+1)∆Wtk+1

)2 ≤ (Êk(Ỹk+1 − Ŷk+1)2
)
∆n

which in turn implies that

‖Êk(ζ̃k)− ζ̂k‖22 =
1

∆n
‖Ỹk+1 − Ŷk+1‖22

so that finally

∆n‖Êk(ζ̃k)− ζ̂k‖22 ≤
C2,k(b, σ, T, f)

[f ]2Lip

‖X̄k − X̂k‖22 + ‖Ỹk+1 − Ŷk+1‖22.

Remark 3.1. Remark that the key property leading to Theorem 3.2 and allowing to improve the ex-
isting results for similar problems (see e.g. [4]) is the Pythagoras like equality (36) which is true only
for the quadratic norm. This equality is the key to get the sharp constant equal to 1 before the term
‖Êk(Ỹk − Ŷk)‖22.
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3.3 Computing the ζ̂k terms

Recall that for every k∈ {0, · · · , n− 1}, the Rq-valued random vector ζ̂k = (ζ̂1
k , · · · , ζ̂

q
k) reads

ζ̂k =
1

∆n
ẑk(X̂k) where ẑk(X̂k) = Êk(Ŷk+1∆Wtk+1

)

with ẑk : Γk → Rq is a Borel function (Γk is the grid used to quantize X̄k). As Ŷk+1 = ŷk+1(X̂k+1)
we easily derive that the function ẑk is defined on Γk = {xk1, · · · , x

Nk
k } by the (Rq-valued) weighted

sum

ẑk(x
k
i ) =

Nk+1∑
j=1

ŷk+1(xk+1
j )πW,kij

where, for every (i, j)∈ {1, · · · , Nk} × {1, · · · , Nk+1}, πW,kij is an Rq-valued vector given by

πW,kij =
1

P(X̂k = xki )
× E

(
∆Wtk+1

1{X̂k+1=xk+1
j , X̂k=xki }

)
.

These vector valued “weights" appear as new companion parameters (as well as the original weights
πkij of the quantized transition matrices) which can be computed on line when simulating the Euler
scheme of the diffusion by a Monte Carlo simulation.

Note that, for every k∈ {0, · · · , n− 1} and for every i∈ {1, · · · , Nk},

Nk+1∑
j=1

πW,kj = Êk
(
∆Wtnk+1

1{X̂k=xki }
)

= Êk

(
Ek
(
∆Wtnk+1

1{X̂k=xki }
))

= Êk

(
Ek
(
∆Wtnk+1

)
P
(
X̂k = xki

))
= Êk 0 = 0.

As a consequence, an alternative formula for ẑk can be

ẑk(x
k
i ) =

Nk+1∑
j=1

πW,kij

(
ŷk+1(xk+1

j )− ŷk(xki )
)
.

4 Background on optimal vector quantization

It is important to have in mind that all what precedes holds true for any quantizations X̂k of the Euler
scheme Xtk i.e. for any sequence of the form X̂k = πk(Xtk). In fact the theory of optimal vector
quantization starts when tackling the problem of optimizing the L2 (and more generally the Lr) mean
error induce by this substitution, namely ‖Xtk − X̂k‖2 which in turn will provide the best possible
error bound for quantization based numerical schemes. This question is in fact a very old question
that goes back to te 1940s motivated by Signal transmission and processing. These techniques have
been imported in Numerical Probability, originally for numerical integration by cubature formulas in
the early 1990’s (see [39] or [15]).

Let X : (Ω,A,P) → Rd be a random vector lying in Lr(P), r ∈ (0,+∞). The Lr-optimal
quantization problem of size N for X (or equivalently for its distribution PX ) consists in finding the
best Lr(P)-approximation of X by a random variable π(X) taking at most N values. The integer N
is called the quantization level.
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First, we associate to every Borel function π : Rd → R taking at most N values the induced
Lr(P)-mean error ‖X − π(X)‖r (where ‖X‖r := (E|X|r)1/r is the usual Lr norm induced by the
norm | . | on Rd and the probability P on (Ω,A)). Note that when r ∈ (0, 1), the terms “norm" is an
abuse of language since Lr(P) is only a metric space metrized by ‖ . ‖r

r
. As a consequence, finding the

best approximation of X in the earlier described sense amounts to find the solution to the following
minimization problem:

eN,r(X) = inf
{
‖X − π(X)‖r , v : Rd → Γ, Γ ⊂ Rd, card(Γ) ≤ N

}
,

where card(Γ) denotes the cardinality of the set Γ (sometimes called grid). It is clear that for every
grid Γ = {x1, · · · , xN} ⊂ Rd, for any Borel function π : Rd → Γ,

|ξ − π(ξ)| ≥ dist(ξ,Γ) = min
1≤i≤N

|ξ − xi|.

Equality holds if and only if π is a Borel nearest neighbor projection πΓ defined by

πΓ(ξ) =

N∑
i=1

xi1Ci(Γ)(ξ),

where (Ci(Γ))i=1,··· ,N is a Borel partition of Rd satisfying

∀ i ∈ {1, · · · , N}, Ci(Γ) ⊂
{
ξ ∈ Rd : |ξ − xi| = min

j=1,··· ,N
|ξ − xj |

}
.

Such a Borel partition is called a Voronoi partition (induced by Γ). One defines the Voronoi quantiza-
tion X̂Γ of X induced by Γ as πΓ(X). It follows that for every r > 0, ‖X − X̂Γ‖r = ‖dist(X,Γ)‖r
so that the Lr-optimal quantization finally reads

eN,r(X) = inf
{
‖X − X̂Γ‖r ,Γ ⊂ Rd, card(Γ) ≤ N

}
. (38)

Note that for every level N ≥ 1, the infimum in (38) is in fact a minimum i.e. is attained at least
at one grid (or codebook) ΓN at least (see e.g. (see e.g. [23] or [39]). Any such grid or any of the
resulting Borel nearest neighbor projections is called an Lr-optimal N -quantizer.

One shows that if card(supp(PX)) ≥ N then any optimal N -quantizer is of full size N . Further-
more (see again [23] or [39]), the Lr-mean quantization error eN,r(X) at level N decreases to 0 as
N goes to infinity. Its rate of convergence is ruled by the so-called Zador Theorem recalled below, in
which, | . | temporarily denotes any norm on Rd.

Theorem 4.1. Zador’s Theorem (a) Sharp asymptotic rate (see [23]): LetX be an Rd-valued random
vector such that X ∈ Lr+δ(P) for soem real number δ > 0 and let PX = ϕ.λd + Ps where ϕ denotes
the absolutely continuous part of PX with respect to the Lebesgue measure λd onRd and Ps its singular
part. Then

lim
N→+∞

N r/d(eN,r(P ))r = Jr,d ‖ϕ‖ d
d+r
∈ [0,+∞) (39)

with

‖ϕ‖ d
d+r

=

(∫
Rd
ϕ

d
d+r dλd

) d+r
d

and Jr,d,|.| = inf
N≥1

N r/derN,r(U([0, 1]d)) ∈ (0,+∞)

(U([0, 1]d) denotes the uniform distribution on the hypercube [0, 1]d).

(b) Non-asymptotic bound (see [34]): Let r′ > r. There exists a universal real constant Cr,r′,d ∈
(0,+∞) such that, for every Rd-valued X random vector

∀N ≥ 1, ep,N (X) ≤ Cp,p′,d σp′(X). N−
1
d

where σr′(X) := infa∈Rd ‖X − a‖r′ ≤ +∞ is the Lr
′
-(pseudo-)standard deviation of X .
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Numerical aspects (few words about) From the Numerical Probability viewpoint, finding an opti-
mal N -quantizer Γ is a challenging task, especially in higher dimension (d ≥ 2). In this paper as in
many applications we will mainly focus on the quadratic case r = 2. Note that, in practice, | . | will be
the canonical Euclidean norm on Rd for numerical implementations.

The key property to devise procedures to search for optimal quantizers rely on the following dif-
ferentiability property of the squared quadratic quantization error (also known as quadratic distortion
function) for a fixed level N (and with respect to the canonical Euclidean norm). First we define the
distortion function DN,2 (which is defined on (Rd)N and not on the set of grids of size at most N ) by:

∀x = (x1, · · · , xN )∈ (Rd)N , DX
N,2(x) =

∫
Rd

min
1≤i≤N

|ξ − xi|2dPX(ξ). (40)

To any N -tuple x = (x1, · · · , xN )∈ (Rd)N , we associate its grid of values Γx = {x1, · · · , xN }, so
that DX

N,2(x) = ‖X − X̂Γx‖22. In particular, it is clear that

eN,2(X) = inf
x∈(Rd)N

DN,2(x)

since an N -tuples can contain repeated values.

Proposition 4.2. (a) The function DN,2 is differentiable at any N -tuple x ∈ (Rd)N having pairwise
distinct components and satisfying the following boundary negligibility assumption:

PX (∪i∂Ci(Γx) = 0.

Its gradient is given by

∇DX
N,2(x) = 2

(∫
Ci(Γx)

(xi − ξ)dPX(ξ)
)
i=1,··· ,N

. (41)

(b) The above negligibility assumption on the Voronoi partition boundaries does not depend on the
selected partition. It holds in particular when the distribution of X is strongly continuous i.e. assigns
no mass to hyperplanes and, for any distribution PX such that card(supp(PX)) ≥ N , when x ∈
argminDN,2 (see Theorem 4.2 in [23]).

The result is a consequence of the interchange of the differentiation and the integral leading to (41)
when formally differentiating (40) (see [23, 39]). Consequently, anyN -tuple x∈ argminDN,2 satisfies

∇DN,2(x) = 0.

Note that this equality also reads, still under the assumption card(supp(PX)) ≥ N ,

E
(
X|X̂Γ

)
= X̂Γ

All numerical methods to compute optimal quadratic quantizers are based on this result: recursive
procedures like Newton’s algorithm (when d = 1), randomized fixed point procedures like Lloyd’s I al-
gorithms (see e.g. [21, 45]) or recursive stochastic gradient descent like the Competitive Learning Vec-
tor Quantization (CLVQ) algorithm (see [21, 39] or [42]) in the multidimensional framework. However
note that in higher dimension this equation has several solutions (called stationary quantizers) possibly
sub-optimal. Optimal quantization grids associated to the multivariate Gaussian random vector can be
downloaded from the website www.quantize.math-fi.com. For more details about numerical
methods we refer to the recent survey [40] and the references therein.
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Distortion mismatch By mismatch we mean the behavior of es(ΓN , X) where (ΓN )N≥1 is a se-
quence of Lr-optimal quantization grids and s > r. The first result in that direction go back to [24] for
various classes of distributions, in particular distributions with a radial densities satisfying a moment
assumption onX (of higher order than s, see below). An extension to all random vectors satisfying this
moment condition on X is proposed in AppendixB (it is part of monography in progress co-authored
by the first author and H. Luschgy, see [25])).

Theorem 4.3 (Lr-Ls-distortion mismatch). Let X : (Ω,A,P) → Rd be a random vector and let
r ∈ (0 + ∞). Assume that the distribution P = PX of X has a non-zero absolutely continuous
component with density ϕ. Let (ΓN )N≥1 be an Lr-optimal sequence for grids and let s∈ (r, r+ d). If

X∈ L
sd

d+r−s+δ(P)

for some δ > 0, then
lim sup

N
N

1
d es(ΓN , X) < +∞.

Note that sd
d+p−s > s so that distortion mismatch requires more than Ls integrability. A proof of

this theorem is provided in Appendix B.
Remark. This result is in some way optimal for the following reason. It has been established in [24]
(Theorem 1) that if X ∈ Lr+(P), and if (Γn)N≥1 is a sequence of Lr-asymptotically optimal quanti-
zation grids, then

lim
N
N

1
d es(Γn, X) ≥ J

1
s
r,d

[∫
Rd
ϕ

d
r+ddλd

] 1
d
[∫
Rd
ϕ
d+r−s
r+d dλd

] 1
s

and an elementary application of the inverse Minkowski inequality shows (see Equation (2.11) from [24])
that

X /∈ Lr+(P) =⇒
∫
gϕ

d
r+ddλd = +∞ and X /∈ L

ds
d+r−s+(P) =⇒

∫
gϕ

d+r−s
r+d dλd = +∞.

4.1 Numerical experiments for the BSDE scheme

We deal now with numerical experiments using three examples: the pricing and hedging of a call
option (in a market where the risk free return for the borrower and the lender are the same), a bull-call
spread option (in a market where the risk free returns for the borrower and the lender are different)
and a multidimensional example with the Brownian motion. Numerical tests are performed using our
quantized BSDE algorithm. In fact, let us set for i = 1, · · · , Nk, j = 1, · · · , Nk+1,

pki = P(Xk = xki ), k = 0, · · · , n
and pkij = P(X̂k+1 = xk+1

j |X̂k = xki ), k = 0, · · · , n− 1.

Setting Ŷk = ŷk(X̂k), for every k ∈ {0, · · · , n}, the quantized BSDE scheme reads as{
ŷn(xni ) = h(xni ) i = 1, · · · , Nn

ŷk(x
k
i ) = α̂k(x

k
i ) + ∆nf

(
tk, x

k
i , α̂k(x

k
i ), β̂k(x

k
i )
)

i = 1, · · · , Nk

where for k = 0, . . . , n− 1,

α̂k(x
k
i ) =

Nk+1∑
j=1

ŷk+1(xk+1
j ) pkij and β̂k(x

k
i ) =

1

∆n

Nk+1∑
j=1

ŷk+1(xk+1
j )πW,kij , (42)
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with
πW,kij =

1

pki
× E

(
∆Wtk+1

1{X̂k+1=xk+1
j , X̂k=xki }

)
.

For all examples, we use a time discretization mesh of length n = 20. For the optimal quantization
method, the optimal quantizers X̂k, k = 1, · · · , n (with X̂0 = X0) are computed using the Lloyd’s
algorithm (see e.g. [21, 42] for details on Lloyd’s algorithm). The size of the Monte Carlo trials in the
Lloyd algorithm is set to 7×105 (for the first two examples, and, to 5×106 for the third example) and the
number of iterations of the Lloyd procedure is set to 5 (except for the last example where the grids are
obtained by a scaling of the optimal grid of Gaussian random variables). We use a uniform dispatching
for the quantizers where we assign the same grid size Nk to the X̂k’s, for every discretization step tk,
k = 1, · · · , n.

4.1.1 Call price in the Black-Scholes model

We consider a call option with maturity T and strike K on a stock price (Xt)t∈[0,T ] with dynamics

dXt = µXtdt+ σXtdWt.

Considering a self financing portfolio Yt with ϕt assets and bonds with risk free return r. We know
that (see [38]) the portfolio evolves according to the following dynamics:

Yt = YT +

∫ T

t
f(Ys, Zs)ds−

∫ T

t
ZsdWs (43)

where the payoff YT = (XT −K)+, the hedging strategy Zt = σϕtXt and f(y, z) = −ry − µ−r
σ z.

It is clear that the function f is linear with respect to y and z and, it is Lipschitz continuous with
[f ]Lip = max(r, µ−rσ ). We perform the numerical tests from the algorithm we propose with the fol-
lowing parameters

X0 = 100, r = 0.1, µ = 0.2, σ = 0.25, K = 100, T = 0.1.

Setting v(t0, X0) the price of the option at t0 = 0, the corresponding exact solution of the BDSE (43)
at t0 = 0 is given by

(Y0, Z0) = (v(t0, X0), σX0v(t0, X0)) = (3.65997, 14.14823).

We have to notice that the solution (Yt, Zt) of (43) provides both the price Yt of the option and the
hedging strategy Zt at time t, under the historical probability P. The Black-Scholes price is given
under the risk neutral probability and does not depend on µ.

The estimated solution of the BSDE by optimal quantization is (Ŷ N
0 , ẐN0 ) = (3.66, 13.83) for

Nk = N = 40, and, (Ŷ N
0 , ẐN0 ) = (3.655, 14.147) for Nk = N = 100. The numerical convergence

rate of the error |Y0 − Ŷ N
0 | is depicted in Figure 1 for µ = 005 and µ = 0.2 and bring to light a

convergence rate of order N−1.

4.1.2 Bid-ask spread for interest rate

Let us consider know a model for different interest rates introduces in [8]: a borrowing rate R and a
lending rate r ≤ R. Let ϕt still be the amount of assets held at time t. Then, the dynamics of the
replicating portfolio is given by

Yt = YT +

∫ T

t
f(Ys, Zs)ds−

∫ T

t
ZsdWs (44)
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where Zt = σϕtXt and the driver function f is given by

f(y, z) = −ry − µ− r
σ

z − (R− r) min
(
y − z

σ
, 0
)
.

As in [7], we consider a bull-call spread comprising a long call with strike K1 = 95 and two short call
with strike K2 = 105, with payoff function

(XT −K1)+ − 2(XT −K2)+ = YT .

Furthermore, we consider the set of parameters:

X0 = 100, R = 0.06, r = 0.01, µ = 0.05, σ = 0.2, T = 0.25.

The BSDE (44) has no analytical solution. We refer to the reference prices given in [7, 49]: (Y0, Z0) =
(2.96, 0.55). The estimated solution of the BSDE by optimal quantization is (Ŷ N

0 , ẐN0 ) = (2.97, 0.63)
for an uniform dispatching with the same grid size Nk = N = 40.

4.1.3 Multidimensional example

We consider the following example due to J.-F. Chassagneux:

dXt = dWt, −dYt = f(t, Yt, Zt)dt− Zt · dWt

where f(t, y, z) = (z1 + . . .+ zd)
(
y − 2+d

2d

)
and where W is a d-dimensional Brownian motion. The

solution of this BSDE reads

Yt =
et

1 + et
, Zt =

et
(1 + et)2

, (45)

with
et = exp(x1 + . . .+ xd + t).

For the numerical experiments, we put the (regular) time discretization mesh to n = 20, with discretiza-
tion step ∆. We use the uniform dispatching grid allocation and define the quantization (Ŵtk)0≤k≤n
of the Brownian trajectories (Wtk)0≤k≤n from the following recursive procedure

Ŵtk+1
= Ŵtk +

√
∆ ε̂, (46)

Ŵ0 = 0 and where ε̂ is the optimal quantization of the d-dimensional standard Gaussian random
variable. We choose t = 0.5, d = 2, 3, so that Y0 = 0.5 and Zi0 = 0.24, for every i = 1, . . . , d. We
show in Figure 2, the rates of convergence of |Ŷ N

0 − 0.5| towards 0, for the grid sizes Nk = N =
5, . . . , 100. The graphics show a rate of convergence of order N−1/d. In particular, when d = 2, we
get

(Ŷ0, Ẑ
1
0 , Ẑ

2
0 ) = (0.50, 0.28, 0.28) for Nk = 40

and (Ŷ0, Ẑ
1
0 , Ẑ

2
0 ) = (0.50, 0.23, 0.23) for Nk = 100.

When d = 3, we get

(Ŷ0, Ẑ
1
0 , Ẑ

2
0 , Ẑ

3
0 ) = (0.51, 0.08, 0.06, 0.06) for Nk = 40

and (Ŷ0, Ẑ
1
0 , Ẑ

2
0 , Ẑ

3
0 ) = (0.51, 0.18, 0.16, 0.11) for Nk = 100.
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Figure 1: Convergence rate of the quantization error for the Call price in the Black-Scholes model). Abscissa axis: the
size N = 5, . . . , 100 of the quantization. Ordinate axis: The error |Y0 − Ŷ N0 | and the graph N 7→ â/N + b̂, where â and
b̂ are the regression coefficients. The left hand side graphic corresponds to r = 0.1 and µ = 0.05 and the right hand side to
r = 0.1 and µ = 0.2.

Figure 2: Convergence rate of the quantization error for the multidimensional example). Abscissa axis: the size N =

5, · · · , 100 of the quantization. Ordinate axis: The error |Y0 − Ŷ N0 | and the graph N 7→ â/N + b̂, where â and b̂ are the
regression coefficients. The left hand side graphic corresponds to the dimension d = 2 and the right hand side to d = 3.
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5 Nonlinear filtering problem

5.1 A brief overview of discrete time nonlinear filtering

We consider a discrete time nonlinear filtering problem where the signal process (Xk)k≥0 is an Rd-
valued random vector and the observation process (Yk)k≥0 is anRq-valued random vector, both defined
on a probability space (Ω,A,P). The distribution µ ofX0 is given, as well as the transition probabilities
Pk(x, dx

′) of the process (Xk)k≥0. We also suppose that the process (Xk, Yk)k≥0 is a Markov chain
and that for every k ≥ 1, the conditional distribution of Yk, given (Xk−1, Yk−1, Xk) has a density
gk(Xk−1, Yk−1, Xk, ·). Having a fixed observation (y0, . . . , yn) = (y0, . . . , yn), for n ≥ 1, we aim at
computing the conditional distribution Πy,n of Xn given y = (y0, · · · , yn). It is well-known that for
any bounded and measurable function f , we can derive the following formula (see e.g. [41])

Πy,nf =
πy,nf

πy,n1
(47)

where the so-called un-normalized filter πy,n is defined for every bounded or non-negative Borel func-
tion f by

πy,nf = E(f(Xn)Ly,n)

with

Ly,n =
n∏
k=1

gk(Xk−1, yk−1, Xk, yk).

Defining the family of transition kernels Hy,k, k = 1, · · · , n, by

Hy,kf(x) = E(f(Xk)gk(x, yk−1, Xk, yk)|Xk−1 = x) (48)

for every bounded Borel function f : Rd → R and setting

Hy,0f(x) = E(f(X0)),

one shows that the un-normalized filter may be computed by the following forward induction formula:

πy,kf = πy,k−1Hy,kf, k = 1, · · · , n, (49)

with πy,0 = Hy,0. A useful formulation in order to establish the quantization error bound turns out to
be the backward induction formula defined by setting

πy,nf = uy,−1(f)

where uy,−1 is the final value of the induction formula:

uy,n(f)(x) = f(x),

uy,k−1(f) = Hy,kuy,k(f), k = 0, · · · , n. (50)

In order to compute the normalized filter Πy,n, we just have to compute the transition kernels Hy,k and
to use the recursive formula (49) or (50). However these kernels have no closed formula in general
so that we have to approximate them. Optimal quantization is an adequate method to proceed (see
e.g. [12, 41, 50]) owing to its tractability. Then, denoting by X̂k a quantization of Xk at level Nk by
the grid Γk = {x1

k, · · · , x
Nk
k }, for every k = 0, · · · , n, we will formally replace Xk in (49) or (50)

by X̂k. As a consequence the (optimally) quantized approximation π̂y,n of πy,n will be defined by the
recursive formula

π̂y,k = π̂y,k−1Ĥy,k, k = 1, · · · , n and π̂y,0 = Ĥy,0 (51)
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where  π̂y,k = π̂y,k−1Ĥy,k :=
[∑Nk−1

i=1 Ĥ i,j
y,kπ̂

i
y,k−1

]
j=1,...,Nk

, k = 1, . . . , n,

with Ĥ ij
y,k = gk(x

i
k−1, yk−1;xjk, yk) p̂

ij
k , i = 1, . . . , Nk−1; j = 1, . . . , Nk.

(52)

As a final step, we approximate the normalized filter Πy,n by Π̂y,n which is given by

Π̂y,n =

Nn∑
i=1

Π̂i
y,nδxin

with

Π̂i
y,n =

π̂iy,n∑Nn
j=1 π̂

j
y,n

, i = 1, . . . , Nn.

Our aim is then to estimate the quantization error induced by the approximation of Πy,n by Π̂y,n. Note
that this problem has been considered in [41] where it has been shown that for every bounded function
f , the absolute error |Πy,nf − Π̂y,nf | is bounded (up to a constant depending in particular on n) by the
cumulated Lr-quantization errors ‖Xk − X̂k‖r from k = 0 to n. In this work, we improve this result
in the particular case of the quadratic quantization framework (i.e. r = 2) in two directions. In fact,
we first show that, for every bounded Borel function f , the squared-absolute error |Πy,nf − Π̂y,nf |2

is bounded by the cumulated square-quadratic quantization errors ‖Xk − X̂k‖22 from k = 0 to n.
Secondly, we show this improved result (asymptotically with respect to the quantization grid sizes
Nk) under weaker assumptions on the density functions gk taking advantage of a so-called distortion
mismatch property, originally introduced and investigated in [24], and improved Theorem 4.3 proved
in Appendix B hereafter, which shows that a sequence of Lr-optimal quantizers can be “rate-optimal"
(in the Zador sense) when viewed as Lr+ν-quantizer when ν∈ (0, d).

5.2 Error analysis

Let us consider first the following assumptions from [41].

(H0) ≡ For every k ∈ {1, · · · , n} their exists [g1
k]Lip, [g

2
k]Lip : Rq×Rq 7→ R+ such that

|gk(x, y, x′, y′)− gk(x̂, y, x̂′, y′)| ≤ [g1
k]Lip(y, y′)|x− x̂|+ [g2

k]Lip(y, y′)|x′ − x̂′|.

(A1) ≡ (i) The Markov transition operators Pk(x, dx′), k = 1, · · · , n propagate Lipschitz continuity
(in the sense of Lemma 3.3) and

[P ]Lip := max
k=1,··· ,n

[Pk]Lip < +∞.

(ii) For every k = 1, · · · , n, the functions gk are bounded on Rd×Rq×Rd×Rq and we set

Kg := max
k=1,··· ,n

‖gk‖sup < +∞.

Furthermore, let us consider, for a fixed Borel function θ : Rd 7→ R+, the following θ-local
Lipschitz continuity assumption (which is weaker than (H0)) on the growth of the functions gk:

(HLiploc) ≡ There exists a non-negative convex function θ : Rd 7→ R+ such that, for every k ∈
{1, · · · , n}, E(θ(Xk)) < +∞ and there exists [g1

k]Liploc, [g
2
k]Liploc : Rq×Rq 7→ R+ such that

|gk(x, y, x′, y′)− gk(x̂, y, x̂′, y′)| ≤ [g1
k]Liploc(y, y

′)(1 + θ(x) + θ(x̂) + θ(x′) + θ(x̂′))|x− x̂|)
+ [g2

k]Liploc(y, y
′)(1 + θ(x) + θ(x̂) + θ(x′) + θ(x̂′))|x′ − x̂′|).
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Remark that if the following assumption holds:
(Hα) ≡ For every k ∈ {1, · · · , n} their exists [g1

k]pol, [g
2
k]pol : Rq×Rq 7→ R+ such that

|gk(x, y, x′, y′)− gk(x̂, y, x̂′, y′)| ≤ [g1
k]pol(y, y

′)(1 + |x|α + |x̂|α + |x′|α + |x̂′|α)|x− x̂|
+ [g2

k]pol(y, y
′)(1 + |x|α + |x̂|α + |x′|α + |x̂′|α)|x′ − x̂′|,

for α > 1, then HLiploc holds with θ : x 7→ θ(x) = |x|α.
The following classical lemma is borrowed from [41] (Lemma 3.1).

Lemma 5.1. Let µy and ϑy be two families of finite and positive measure on a measurable space
(E, E). Suppose that their exists two symmetric functions R and S defined on the set of positive finite
measures such that for every bounded Lipschitz function f ,∣∣∣∣∫ fdµy −

∫
fdϑy

∣∣∣∣ ≤ ‖f‖2∞R(µy, ϑy) + [f ]2LipS(µy, ϑy). (53)

Then, ∣∣∣∫ fdµy
µy(E)

−
∫
fdϑy
ϑy(E)

∣∣∣ ≤ 2‖f‖∞R(µy, ϑy)
2 + 2‖f‖2∞R(µy, ϑy) + 2[f ]2LipS(µy, ϑy). (54)

In Theorem 5.3 below we will consider the assumption (HLiploc) in place of Assumption (H0)
(which has been considered [41]) to derive an error bound. This less stringent assumption is counter-
balanced by taking advantage of the distortion mismatch (see Theorem 4.3 and Appendix B satisfied
by sequences of optimal quantizers for wide classes of distributions. More precisely, we need that the
L2+ν-mean quantization error associated to any sequence of optimal quadratic quantizers at level N
still goes to zero at the optimal rate N−

1
d .

We first need first to control the θ-local Lipschitz constants of [uk]Liploc, for every k ≥ 0 (where
θ : Rd → R+ is defined as above). If we suppose that f : Rd → R is θ-locally Lipschitz with a local
Lipschitz coefficient [f ]Liploc defined by

[f ]Liploc = sup
x 6=x′

|f(x)− f(x′)|(
1 + θ(x) + θ(x′)

)
|x− x′|,

< +∞ (55)

then for every k = 0, · · · , n, Pkf is θ-locally Lipschitz with [Pkf ]Liploc ≤ [Pk]Liploc[f ]Liploc. The
following lemma provides a control of the θ-local Lipschitz coefficients of the uk’s.

Lemma 5.2. Suppose that Assumption (HLiploc) ≡ holds and that for every k = 0, · · · , n− 1,

E
(
θ(Xk+1)|Xk = x

)
≤ Cθ,X(1 + θ(x)), (56)

then, for every k = 0, . . . , n− 1,

[uk]Liploc ≤
(
[g1
k]LiplocCθ,X +[Pk+1]Liploc[g

2
k]Liploc

)
Kn−k
g ‖f‖∞+Kg[Pk+1]Liploc[uk+1]Liploc. (57)

If furthermore,
Xk+1 = Fk(Xk, εk+1), k = 0, . . . , n− 1

where (εk) is an i.i.d sequence of random variables independent from X0 and for every x ∈ Rd,

E θ(Fk(x, εk+1)) ≤ C ′θ,X(1 + θ(x)), ∀ k = 0, . . . , n− 1, (58)

for a positive real valued and convex function θ, then

[Pk+1]Liploc = C ′θ,X . (59)
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Proof. We have for every k = 0, . . . , n− 1,

uk(Xk) = Ek
(
uk+1(Xk+1)gk+1(Xk, Xk+1)

)
= (Pk+1uk+1gk+1(x, ·))(x).

It follows that for every k = 0, . . . , n− 1, ‖uk‖∞ ≤ Kg‖uk+1‖∞, so that,

‖uk‖∞ ≤ Kn−k
g ‖f‖∞

since ‖un‖∞ ≤ ‖f‖infty. On the other hand we have for every k = 0, . . . , n− 1, x, x′ ∈ Rd,

|uk(x)− uk(x′)| ≤ [g1
k]Liploc‖uk+1‖∞

(
1 + θ(x) + θ(x′) + E(θ(Xk+1)|Xk = x)

)
|x− x′|

+ [Pk+1]Liploc[uk+1gk+1(x′, ·)]Liploc

(
1 + θ(x) + θ(x′)

)
|x− x′|.

Now, for every k = 0, . . . , n− 1,

|uk+1(z)gk+1(x′, z)− uk+1(z′)gk+1(x′, z′)| ≤ |uk+1(z)− uk+1(z′)|gk+1(x′, z)

+ |gk+1(x′, z)− gk+1(x′, z′)| |uk+1(z′)|
≤ Kg[uk+1]Liploc(1 + θ(z) + θ(z′))|z − z′|

+ ‖uk+1‖sup[g2
k]Liploc(1 + θ(z) + θ(z′))|z − z′|

so that
[uk+1gk+1(x′, ·)]Liploc ≤ Kg[uk+1]Liploc + ‖uk+1‖∞[g2

k]Liploc.

Therefore, we deduce from assumption (56) that

[uk]Liploc ≤
(
[g1
k]LiplocCθ,X + [Pk+1]Liploc[g

2
k]Liploc

)
‖uk+1‖∞ +Kg[Pk+1]Liploc[uk+1]Liploc.

On the other hand, as f is θ-locally Lipschitz with θ-local Lipschitz constant [f ]Lip then, for every
x, x′ ∈ Rd and k = 0, . . . , n− 1,

|Pk+1f(x)− Pk+1f(x′)| = |Ef(Fk(x, εk+1))− Ef(Fk(x
′, εk+1))|

≤ [f ]Liploc|x− x′|
(
1 + E θ(Fk(x, εk+1)) + E θ(Fk(x

′, εk+1))
)
.

Then, owing to Assumption (58), we deduce that [Pk+1]Liploc = C ′θ,X , for every k = 0, . . . , n−1.

Notice that assumptions (56) and (58) hold when θ is a polynomial and convex function and when
the process (Xk)0≤k≤n is the Euler scheme (where n is the length of the time discretization mesh)
associate with a stochastic differential equation of the form (11). In the latter case, the transition
operator Pk+1 = P , k = 0, . . . , n−1, is time homogenous. We suppose in the sequel that (Pk) is time
homogenous.

Theorem 5.3. Let (Hliploc) holds and assume that A1 is fulfilled, as well as assumptions of Lemma
5.2. Suppose that for every k = 0, · · · , n, Xk has an (2, 2 + νk)-distribution, νk > 0, and set
νn = mink=0,··· ,n νk/2. Then for every ν ∈ (0, νn),

|Πy,nf − Π̂y,nf |2 ≤
2Mn

ν (Kn
g )2

φ2
n(y) ∨ φ̂2

n(y)

n∑
k=0

Bn
k (f, y, α)‖Xk − X̂k‖22+2ν (60)

with
φn(y) = πy,n1 and φ̂n(y) = π̂y,n1

and where
Bn
k (f, y) := 2[P ]

2(n−k)
Liploc [f ]2Liploc + 2‖f‖2∞Rn,k + ‖f‖∞R2

n,k,
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with

Rn,k =
8qν

K2
g

[
[g1
k+1]2Liploc + [g2

k]
2
Liploc +

( n−k∑
m=1

[P ]m−1
Liploc([g

1
k+m]Liploc + [P ]Liploc[g

2
k+m]Lip)

)2]
,

qν = 1 + 1/ν and

Mn
ν := max

k=0,...,n−1
(E
(
θ(Xk)

2qν
)

+ E
(
θ(X̂k)

2qν
)

+ E
(
θ(Xk+1)2qν

)
+ E

(
θ(X̂k+1)2qν

)
.

Before dealing with the proof let us remark that if X̂k is an optimal quantizer then it is a stationary
quantizer so that, for every k = 0, · · · , n, we have

E θ(X̂k)
2qν ≤ E θ(Xk)

2qν < +∞.

Proof. To simplify the notations, we will omit the dependence of the used functions from the observa-
tion parameter y. For every k∈ {0, · · · , n− 1}, we define the function ϕk+1 by

ϕk+1(xk, xk+1, x
′
k+1) := gk+1(xk, xk+1)uk+1(x′k+1), xk, xk+1, x

′
k+1∈ Rd.

Following the lines of the proof of Theorem 3.1 in [41], one shows by a backward induction taking
advantage of the Markov property that there exists functions uk : Rd → R, k = 0, · · ·n− 1 such that
un = f and

uk(Xk) = Ek
(
ϕk+1(Xk, Xk+1, Xk+1)

)
= Ek

(
uk+1(Xk+1)gk+1(Xk, Xk+1)

)
. (61)

Now, using the definition of conditional expectation Êk as an orthogonal projector (hence an L2-
contraction as well), we have

‖uk(Xk)− ûk(X̂k)‖22 = ‖Ek(uk(Xk)− Êk(ϕk+1(X̂k, X̂k+1, Xk+1))‖22
+‖Êk(ϕk+1(X̂k, X̂k+1, Xk+1))− Êk(ϕk+1(X̂k, X̂k+1, X̂k+1))‖22

≤ ‖Ek(uk(Xk)− Êk(ϕk+1(X̂k, X̂k+1, Xk+1))‖22
+K2

g‖uk+1(Xk+1)− ûk+1(X̂k+1)‖22.

Considering the first term on the right hand side of the previous inequality and using once again the
orthogonality property of the conditional expectation, we obtain

‖Ek(uk(Xk)− Êk(ϕk+1(X̂k, X̂k+1, Xk+1))‖22 ≤ ‖uk(Xk)− Êk(uk(Xk))‖22
+‖Êk(uk(Xk))− Êk(ϕk+1(X̂k, X̂k+1, Xk+1))‖22.

It follows now from the definition of the conditional expectation Êk(·) as the best approximation in L2

among square integrable σ(X̂k)-measurable random vectors that

‖uk(Xk)− Êk(uk(Xk))‖22 ≤ ‖uk(Xk)−uk(X̂k)‖22 ≤ [uk]
2
Liploc‖(1 + θ(Xk) + θ(X̂k))(Xk− X̂k)‖22.

Let ν∈ (0, νn), so that for every k = 0, · · · , n, 2 + 2ν ≤ 2 + νk. The Hölder inequality with exponent
pν = 1 + ν and qν = 1 + 1

ν gives

‖uk(Xk)− Êk(uk(Xk))‖22 ≤ [uk]
2
Liploc

(
1 + Eθ(Xk)

2qν + Eθ(X̂k)
2qν
)
‖Xk − X̂k‖22+2ν .

On the other hand, setting Rk = Êk(uk(Xk)) − Êk(ϕk+1(X̂k, X̂k+1, Xk+1)), it follows from
Assumption (Hliploc) that

‖Rk‖22 ≤ 2‖uk+1‖2∞
(

[g2
k+1]2LiplocE

((
1 + θ(Xk) + θ(X̂k) + θ(Xk+1) + θ(X̂k+1)

)2|Xk+1 − X̂k+1|2
)

+ [g1
k+1]2LiplocE

((
1 + θ(Xk) + θ(X̂k) + θ(Xk+1) + θ(X̂k+1)

)2|Xk − X̂k|2
))
. (62)
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Once again, the Hölder inequality with exponent pν = 1 + ν and qν = 1 + 1
ν yields

‖Rk‖22 ≤ 2×8qνMk
ν ‖uk+1‖2∞

(
[g1
k+1]2Liploc‖Xk − X̂k‖22+2ν + [g2

k+1]2Liploc‖Xk − X̂k‖22+2ν

)
where Mk

ν := 1 + E(θ(Xk)
2qν ) + E(θ(X̂k)

2qν ) + E(θ(Xk+1)2qν ) + E(θ(X̂k+1)2qν ).
We finally get that, for every k = 0, · · · , n− 1,

‖uk(Xk)−ûk(X̂k)‖22 ≤ K2
g‖uk+1(Xk+1)−ûk+1(X̂k+1)‖22+αk‖Xk−X̂k‖22+2ν+βk+1‖Xk+1−X̂k+1‖22+2ν

where

αk := [uk]
2
LiplocM

k
ν + 2×8qνMk

ν ‖uk+1‖2∞[g1
k+1]2Liploc, 0 ≤ k ≤ n− 1

and βk := 2×8qνMk
ν ‖uk+1‖2∞[g2

k+1]2Liploc, 1 ≤ k ≤ n.

Setting, αn := [f ]2Liploc, we show by induction that, for every k∈ {0, · · · , n}

|πy,kf − π̂y,kf |2 ≤
n∑
`=k

Cn` (f, y)‖X` − X̂`‖22+2ν

where Cn` (f, y) := K2(`−1)
g (α`K

2
g + β`)

= Mk
µ

(
[u`]

2
LiplocK

2`
g + 2×8qνK2(`−1)

g ‖f‖2∞([g1
`+1]2Liploc + [g2

` ]
2
Liploc)

)
≤ 2Mk

µK
2n
g

[
[P ]

2(n−`)
Liploc [f ]2Lip + 8qν

‖f‖2∞
K2
g

(
[g1
`+1]2 + [g2

` ]
2

+
( n−∑̀
m=1

[P ]m−1
Liploc([g

1
`+m]LiplocCθ,X + [P ]Liploc[g

2
`+m]Liploc)

)2)]
.

We conclude by Lemma 5.1.

The previous theorem shows the usefulness of the distortion mismatch result, which in different
contexts may be used to improve several results involving the quantization errors in the asymptotic
framework. In our context, it allows us to weaken the assumptions on the functions gk whereas for the
maximal radius problem (see [43, 29]), its use is crucial to derive the sharp constant for the asymptotic
of the maximal radius sequence of quantizers when considering distributions with radial exponential
tails.
Remark 5.1. Note that if we consider Assumption (H0) instead of Assumption Hliploc in Theorem
5.3, one shows that for every bounded Lipschitz continuous function f on Rd,

|Πy,nf − Π̂y,nf | ≤
2Kn

g

φn(y) ∨ φ̂n(y)

(
n∑
k=0

Bn
k (f, y)‖Xk − X̂k‖22

) 1
2

(63)

where φn(y) = πy,n1 and φ̂n(y) = π̂y,n1 and

Bn
k (f, y) := 2[P ]

2(n−k)
Lip [f ]2Lip + 2‖f‖2∞Rn,k + ‖f‖∞R2

n,k,

with

Rn,k =
1

K2
g

[
[g1
k+1]2 + [g2

k]
2 +

( n−k∑
m=1

[P ]m−1
Lip ([g1

m+k]Lip + [P ]Lip[g2
m+k]Lip)

)2]
.

In fact, in this case, the upper bound (62) may be replaced by

‖Rk‖22 ≤ ‖ϕk+1(Xk, Xk+1, Xk+1)− ϕk+1(X̂k, X̂k+1, Xk+1)‖22
≤ 2‖uk+1‖2∞

(
[g1
k+1]2Lip‖Xk − X̂k‖22 + [g2

k+1]2Lip‖Xk+1 − X̂k+1‖22
)
.
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A Proof of Theorem 3.1

Temporarily set for convenience s̄ = tk for s∈ [tk, tk+1).

Proof of Theorem 3.1. STEP 1. Applying Ito’s formula we have

eαT Ỹ 2
T = eαtỸ 2

t +

∫ T

t
αeαsỸ 2

s ds+ 2

∫ T

t
eαsỸsdỸs +

∫ T

t
eαs|Z̃s|2ds

= eαtỸ 2
t +

∫ T

t
eαs
[
αỸ 2

s + |Z̃s|2 + 2Ỹsf(s, X̄s,Es(Ỹs̄), ζs)
]
ds+ 2

∫ T

t
eαsZ̃sdWs.
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Then, using assumption (20) we have

eαT Ỹ 2
T ≤ eαtỸ 2

t +

∫ T

t
eαs
[
αỸ 2

s +|Z̃s|2 +2ỸsC(f)(1+|X̄s|+|Es(Ỹs̄)|+|ζs|)
]
ds+2

∫ T

t
eαsZ̃sdWs.

Owing to Young’s inequality (ab ≤ a2

2θ + θb2

2 , for every θ > 0 and a, b ≥ 0) we get

eαtỸ 2
t ≤ eαT Ỹ 2

T − α
∫ T

t
eαs|Ỹs|2ds−

∫ T

t
eαs|Z̃s|2ds+ θC(f)

∫ T

t
eαsỸ 2

s ds

+
C(f)

θ

∫ T

t
eαs(1 + |X̄s|2 + |Es(Ỹs̄)|2 + |ζs|2)ds− 2

∫ T

t
eαsZ̃sdWs

≤ eαT Ỹ 2
T + (θC(f)− α)

∫ T

t
eαsỸ 2

s ds−
∫ T

t
eαs|Z̃s|2ds

+
C(f)

θ

∫ T

t
eαs(1 + |X̄s|2 + |Es(Ỹs̄)|2 + |ζs|2)ds− 2

∫ T

t
eαsZ̃sdWs.

After choosing α and θ such that θC(f)−α < 0, we take the expectation in both sizes of the previous
inequality and use the fact that E|Es(Ỹs̄)|2 ≤ E|Ỹs̄|2 (owing to conditional Jensen inequality) to get

eαtE(Ỹ 2
t ) +

∫ T

t
eαsE|Z̃s|2ds ≤ eαTE(Ỹ 2

T ) +
C(f)

θ

∫ T

t
eαs(1 + E|X̄s|2 + E(Ỹ 2

s̄ ) + E|ζs|2)ds.

Owing to the fact that E(supt∈[0,T ] |X̄t|2) ≤ CX(1 + E|X0|2) and setting t = tk, we have

eαtkE(Ỹ 2
tk

) +

∫ T

tk

eαsE|Z̃s|2ds ≤ eαTE(Ỹ 2
T ) +

C(f)

θ

(eαT − eαtk
α

+ CX(1 + E|X0|2)
)

+
C(f)

θ

n−1∑
`=k

eαt`E|Ỹt`+1
|2 +

C(f)

θ

∫ T

tk

eαsE|ζs|2ds.

On the other hand, we have

ζ̃t` =
1

∆n
E`

∫ t`+1

t`

Z̃sds, so that by Jensen’s inequality, |ζ̃t` |
2 ≤ 1

∆n
E`

∫ t`+1

t`

|Z̃s|2ds. (64)

It follows that∫ T

tk

eαsE|ζs|2ds ≤
1

∆2
n

E

n−1∑
`=k

∫ t`+1

t`

eαs
(∫ t`+1

t`

|Z̃u|2du
)
ds

≤ eα∆n − 1

α∆n
E

n−1∑
`=k

∫ t`+1

t`

eαs|Z̃u|2du =
eα∆n − 1

α∆n

∫ T

tk

eαsE|Z̃u|2du.

Since eα∆n − 1 ≤ α∆ne
α∆n , we have

eαtkE|Ỹtk |
2 +

∫ T

tk

eαsE|Z̃s|2ds ≤ eαTE|ỸT |2 +
C(f)

θα
eαT +

C(f)

θ
CX(1 + E|X0|2)

+
∆C(f)

θ

n−1∑
`=k

eαt`+1E|Ỹt`+1
|2 +

C(f)

θ
eα∆n

∫ T

tk

eαsE|Z̃u|2ds.

Now, let us choose θ so that C(f)
θ eα∆n < 1. Owing to the fact that θC(f) < α, this implies that

C(f)eα∆n < θ < α
C(f) . This constraint holds true if eα∆n < α

C(f)2 . Taking α > C(f)2(T ∨ 1) and
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owing to the fact that eα∆n → 1 as n goes to infinity we may consequently choose θ ∈
(
C(f)(eα∆n ∨

T ), α
C(f)

)
, for every n ≥ n0 ∈ N. Setting

C(1,1) = eαTE|ỸT |2 +
C(f)

θα
eαT +

Cf
θ
CX(1 + E|X0|2), C(1,2) =

C(f)

θ
and C(1,3) =

C(f)

θ
eα∆n ,

it follows that, for every n ≥ n0,

eαtkE|Ỹtk |
2 +

(
1− C(1,3)

) ∫ T

tk

eαsE|Z̃s|2ds ≤ C(1,1) + ∆C(1,2)
n∑

`=k+1

eαt`E|Ỹt` |
2. (65)

In particular we have E|ỸT |2 = Eξ2 ≤ C(1,1) and

eαtkE|Ỹtk |
2 ≤ C(1,1) + ∆nC

(1,2)
n∑

`=k+1

eαt`E|Ỹt` |
2, ∀ k ∈ {0, · · · , n− 1}. (66)

Since θ > TC(f) then TC(1,2) < 1 and we may show by induction that if A ≥ C(1,1)/(1− TC(1,2))
then

sup
k=0,··· ,n

eαtkE|Ỹtk |
2 ≤ A so that sup

k=0,··· ,n
E|Ỹtk |

2 ≤ A.

Now, setting k = 0 in (65) we get

sup
n≥0

∫ T

0
eαsE|Z̃s|2ds ≤

C(1,1)

1− C(1,3)
+
n− k
n

C(1,2)

1− C(1,3)
A×T ≤ C(1,1)

1− C(1,3)
+

C(1,2)

1− C(1,3)
A×T.

Furthermore, since |ζ̃tk |2 ≤ 1
∆n
Ek
∫ tk+1

tk
|Z̃s|2ds (see (64)), we deduce that

∆n

n−1∑
k=0

E|ζ̃tk |
2 ≤

∫ tk+1

tk

E|Z̃s|2ds ≤ C(1,4)

where C(1,4) is a positive real constant not depending on n.

STEP 2. We show that Ỹ satisfies

∀ t∈ [0, T ], E|Ỹt − Ỹt|2 ≤ Cb,σ,f,T |t− t|, Cb,σ,f,T > 0.

In fact, we have for every t ∈ [tk, tk+1],

Ỹt = Ỹtk − (t− tk)f
(
tk, X̄tk ,E(Ỹtk+1

|Ftk), ζ̃tk
)

+

∫ t

tk

Z̃sdWs.

Then, using the assumptions (20) yield

E|Ỹt − Ỹtk |
2 ≤ C(f)(t− tk)

(
1 + E|X̄tk |

2 + E|Ỹtk+1
|2 + E|ζ̃tk |

2|
)

+

∫ t

tk

E|Z̃s|2ds.

Now, thanks to the previous step we know that

sup
s∈[tk,t]

E|Z̃s|2 < +∞, sup
k∈{0,··· ,n}

E|Ỹtk |
2 < +∞ and sup

n≥1
sup

k∈{0,··· ,n}
E|ζ̃tk |

2 < +∞.

We also know that supn≥1 supk∈{0,··· ,n}E|X̄tk |2 < +∞. As a consequence, there exists a positive
real constant Cb,σ,f,T such that for every t∈ [tk, tk+1],

∀ t∈ [tk, tk+1], E|Ỹt − Ỹtk |
2 ≤ Cb,σ,f,T |t− tk|, k = 0, . . . , n− 1.
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STEP 3. Let t ∈ [0, T ]. It follows from Ito’s formula that

eαt|Yt − Ỹt|2 = 2

∫ T

t
eαs(Ys − Ỹs)

(
f(s,Xs, Ys, Zs)− f(s, X̄s,Es(Ỹs̄), ζ̃s)

)
ds

−α
∫ T

t
eαs|Ys − Ỹs|2ds−

∫ T

t
eαs|Zs − Z̃s|2ds+ 2

∫ T

t
eαs(Zs − Z̃s)dWs

≤ 2

∫ T

t
eαs[f ]Lip|Ys − Ỹs|

(
∆2
n + |Xs − X̄s|2 + |Ys − Es(Ỹs̄)|2 + |Zs − ζ̃s|2

) 1
2ds

−α
∫ T

t
eαs|Ys − Ỹs|2ds−

∫ T

t
eαs|Zs − Z̃s|2ds+ 2

∫ T

t
eαs(Zs − Z̃s)dWs.

Using the Young inequality: ab ≤ θ
2a

2 + 1
2θ b

2, ∀θ > 0, yields

eαt|Yt − Ỹt|2 ≤ [f ]Lip

∫ T

t
eαs
(
θ|Ys − Ỹs|2 +

1

θ

(
∆2
n + |Xs − X̄s|2 + |Ys − Es(Ỹs̄)|2 + |Zs − ζ̃s|2

))
ds

−α
∫ T

t
eαs|Ys − Ỹs|2ds−

∫ T

t
eαs|Zs − Z̃s|2ds+ 2

∫ T

t
eαs(Zs − Z̃s)dWs. (67)

The stochastic integral on the right hand side of the previous inequality is a martingale since both Z
and Z̃ lie in L2([0, T ]×Ω, dt⊗dP). On the other hand, owing to the error bound for the Euler scheme
and the fact that X is an Itô process, we get

E|Xs − X̄s|2 ≤ 2
(
C(3,1)E|Xs −Xs|2 + C(3,2)E|Xs − X̄s|2

)
≤ C(3,3)∆n,

for some positive real constants C(3,1), C(3,2) and C(3,3). Then, taking the expectation in (67) and
using the fact that

E|Ys − Es(Ỹs̄)|2 ≤ 2E|Ys − Ỹs|2 + 2E|Ỹs − Es(Ỹs̄)|2

yield

E
(
eαt|Yt − Ỹt|2 +

∫ T

t
eαs|Zs − Z̃s|2ds

)
≤
(
− α+ [f ]Lip

(
θ +

2

θ

)) ∫ T

t
eαsE|Ys − Ỹs|2ds

+
[f ]Lip

θ

(
eαT − eαt

α

(
∆2
n + C(3,3)∆n

)
+ 2

∫ T

t
eαsE|Ỹs − Es(Ỹs̄)|2ds+

∫ T

t
eαsE|Zs − ζ̃s|2ds

)
. (68)

We notice that for every k ∈ {0, · · · , n− 1} and for every s ∈ [tk, tk+1),

ζ̃s =
1

∆n
Ek

∫ tk+1

tk

Z̃sds ∈ arg min
a∈Ftk

Ek

∫ tk+1

tk

|Z̃s − a|2ds

and

ζs :=
1

∆n
Ek

∫ tk+1

tk

Zsds ∈ arg min
a∈Ftk

Ek

∫ tk+1

tk

|Zs − a|2ds,

where a∈Ftk means that a is an Rq-valued Ftk -measurable random vector. Then, using the inequality
Ek|Zs − ζ̃s|2 ≤ 2Ek|Zs − ζs|2 + 2Ek|ζs − ζ̃s|2, we get∫ tk+1

tk

eαsEk|Zs − ζ̃s|2ds ≤ 2

∫ tk+1

tk

eαsEk|Zs − ζs|2ds+ 2

∫ tk+1

tk

eαsEk|ζs − ζ̃s|2ds (69)

≤ 2

∫ tk+1

tk

eαsEk|Zs − Zs|2ds+
2

∆2
n

∫ tk+1

tk

eαsEk

∣∣∣Ek ∫ tk+1

tk

(Zu − Z̃u)du
∣∣∣2ds.
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Now, owing to the Cauchy-Schwarz inequality, we have∫ tk+1

tk

eαsEk

∣∣∣Ek ∫ tk+1

tk

(Zu − Z̃u)du
∣∣∣2ds ≤ ∆n

∫ tk+1

tk

eαsdsEk

∫ tk+1

tk

|Zu − Z̃u|2du

= ∆n
eα∆n − 1

α
eαtkEk

∫ tk+1

tk

|Zu − Z̃u|2du

≤ ∆n
eα∆n − 1

α
Ek

∫ tk+1

tk

eαs|Zu − Z̃u|2du.

Consequently, taking the expectation in (69) leads to∫ tk+1

tk

eαsE|Zs − ζ̃s|2ds ≤ 2

∫ tk+1

tk

eαsE|Zs − Zs|2ds+ 2
eα∆n − 1

α∆n

∫ tk+1

tk

eαsE|Zu − Z̃u|2du

Coming back to Inequality (68) and setting α = α(θ) = [f ]Lip

(
θ + 2

θ

)
yields

E
(
eαt|Yt − Ỹt|2 +

∫ T

t
eαs|Zs − Z̃s|2ds

)
≤

[f ]Lip

θ

(
∆nCb,σ,T + 2

∫ T

t
eαsE|Ỹs − Es(Ỹs̄)|2ds

+ 2
eα∆n − 1

α∆n

∫ T

t
eαsE|Zu − Z̃u|2du

+ 2

∫ T

t
eαsE|Zs − Zs|2ds

)
.

Owing to Step 2, we have for every t ∈ [0, T ], E|Ỹt − Ỹt|2 ≤ Cb,σ,f,T (t− t) with Cb,σ,f,T > 0 so that,
using the conditional Jensen inequality we get

E|Ỹs − Es(Ỹs̄)|2 ≤ 2E|Ỹs − Ỹs|2 + 2E|Es(Ỹs − Ỹs̄)|2

≤ 2E|Ỹs − Ỹs|2 + 2E|Ỹs − Ỹs̄|2

≤ 4Cb,σ,f,T∆n.

As a consequence, using that e
α∆n−1
α∆n

≤ eα∆n , we have

E
(
eαt|Yt − Ỹt|2 +

∫ T

t
eαs|Zs − Z̃s|2ds

)
≤

[f ]Lip

θ

(
∆nC

′
b,σ,f,T + 2eα∆n

∫ T

t
eαsE|Zu − Z̃u|2du

+ 2

∫ T

t
eαsE|Zs − Zs|2ds

)
.

Let θ∈
[
4[f ]Lip, 6[f ]Lip

]
. Then

2
[f ]Lip

θ
eα∆n ≤ 1

2
exp

(
[f ]Lip

(
[f ]2Lip +

1

2

)
∆n

)
so that, for large enough n, say n ≥ n0, 2

[f ]Lip

θ
eα∆n ≤ 3

4
since ∆n → 0. It follows that

E
(
eαt|Yt − Ỹt|2 +

1

4

∫ T

t
eαs|Zs − Z̃s|2ds

)
≤ C(3,4)

(
∆n +

∫ T

t
eαsE|Zs − Zs|2ds+

∫ t

t
eαsE|Zs − Z̃s|2ds

)
.

In particular, for every k = 0, · · · , n, as tk = tk,

E|Ytk − Ỹtk |
2 ≤ C(3,4)

(
∆n +

∫ T

tk

eαsE|Zs − Zs|2ds
)

≤ C(3,5)eαT
(

∆n +

∫ T

0
E|Zs − Zs|2ds

)
.
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Now, setting k = 0 yields likewise

E
(∫ T

0
eαs|Zs − Z̃s|2ds

)
≤ C(3,6)

(
∆n + eαT

∫ T

0
E|Zs − Zs|2ds

)
,

which completes the proof since one can always satisfy this inequality for n = 1, · · · , n0, by increasing
the constant C(3,6).
STEP 4. Let us consider the following PDE:

∂u

∂t
(t, x) + Lu(t, x) + f(t, x, u,∇xu(t, x)σ(t, x)) = 0, u(T, x) = h(T, x), x∈ Rd,

where L is the second order differential operator defined by

L =
1

2

∑
i,j

[σσ?(t, x)]ij∂
2
xixj +

∑
i

bi(t, x)∂xi ,

(where σ? stands for the transpose of σ). We know (see e.g. [17]) that under our assumptions, the
solution u of this PDE satisfies

Yt = u(t,Xt) and Zt = ∇xu(t,Xt)σ(t,Xt).

Furthermore (see again [17]), under the hypothesis made on the coefficients of the Forward-Backward
SDEs, there is a positive real constant C(4,1) which depends only on T , such that

∀ s, t,∈ [0, T ],∀x ∈ Rd, |∇xu(t, x)−∇xu(s, x)| ≤ C(4,1)|t− s|1/2. (70)

We also know that there is a constant C(4,2) > 0 such that for every s, t ∈ [0, T ],

E|Xt −Xs|2 ≤ C(4,2)|t− s|. (71)

Then, using (70), the assumptions on σ and the fact that u belongs to the set C1,2
b of continuously

differentiable functions φ(t, x) which partial derivatives ∂tφ, ∂xφ and ∂2
x2φ exist and are uniformly

bounded (in particular∇xu is Lipschitz continuous in x), we have for every t ∈ [0, T ],

E|Z − Zt|2 ≤ 2E|∇xuσ(t,Xt)−∇xu(t,Xt)σ(t,Xt)|2 + 2E|∇xu(t,Xt)σ(t,Xt)−∇xuσ(t,Xt)|2

≤ C
(
E|∇xu(t,Xt)−∇xu(t,Xt)|2 + E|σ(t,Xt)− σ(t,Xt)|2

)
≤ C

(
(t− t) + E|Xt −Xt|2

)
≤ C(t− t),

for some real positive constant C > 0 which may change from line to line in the previous inequalities.
It follows that ∫ T

0
E|Z − Zt|2dt ≤ C

∫ T

0
(t− t)dt = C

(tn − tn−1)2

2
≤ C∆2

n.

B Distortion mismatch: Proof of Theorem 4.3

STEP 1 (Control of the distance to the quantizers): Let (ΓN )N≥1 be a sequence of Lr-optimal quan-
tizers. it is clear that, for every ξ∈ Rd,

d(ξ,ΓN ) ≤ |ξ|+ d(0,ΓN ).
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The sequence (d(0,ΓN ))N≥1 is bounded since d(ΓN , supp(P )c)→ 0 asN → +∞ and d(0, supp(P )c) <
+∞. Then there exists a real constant AX ≥ 0 such that for every ξ∈ Rd,

d(ξ,ΓN ) ≤ |ξ|+AX .

STEP 2 (Micro-macro inequality): The optimality of the grids ΓN , N ≥ 1, allow to apply to the
micro-macro inequality (see Equation (3.2) in the proof of Theorem 2 in [24]), namely : for every real
constant c∈ (0, 1

2) and every y∈ R,

er(ΓN , P )r − er(ΓN+1, P )r ≥
(
(1− c)r − cr

)
P
(
B
(
y; cd(y,ΓN )

))
d(y,ΓN )r. (72)

Let ν be an auxiliary Borel probability measure on Rd to be specifies further on. Integrating the above
inequality with respect to ν(dy) yields, we derive, owing to Fubini’s Theorem,

er(ΓN , P )r − er(ΓN+1, P )r ≥
(
(1− c)r − cr

) ∫ ∫ (
B
(
y; cd(y,ΓN )

))
d(y,ΓN )rp(dξ)ν(dy)

=
(
(1− c)r − cr

) ∫ ∫
1{|y−ξ|≤cd(y,ΓN )}d(y,ΓN )rν(dy)P (dξ)

≥
(
(1− c)r − cr

) ∫ ∫
1{|y−ξ|≤cd(y,ΓN ), d(y,Γn)≥ 1

c+1
d(ξ,ΓN )}d(y,ΓN )rν(dy)P (dξ).

Now using that ξ 7→ d(ξ,Γn) is Lipschitz continuous with coefficient 1, one derives that{
(ξ, y) : |y − ξ| ≤ c

c+ 1
d(ξ,ΓN )

}
⊂
{

(ξ, y) : |y − ξ| ≤ cd(y,ΓN ), d(y,Γn) ≥ 1

c+ 1
d(ξ,ΓN )

}
and, still by Fubini’s Theorem,

er(ΓN , P )r − er(ΓN+1, P )r ≥ (1− c)r − cr

(1 + c)r

∫
ν
(
B
(
ξ; cd(y,ΓN )

))
d(ξ,ΓN )rP (dξ). (73)

Let ε∈ (0, 1/2). We set ν = fε,δ.λd where fε,δ is a probability density given by

fε,δ(ξ) =
κε,δ

(|x|+ 1 + ε)d+δ
with δ > 0.

(| . | is any norm). The density fε,δ shares the following property on balls: let ξ ∈ Rd and t ∈ R+. If
t ≤ ε(|ξ|+ 1), then

ν
(
B(ξ, t)

)
≥ gε,δ(ξ)td with gε,δ(ξ) =

1

(1 + ε)d+δ

κε,δ
(|ξ|+ 1)d+δ

Vd

and Vd = λd
(
B(0; 1)

)
. Now let c = c(ε)∈ (0, 1) such that c

c+1 = ε(A−1
X
∧1). As d(ξ,ΓN ) ≤ |ξ|+AX ,

this in turn implies that c
c+1d(ξ,ΓN ) ≤ ε(|ξ|+ 1)|. As a consequence

er(ΓN , P )r − er(ΓN+1, P )r ≥ (1− c)r − cr

(c+ 1)r

∫
gε,δ(ξ)d(ξ,ΓN )r+dP (dξ).

Let s∈ [r, r+d). It follows from Equation (73) and the inverse Minkowski inequality applied with
p = s

r+d ∈ (0, 1) and q = − s
d+r−s ∈ (−∞, 0) that

∫
gε,δ(ξ)d(ξ,ΓN )r+dP (dξ) ≥

[∫
Rd
d(ξ,ΓN )sP (dξ)

] r+d
s
[∫

gε,δ,a(ξ)
− s
d+r−sP (dξ)

]− d+r−s
s

.
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It follows follows from the assumption made on X (or P ) that, for small enough δ > 0,[∫
Rd
g
− s
d+r−s

ε,δ (ξ)P (dξ)

]− d+r−s
s

=
κε,δVd

(1 + ε)d+δ

[
E
[(

1 + |X|)
(d+δ)s
d+r−s

]]− d+r−ss

. < +∞

As a consequence

er(ΓN , P )r − er(ΓN+1, P )r ≥ CX,r,s,ε,δ es(ΓN , X)r+d (74)

where CX,r,s,ε,δ = (1−c)r−cr
(1+c)r(1+ε)d+δ

κε,δ
∥∥1 + |X|

∥∥−(d+δ)
(d+δ)s
d+r−s

.

STEP 3 (Upper-bound for the quantization error increments): One follows the lines of the proof of
Theorem 2 in [24] to derive this upper-bound for the increments of the Lr-quantization error, namely
there exists of a real constant κX,r such that

er(ΓN , P )r − er(ΓN+1, P )r ≤ κX,rN−1− r
d .

Combining the last two inequalities yields[
es(ΓN , X)s

] r+d
s ≤ C̃X,r,s,ε,δN−

r+d
d

where C̃X,r,s,ε,δ =
κX,r

CX,r,s,ε,δ
. This completes the proof by considering the (d + r)th root of the

inequality. �
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