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GROUPS IN NTP2

NADJA HEMPEL AND ALF ONSHUUS

Abstract. We prove the existence of abelian, solvable and nilpotent
de�nable envelopes for groups de�nable in models of an NTP2 theory.

1. Introduction

One of the main concerns of model theory is the study of de�nable sets.
For example, given an abelian subgroup in some de�nable group, whether
or not one can �nd a de�nable abelian group containing the given subgroup
becomes very important, since it �brings� objects outside the scope of model
theory into the category of de�nable sets.

In that sense, an ongoing line of research consists of �nding �de�nable
envelopes�. Speci�cally, one can ask if for a de�nable group G and a given
subgroup of G with a particular algebraic property such as being abelian,
solvable, or nilpotent, can one �nd a de�nable subgroup of G which contains
the given subgroup and which has the same algebraic property. This is
always possible in stable theories (see [8]), and recent research has shown
remarkable progress both simple theories, and dependent theories:

In a dependent theory, Shelah has shown that given any de�nable group
G and any abelian subgroup of G, one can �nd a de�nable abelian subgroup
in some extension of G which contains the given abelian subgroup (see [10]).
De Aldama generalized this result in [1] to nilpotent and normal solvable
subgroups.

In simple theories, one cannot expect such a result to hold, as there are ex-
amples of de�nable groups with simple theories which contain in�nite abelian
subgroups but for which all its de�nable abelian subgroups are �nite (see Re-
mark 2.7). Nevertheless, one obtains de�nable envelopes �up to �nite index�.
In [5] and [4] Milliet proved that given any (abelian/nilpotent/solvable) sub-
group H of a group G de�nable in a simple theory one can �nd a subgroup of
G which containsH up to �nite index and which is (abelian/nilpotent/solvable).1

In this paper, we analyze arbitrary abelian, nilpotent and normal solvable
subgroups of groups de�nable in theories without the tree property of the

1The existence of nilpotent envelopes played an essential role in the proof of Palacin
and Wagner showing that the ��tting subgroup�, i. e. the group generated by all normal
nilpotent subgroups, of a group de�nable in a simple theory is again nilpotent (see [7]).
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2 NADJA HEMPEL AND ALF ONSHUUS

second kind (NTP2 theories), which include both simple and dependent the-
ories. We prove the existence of de�nable envelopes up to �nite index in a
saturated enough extension of a given group which is de�nable in a model
of an NTP2 theory, which is inspired by the result in simple theories as well
as the one in dependent theories.

2. Preliminaries

In this section we state the known results in simple and dependent theories.
Throughout the paper, we say that a group is de�nable in a theory if the
group is de�nable in some model of the theory. We also sometimes say that
a group is dependent, simple or NTP2 if the theory of the group, in the
language of groups, is, respectively, dependent, simple, or NTP2. For some
cardinal κ, a κ-saturated extension of a de�nable group is this group �seen�
in an κ-saturated extension of the model in which the group is de�ned.

De�nition 2.1. Let M be a model of a theory T in a language L. Let A be
a subset of M . A sequence 〈ai〉i∈I is de�ned to be indiscernible over A, if I
is an ordered index set and given any formula φ(x1, . . . , xn) with parameters
in A, and any two subsets i1 < i2 < . . . in and j1 < j2 < . . . jn of I, we have

M |= φ(ai1 , . . . , ain)⇔ φ(aj1 , . . . , ajn).

The following is a well known fact which is proved using Erdös-Rado
Theorem.

Fact 2.2. For some cardinal κ and any set A, any sequence of elements
〈ai〉i∈κ contains a subsequence of size ω which is indiscernible over A.

Even more, for any cardinal λ and any set A, there is some cardinal κ
such that any sequence of elements 〈ai〉i∈κ contains a subsequence of size λ
which is indiscernible over A.

De�nition 2.3. A theory T is dependent if in no model M of T one can
�nd an indiscernible sequence 〈āi〉i∈ω and a formula φ(x̄; b̄) such that φ(āi; b̄)
holds in M if and only if i is odd.

Let G be a group de�nable in a dependent theory, let H be a subgroup of
G and let G be a |H|+-saturated extension of G. The following two results
summarize what we know about envelopes of H. The �rst was proven by
Shelah in [10] and the second by de Aldama in [1].

Fact 2.4. If H is abelian, then there exists a de�nable abelian subgroup of
G which contains H.

Fact 2.5. If H is a nilpotent (respectively normal solvable) subgroup of G of
class n, then there exists a de�nable nilpotent (respectively normal solvable)
subgroup of G of class n which contains H.
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We now turn to the simple theory context.

De�nition 2.6. A theory has the tree property if there exists a formula
φ(x̄; ȳ), a parameter set {āµ : µ ∈ ω<ω} and k ∈ ω such that

• {φ(x̄; āµai : i < ω} is k-inconsistent for any µ ∈ ω<ω;
• {φ(x̄; ās�n : s ∈ ωω, n ∈ ω} is consistent.

A theory is called simple if it does not have the tree property.

As the following remark (an example which is studied in [4]) shows, it is
impossible to get envelopes in the same way one could achieve them in the
stable and dependent case, and one must allow for some ��nite noise�.

Remark 2.7. Let T be the theory of an in�nite vector space over a �nite
�eld together with a skew symmetric bilinear form. Then T is simple, and in
any model of T one can de�ne an in�nite �extraspecial p-group� G, i. e. every
element of G has order p, the center of G is cyclic of order p and is equal
to the derived group of G. This group has SU-rank 1. It has in�nite abelian
subgroups but no abelian subgroup of �nite index, as the center is �nite and
any centralizer has �nite index in G. However, if G had an in�nite de�nable
abelian subgroup, that abelian group would have SU-rank 1, hence would be
of �nite index in G, a contradiction.

A model theoretic study of extra special p-groups can be found in [2].

So one has to �nd a version of the theorem which is adapted to the new
context. For this we will need the following de�nitions:

De�nition 2.8. A group G is called �nite-by-abelian if there exists a �nite
normal subgroup F of G such that G/F is abelian.

De�nition 2.9. A subgroup H of a group G is an almost abelian group if
the centralizer of any of its elements has �nite index in H. If the index of
these elements can be bounded by some natural number we call it an bounded
almost abelian group.

Almost abelian groups are also known as FC-groups, where FC-group
stands for ��nite conjugation�-group.

The following classical group theoretical result, which is a theorem of
Neumann, will provide a link between the two notions.

Fact 2.10. [6, Theorem 3.1]. Let G be a bounded almost abelian group. Then
its derived group is �nite. In particular, G is �nite-by-abelian.

Now we are ready to state the abelian version for simple theories proven
by Milliet as [5, Proposition 5.6.].

Fact 2.11. Let G be a group de�nable in a simple theory and let H be an
abelian subgroup of G. Then there exists a de�nable �nite-by-abelian subgroup
of G which contains H.
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In the nilpotent and solvable case one must additionally include other
de�nitions to account for the �by �nite� phenomenon.

De�nition 2.12. Let G be a group and H and K be two subgroups of G.
We say that H is almost contained in K, denoted by H . K, if [H : H ∩K]
is �nite.

The following was proved by Milliet in [4]:

Fact 2.13. Let G be a group de�nable in a simple theory and let H be a
nilpotent (respectively solvable) subgroup of G of class n. Then one can �nd
a de�nable nilpotent (respectively solvable) subgroup of class at most 2n which
almost contains H.

If we additionally assume that the nilpotent subgroup H is normal in G,
one can ask for the de�nable subgroup which almost containsH to be normal
in G as well. Hence the product of these two groups is a de�nable normal
nilpotent subgroup of G of class at most 3n which contains H.

3. Main result

The purpose of this paper is to extend the above results to the context of
NTP2 theories, which expand both simple and dependent theories.

De�nition 3.1. A theory has the tree property of the second kind (ref-
ered to as TP2) if there exists a formula ψ(x̄; ȳ), an array of parameters
(āi,j : i, j ∈ ω), and k ∈ ω such that:

• {ψ(x̄; āi,j) : j ∈ ω} is k-inconsistent for every i ∈ ω;
• {ψ(x̄; āi,f(i)) : i ∈ ω} is consistent for every f : ω → ω.

A theory is called NTP2 if it does not have the TP2.

Observation. By compactness, having the tree property of the second kind
is equivalent to the following �nitary version:

A theory has TP2 if there exists a formula ψ(x̄; ȳ) and a natural num-
ber k such that for any natural numbers n and m we can �nd an array of
parameters (āi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m) satisfying the following properties:

• {ψ(x̄; āi,j) : j ≤ m} is k-inconsistent for every i;
• {ψ(x̄; āi,f(i)) : i ≤ n} is consistent for every f : {1, . . . , n} →
{1, . . . ,m}.

In this paper we will prove the following.

Theorem 3.2. Let G be a group de�nable in an NTP2 theory, H be a sub-
group of G and G be an |H|+-saturated extension of G. Then the following
hold:
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(1) If H is abelian, then there exists a de�nable almost abelian (thus
�nite-by-abelian) subgroup of G which contains H. Furthermore, if
H was normal in G, the de�nable �nite-by-abelian subgroup can be
chosen to be normal in G as well.

(2) If H is a solvable subgroup of class n which is normal in G, then
there exists a de�nable normal solvable subgroup S of G of class at
most 2n which almost contains H.

(3) If H is a nilpotent subgroup of class n, then there exists a de�nable
nilpotent subgroup N of G of class at most 2n which almost contains
H. Moreover, if H is normal in G, the group N can be chosen to be
normal in G as well.

In the abelian and solvable case we follow some of the ideas already present
in the proof of de Aldama. Similar to his proof and unlike the proof of
Milliet in simple theories, we do not rely on a chain condition for uniformly
de�nable subgroups, but we look to prove the result directly from the non
existence of the array described in De�nition 3.1. In the nilpotent case, we
use additionally some properties of the almost centralizer (see De�nition 3.9)
needed to prove the same result in groups which satisfy the chain condition
on centralizers up to �nite index presented in [3].

The following is the key lemma for the abelian case and it is used as well
in the nilpotent case.

Lemma 3.3. Let G be a group with an NTP2 theory and let H be a subgroup
of G. Fix G an |H|+-saturated extension of G and let φ(x, y) be the formula
x ∈ CG(y). Consider the following partial types:

πZ(H)(x) = {φ(x, g) : Z(H) ≤ φ(G, g), g ∈ G}

πH(x) = {φ(x, g) : H ≤ φ(G, g), g ∈ G}.
Then there exists a natural numbers n such that

πZ(H)(x0) ∪ · · · ∪ πZ(H)(xn) ∪ πH(y) `
∨
i 6=j

φ(x−1i xj , y).

Proof. Suppose that the lemma is false. Then for arbitrary large n ∈ N one
can �nd a sequence of elements (al,0, . . . , al,n−1, bl)l<ω in G such that

(āl, bl) |= πZ(H)(x0) ∪ · · · ∪ πZ(H)(xn−1) ∪ πH(y) � dcl(H ∪ {āk, bk : k < l})

and for all 0 ≤ i < j < n we have that a−1l,i al,j 6∈ CG(bl). We show that:

(1) For all i < n and all natural numbers k di�erent than l, we have that
al,i ∈ CG(bk);

(2) For all i, j < n and all k < l < ω we have that al,i ∈ CG(b
ak,j
k ).

To do so, we let k < l < ω and i, j < n be arbitrary and we prove that
al,i ∈ CG(bk) as well as ak,i ∈ CG(bl) and al,i ∈ CG(b

ak,j
k ).
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Let z be an element of Z(H). Hence H is a subgroup of CG(z) and whence
φ(x, z) ∈ πH(x) � H. As bk satis�es this partial type, we obtain that

Z(H) ≤ CG(bk).

So φ(x, bk) belongs to πZ(H)(x) � {bk}. Since the element al,i satis�es
π(x)Z(H) � H ∪ {bk}, we get that al,i belongs to CG(bk).

On the other hand, if we take a ∈ H we have that Z(H) is a a subgroup
of CG(a) and thus φ(x, a) ∈ πZ(H)(x) � H. As ak,i satisfy this partial type,
we obtain that

H ≤ CG(ak,i).

So φ(x, ak,i) ∈ πH(x) � {ak,i}. As the element bl satis�es this partial type
πH(x) � H ∪ {ak,i}, we get that the element ak,i belongs to CG(bl) which
together with the previous paragraph yields (1).

As seen before, we have that Z(H) ≤ CG(bk) and H ≤ CG(ak,i). This

yields that Z(H) ≤ CG(b
ak,j
k ). Hence φ(x, b

ak,j
k ) belongs to πZ(H)(x) �

dcl{bk, ak,j}. Since the element al,i satis�es π(x)Z(H) � dcl(H ∪ {bk, ak,j}),
we obtain that al,i belongs to CG(b

ak,j
k ) which yields (2).

Let ψ(x; y, z) be the formula that de�nes the coset of y ·CG(z). We claim
that the following holds:

• {ψ(x; al,i, bl} : i < n} is 2-inconsistent for any l ∈ ω;
• {ψ(x; al,f(l), bl} : l ∈ ω} is consistent for any function f : ω → n+ 1.

The �rst family is 2-inconsistent as every formula de�nes a di�erent coset of
CG(bl) in G. For the second we have to show that for all natural numbers m
and all tuples (i0, . . . , im) ∈ nm the intersection

a0,i0CG(b0) ∩ · · · ∩ am,imCG(bm)

is nonempty. Using (1) and (2) and multiplying by a−10,i0
· · · · · a−1m,im on the

right, it is equivalent to CG(b
a0,i0
0 ) ∩ · · · ∩CG(b

am,im
m ) being nonempty which

is trivial true.

Compactness yields a contradiction to the fact that the group G has an
NTP2 theory and we obtain the result. �

3.1. Abelian subgroups.

Proof of Theorem 3.2(1). Since H is abelian, it is equal to its center. So
by Lemma 3.3 and compactness one can �nd a �nite conjunction

∧
i φ(x, gi)

with φ(x, y) being the formula x ∈ CG(y) and gi in some saturated extension
of G, such that∧

i

φ(x0, gi) ∧ · · · ∧
∧
i

φ(xn, gi) ∧
∧
i

φ(y, gi) `
∨
i 6=j

φ(x−1i xj , y). (∗)
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Furthermore, all h in H satis�es
∧
i φ(x, gi). Hence the subgroup

⋂
iCG(gi)

contains H and by (∗), it is a bounded almost abelian group. Thus, its
commutator subgroup is �nite by Fact 2.10, which yields Theorem 3.2(1).
Moreover, if H is normal in G, the group

⋂
i(CG(gi)

G) is a de�nable normal
subgroup of G which still contains H and which is as well almost abelian,
which completes the proof. �

3.2. Solvable subgroups. To prove the solvable case of Theorem 3.2 we
need the following.

De�nition 3.4. A group G is almost solvable if there exists a normal almost
series of �nite length, i. e. a �nite sequence of normal subgroups

{1} = G0 E G1 E · · · E Gn = G

of G such that Gi+1/Gi is an almost abelian group for all i ∈ n. The least
such natural number n ∈ ω is called the almost solvable class of G.

De�nition 3.5. Let G be a group and S be a de�nable almost solvable sub-
group of class n. We say that S admits a de�nable almost series if there
exists a family of de�nable normal subgroups {Si : i ≤ n} of S such that S0
is the trivial group, Sn is equal to S and Si+1/Si is almost abelian.

The proof of Corollary 4.10 in [4] provides the following fact (although it
is done in the context of a simple theory, the proof is exactly the same in
our context). It can also been found as Lemma 3.22 in [3].

Fact 3.6. Let G be a de�nable almost solvable subgroup of class n which
admits a de�nable almost series. Then G has a de�nable subgroup of �nite
index which is solvable of class at most 2n.

So we only need to concentrate on building a de�nable almost series.

Proposition 3.7. Let G be a group de�nable in an NTP2 theory and H be
a solvable subgroup of G of class n. Suppose that there is a |H|+-saturated
extension G of G which normalizes H. Then there exists a de�nable normal
almost solvable subgroup S of G of class n containing H. Additionally, S
admits a de�nable almost series such that all of its members are normal in
G.

Proof. We prove this by induction on the derived length n of H. If n is
equal to 1 this is a consequence of the abelian case, Theorem 3.2(1). So let

n > 1, and consider the abelian subgroup H(n−1) of H. It is a characteristic
subgroup of H and hence, as H is normal in G, it is normal in G as well.
So again by the abelian case, there exists a de�nable almost abelian normal
subgroup A of G which contains H(n−1). Replacing G by G/A, we have that
the derived length of HA/A is at most n−1 and we may apply the induction
hypothesis which �nishes the proof. �
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Proof of Theorem 3.2(2). Applying Proposition 3.7 to H seen as a normal
subgroup of G gives us a de�nable almost solvable subgroup K of G of class
n containing H and which admits a de�nable almost series. By Fact 3.6, the
group K has a de�nable subgroup S of �nite index which is solvable of class
at most 2n. �

3.3. Nilpotent subgroups. The following follows from Lemma 3.3

Lemma 3.8. Let G be a group de�nable in an NTP2 theory, let H be a
subgroup of G and suppose that G is |H|+ saturated. Then one can �nd
de�nable subgroups A and K and a natural number m such that

• the cardinality of the conjugacy class kA for all elements k in K is
bounded by m;
• A is almost abelian and contains Z(H);
• K contains H and A.

If H is additionally normal in G, one can choose A and K to be normal in
G as well.

Proof. By Lemma 3.3 we can �nd φZ(H) and φH which are conjunctions of
formulas from πZ(H)(x) and πH(x) (de�ned as in Lemma 3.3) respectively
and a natural number m such that:

φZ(H)(x0) ∧ · · · ∧ φZ(H)(xm) ∧ φH(y) `
∨
i 6=j

x−1i xj ∈ CG(y).

Note that these formulas de�ne intersections of centralizers and are therefore
subgroups of G. Letting A be equal to φZ(H)(G) ∩ φH(G) and K be equal
to φH(G) we have the announced properties.

If H is normal in G, we have that Z(H) is also normal in G and we
can replace A and K by ∩g∈GAg and ∩g∈GKg which are normal de�nable
subgroups of G and still satisfy the given properties. �

To prove the existence of �de�nable envelopes� of nilpotent subgroups of a
group de�nable in an NTP2 theory we need to de�ne the almost-centralizer.

De�nition 3.9. Let G be a group an H be a de�nable subgroup of G. We

de�ne the almost-centralizer C̃G(H) of H in G to be

C̃G(H) := {g ∈ G | [H : CH(g)] <∞}.

We will need the following results, which are Corollary 2.11 and Proposi-
tion 3.27 in [3].

Fact 3.10. (Symmetry) Let G be a group and let H and K be two de�nable
subgroups of G. So

H . C̃G(K) if and only if K . C̃G(H).
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Fact 3.11. Let G be a group and let H and K be two de�nable subgroups of

G such that H is normalized by K. Suppose that H is contained in C̃G(K)

and K is contained in C̃G(H). Then [H,K] is �nite.

We will also need a theorem which is the de�nable version of a result
proven by Schlichting in [9] and which can be found in [11] as Theorem 4.2.4.
It deals with families of uniformly commensurable subgroups, a notion we
now introduce:

De�nition 3.12. A family F of subgroups is uniformly commensurable if
there exists a natural number d such that for each pair of groups H and K
from F the index of their intersection is smaller than d in both H and K.

Fact 3.13. Let G be a group and H be a family of de�nable uniformly com-
mensurable subgroups. Then there exists a de�nable subgroup N of G which
is commensurable which all elements of H and which is invariant under any
automorphisms of G which stabilizes H setwise.

Proof of Theorem 3.2(3). Note that if H is �nite the result holds trivially.
So we may assume that H is in�nite and suppose as well that G is already
|H|+-saturated. Thus for the second part of the theorem, we may assume
that H is normal in G.

We will prove by induction on the nilpotency class n of H that there exists
a de�nable nilpotent subgroup N of G of class at most 2n and a sequence of
subgroups:

{1} = N0 ≤ N1 ≤ N2 ≤ · · · ≤ N2n = N

such that H . N and for all 0 ≤ i < 2n, we have that

• Ni is de�nable and normal in N ;
• [Ni+1, N ] ≤ Ni.

If H was supposed to be normal in G, we will have each Ni to be normal
in G as well.

Let n be equal to 1. Then H is abelian, and by Theorem 3.2(1) there
exists a de�nable almost abelian subgroup A of G which contains H. Note
that the centralizer of any element of A has �nite index in A. As [A,A] is
�nite by Fact 2.10, letting N be equal to CA([A,A]) and N1 = Z([A,A])
gives the desired groups. If H was assumed to be normal in G, we may
choose A to be normal in G as well. Since CA([A,A]) and Z([A,A]) are
characteristic subgroups of A, they will be also normal in G which provides
the second part of the theorem.

Assume now n is strictly greater than 1. Assume that for any nilpotent
subgroup of a de�nable group in an NTP2 theory of class less or equal to n,
one can �nd a sequence as described above. The strategy is to �nd a de�nable
subgroupN∗ of G such thatN∗ almost containsH and Z2(N

∗) containsN∗∩
Z(H). We will then prove that in this case (H ∩N∗)Z2(N

∗)/Z2(N
∗) has



10 NADJA HEMPEL AND ALF ONSHUUS

nilpotency class strictly smaller than H so that we may apply the induction
hypothesis to �nd a de�nable nilpotent subgroup N2n/Z2(N

∗) of G/Z2(N
∗)

which almost contains N∗/Z2(N
∗) and therefore H/Z2(N

∗). Taking the
pullback to N∗ together with its �rst and second center yields the desired
properties.

We �rst show the following:

Claim. There are de�nable subgroups A and K of G such that:

• A is a normal subgroup of K;
• Z(H) . A and H ≤ K;

• K ≤ C̃K(A);

• A ≤ C̃K(K);

• [A,K] is �nite and contained in C̃G(K).

Proof. First, by Lemma 3.8 we can �nd de�nable subgroups A0 and K of G
such that

(1) the cardinality of the conjugacy class kA0 for all elements k in K is
bounded by some natural number m;

(2) A0 is almost abelian and contains Z(H);
(3) K contains H and A0.

The next step to prove the claim is to replace A0 by a commensurable
de�nable subgroup which is additionally normal in K.

By (1) we can deduce that K is contained in C̃G(A0) and therefore

F = {A0
k : k ∈ K}

is a uniformly de�nable and uniformly commensurable family of subgroups
of K. By Schlichting (Fact 3.13) one can �nd a de�nable subgroup A1 of
K which is commensurable with all groups in F , in particular with A0, and
which is stabilized by all automorphisms which stabilize the family setwise,
and thus is normal in K.

As A1 is commensurable with A0, we have that K ≤ C̃K(A1). By sym-
metry of the almost centralizer, we obtain that A1 is almost contained in

C̃K(K), but A1 need not be a subgroup of C̃K(K). Let A = A1 ∩ C̃K(K);
this is still a normal subgroup of K and has �nite index in A1, which will
imply all of the group theoretic properties in the statement. However, the
almost centralizer of a de�nable group is not necessary de�nable, so it is left
to show that this intersection is indeed de�nable.

Since A has �nite index in A1, the de�nable subgroup A1 is a �nite union

of distinct cosets of A, say A1 =
⋃k
i=1 aiA for some ai ∈ A1. Furthermore,

we have that A is the union of the de�nable sets

Ad := φd(x) = {x ∈ A1 : [K : CK(x)] < d}.
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But then we have that

A1 =
k⋃
i=1

⋃
d∈N

aiAd

so by compactness and saturation of G this is equal to a �nite subunion.
Additionally, as {Ad}d∈ω was a chain of subsets of A each contained in the
next we have that

A1 =
k⋃
i=1

aiAd

for some �xed d. Hence A is equal to Ad and whence it is a normal de�nable
subgroup of K. Moreover, the group A is commensurable with A0, so it

almost contains Z(H) and K is still in C̃G(A). Additionally, A is contained

in C̃G(K) and normal in K, so Fact 3.11 implies that the group [A,K] is

�nite and contained in both A and in C̃K(K). �

Let A and K be as in the claim, so the index [Z(H) : A∩Z(H)] is �nite.
Take a setH0 := {h0, . . . , hn} of representatives of each classes of A∩Z(H) in
Z(H), so that Z(H) = h0 (A ∩ Z (H))∪h1 (A ∩ Z (H))∪· · ·∪hn (A ∩ Z (H)).

Let K ′ := CK(h0, . . . , hn) and A′ := A ∩K ′.

Claim. The following conditions hold:

• [A′,K ′] is �nite and contained in C̃G(K ′).
• H ≤ K ′.
• Z(H) ∩A = Z(H) ∩A′, so that Z(H) . A′.

Proof. Since K ′ ≤ K and A′ ≤ A, we have that Z(H) ∩ A′ ⊆ Z(H) ∩ A
and [A′,K ′] ≤ [A,K]. Since [A,K] is �nite and contained in C̃G(K), so is

[A′,K ′]. Furthermore, we have that C̃G(K) is a subgroup of C̃G(K ′). This
yields the �rst item of the claim.

All of the hi's in H0 belong to Z(H) and H is a subgroup of K, so
H ≤ K ′ = CK(h0, . . . , hn).

Finally, let h be an element of Z(H)∩A. We have that h belongs as well
to K ′ and hence to A′. This completes the proof of the claim. �

Notice that in particular Z(H) ∩A ≤ A′.

We can now de�ne N∗ as we mentioned at the beginning of the proof.

Let X be equal to [A′,K ′]. Then we de�ne:

N∗ := CK′(X).

Claim. The following conditions hold:
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(1) N∗ is a subgroup of K ′ of �nite index, and thus H ∩ N∗ has �nite
index in H.

(2) X ∩N∗ ≤ Z(N∗).
(3) Z(H) ∩N∗ ≤ Z2(N

∗).

Proof. Since X is contained in C̃G(K ′), the de�nition yields that CK′(x) has
�nite index in K ′. As X is additionally �nite, we obtain that N∗ has �nite
index in K ′. Since H is a subgroup of K ′, we have as well that H ∩N∗ has
�nite index in H as well, which proves (1).

AsN∗ is equal to CK′(X), we obtain immediately thatX∩N∗ is contained
in Z(N∗).

To prove (3), it is enough to show that for given z in Z(H) ∩ N∗ and
n ∈ N∗, the commutator [z, n] belongs to Z(N∗). This will imply that
[Z(H) ∩ N∗, N∗] ≤ Z(N∗) which yields that Z(H) ∩ N∗ is contained in
Z2(N

∗).

As

Z(H) =
⋃

hi∈H0

hi
(
A′ ∩ Z (H)

)
,

we can write z as a product of an element hi ∈ H0 and a ∈ A′. Thus
[z, n] = [hi · a, n] = [hi, n]a · [a, n]

As n belongs to N∗ which is a subgroup of K ′ = CK(H0), the �rst factor is
trivial and we obtain that:

[z, n] = [a, n] ∈ [A′,K ′] ≤ X.
Moreover, as z and n both belong toN∗, their commutator does as well. Thus
we obtain �nally that [z, n] is an element of X ∩N∗ which is a subgroup of
Z(N∗) as shown above. This completes the proof of the claim. �

We are �nally ready to prove the theorem, using the induction hypothesis.

By the previous claim, we have that Z(H) ∩N∗ ≤ Z2(N
∗). Hence

(H ∩N∗) /Z2(N
∗) ∩ (H ∩N∗) ∼= (H ∩N∗)Z2(N

∗)/Z2(N
∗)

is a quotient of (H ∩N∗) / (Z (H) ∩N∗). We obtain that the nilpotency
class of (H ∩N∗)Z2(N

∗)/Z2(N
∗) is at most the nilpotency class of H/Z(H)

which is strictly smaller than the one of H. Furthermore, it is contained in
the group N∗/Z2(N

∗) which is de�nable in an NTP2 theory.

By induction hypothesis, we can �nd a sequence of subgroups ofN∗/Z2(N
∗)

Z2(N
∗)/Z2(N

∗) ≤ N3/Z2(N
∗) ≤ · · · ≤ N2n/Z2(N

∗)

such that

(H ∩N∗)Z2(N
∗)/Z2(N

∗) . N2n/Z2(N
∗)
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and for all 2 ≤ i ≤ 2n we have that

• Ni/Z2(N
∗) is de�nable and normal in N2n/Z2(N

∗);
• [Ni+1, N2n] ≤ Ni.

As N2n is a subgroup of N∗ we have that Z(N∗) ∩ N2n ≤ Z(N2n) and
[Z2(N

∗), N2n] ≤ Z(N∗). Note that the group H ∩ N∗ is as well almost
contained in N2n. As H ∩N∗ and H are commensurable, the same holds for
H. So

{1} = N0 ≤ Z(N2n) ≤ Z2(N2n) ≤ N3 · · · ≤ N2n

is an ascending central series of N2n with the desired properties.

For the �moreover� part of Theorem 3.2(3), if H is normal in G, then the
groups:

L := KG ∩ CG(hG0 , . . . , h
G
n ) and B = AG ∩ L

are normal subgroups of G and we have as well that:

• H ≤ L and Z(H) . B, so in particular Z(H) ∩A ≤ B;
• [B,L] is �nite and contained in C̃G(L).

Doing the same construction to �nd N∗ using L and B instead of K ′ and
A′, we have additionally that N∗ is normal in G, which implies that both
Z(N∗) and Z2(N

∗) are also normal subgroups of G. The rest of the proof is
exactly the same. �

Corollary 3.14. Let G be a group with an NTP2 theory and let H be a
nilpotent subgroup of G of class n. Suppose there exists an |H|+-saturated
extension G of G which normalizes H, then there is a de�nable nilpotent
normal subgroup N of G of class at most 3n which contains H.

Proof. By Theorem 3.2(3), there is a de�nable nilpotent subgroup N0 of class
at most 2n which almost contains H and which is normal in G. Thus, the
group NH is a de�nable normal nilpotent subgroup of G of nilpotency class
at most 3n. �
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