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ABSTRACT

This paper presents a novel approach to visual object tracking
based on particle filtering. The tracked object is modelled by
a sparse representation provided by dictionary learning. Such
an approach permits to describe the target by a model of re-
duced dimension. The likelihood of a candidate region is built
on a similarity measure between the sparse representations of
a set of patches (at known positions) in the dictionary learnt
from the reference template. Experimental validation is per-
formed on various video sequences and shows the robustness
of the proposed approach.

Index Terms— dictionary learning, sparse coding, parti-
cle filtering, object tracking

1. INTRODUCTION

Tracking objects in a video sequence is an essential task
in computer vision. Among the many tracking methods
(see [1]), particle filters are currently widely used. The per-
formance strongly depends on the appearance model used to
characterise the target object and on the likelihood function
which measures the similarity between the candidate region
and the reference object. Recently new models based on
sparse representation, initially introduced in [2], have been
successfully applied in visual tracking [3]. A global sparse
appearance model is proposed in [4]. The dictionary is com-
posed of two parts: target templates used to represent the
entire object and trivial templates introduced to account for
noisy pixels. A candidate is then sparsely represented with
a few atoms of the complete dictionary. The likelihood is
related to the reconstruction error in the target dictionary.
The discriminative ability of the method can be improved
by adding background templates in the dictionary [5]. To
better handle partial occlusions, a local sparse appearance
model based on a dictionary of patches sampled from target
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templates [6] or learnt from these patches [7] is more appro-
priate. The principle is to extract patches from a candidate
and to compute their sparse encoding in the dictionary. The
representation coefficients or sparse codes are then exploited
as appearance features. The eventual step, referred to as the
pooling step, is to extract meaningful coefficients from these
appearance features. The likelihood is based on the similarity
between the candidate and the object features vectors.

Several pooling operators have been considered. The
average pooling [8] averages the sparse codes to build up
the final feature vector. The max pooling method [7] keeps
the maximum absolute value of the sparse code coefficients.
Both methods are imprecise because they lose the location of
patches and thus the spatial structure of the object. To over-
come this loss, an alignment pooling method is developed
in [9]. It preserves the spatial information, but it imposes
constraints on the dictionary construction. It is composed of
patches extracted from target templates according to a fixed
spatial structure that can not change over time.

In this paper we propose to combine the principle of align-
ment pooling with dictionary learning for sparse representa-
tion of the target object patches. Then tracking is performed
in a space of reduced dimension by comparing sparse codes of
patches in the candidate region with sparse codes of patches
extracted from the target template at known locations. The
paper is organised as follows. Section 2 recalls related pre-
vious works. Section 3 presents the proposed sparse coding
model. In Section 4, the tracking algorithm based on particle
filtering is described. Section 5 presents performance results
obtained on public datasets and Section 6 concludes.

2. RELATED WORK

We first recall the alignment pooling approach [9]. The target
is described by several templates. For simplicity, we con-
sider only one target template T , typically a rectangle com-
prising M overlapping square patches of size c2. A set of
N ≤ M patches is extracted from the template at predefined



locations according to a spatial layout. The matrix Lp =

[p1, . . . ,pN ] ∈ Rc2×N , formed by the concatenation of the
vectorised patches (pi)

N
i=1 is directly used as the dictionary.

Then a candidate region C is modelled as follows. The candi-
date is first resized to match the target template’s size. A set
of N patches (qi)

N
i=1 is sampled at the same locations as in

the target. The sparse codes ui of each of these patches in the
dictionary Lp of sizeN are obtained by solving the following
`1-constrained minimisation problem

arg min
ui

∥∥qi −Lpui

∥∥2
2

s.t. ‖ui‖1 ≤ ρ, (1)

where ρ controls the sparsity of the code ui ∈ RN . Each
patch qi is then approximated by a sparse combination of the
patches (pi)

N
i=1 weighted by ui. The alignment pooling of

ui consists in selecting the contribution of patch pi at the
same location as patch qi which is the i-th coefficient uii of
ui. Consequently, if the ui’s are the columns of the square
matrix U ∈ RN×N , the pooled coefficients are located on the
diagonal. The log-likelihood of candidate C with respect to
template T is defined as the trace of matrix U

L(C, T ) = TrU =

N∑
i=1

uii. (2)

For comparison, the max and average pooling operators re-
spectively compute the maximum and average of each ui, be-
fore summing the results. The alignment pooling is more ac-
curate because it takes into account the locations of extracted
patches. However the major drawback is the lack of flexibil-
ity. To increase the number of patches or change their loca-
tions for better performance, the dictionary has to be com-
pletely redefined. The size of the dictionary is necessarily the
number N of extracted patches so that if one wants to take
all available patches into account, the size of the dictionary
becomes large since N = M . Moreover, as shown on Fig. 2,
that method may suffer from a lack of robustness.

3. PROPOSED APPROACH

To overcome these limitations, we propose to learn a dictio-
nary Dp ∈ Rc2×K of fixed size K � M from a set of
patches Lp = [p1, . . . ,pN ] ∈ Rc2×N extracted from tem-
plate T to obtain an adapted representation of the data. This
is carried out by solving the minimisation problem

arg min
Dp,Z

∥∥Lp −DpZ
∥∥2
F

s.t. ‖zi‖1 ≤ ρ, ∀i, (3)

where zi is the i-th column of the matrix Z ∈ RK×N and
‖·‖F denotes the Frobenius norm. Dictionary learning is per-
formed on centered patches while average values are pro-
cessed apart. Consequently, zi is the sparse code of the patch
pi with respect to the dictionary Dp. The dimension re-
duction performed by dictionary learning imposes no limit

(a) Target template (b) Dictionary Dp

Fig. 1: Atoms of a learnt dictionary by order of contributions
in the image.

on the number N . We can afford to use all the overlapping
patches (N = M ) of size c2 within the template to learn the
dictionary of size K � M . Figure 1 illustrates the atoms
of the dictionary Dp of size K = 161 learnt over all the
N = 16109 patches of size 8 × 8 extracted from the target
template image in Fig. 1a. To compare, the alignment pooling
has to solve the minimisation problem (1) with a dictionary
of size 16109 whereas the proposed method uses a dictionary
Dp that is 100 times smaller. To describe a candidate region,
n patches (qi)i∈J are extracted at locations defined by some
set J ⊂ {1, . . . N} and #J = n. We compute their sparse
codes V = [vi]i∈J ∈ RK×n in Dp by solving

arg min
vi

∥∥qi −Dpvi

∥∥2
2

s.t. ‖vi‖1 ≤ ρ. (4)

Compared to [9] where n = N , the choice of the number
of patches n and their locations is completely free. To build
the log-likelihood of a candidate region C, we compare the
sparse representations using Dp of these n patches from C
and T at the same locations defined by J . This comparison is
quantified by matched filtering which provides optimal SNR
for pattern detection. Thus, the log-likelihood of a candidate
set of n sparse codes V with respect to the template sparse
codes ZJ = [zi]i∈J is defined as a cross-correlation:

1

‖ZJ‖F
TrZT

JV . (5)

This log-likelihood optimally detects the presence of the tem-
plate patches represented by ZJ at known positions. This
approach can be interpreted as an alignment pooling strat-
egy since the trace operation pools the individual alignment
scores zT

i vi of the set of n patches (which all ‘vote’ for the
same target position). Note that the similarity proposed in [9]
can be seen as a special case of (5) where Dp = Lp (no dic-
tionary learning) and ZJ = I (trivial coding). Last remains
to take into account the average values of patches denoted by



(a) (b) (c)

Fig. 2: (a) A patch qi0 taken from a resized candidate. (b)
Reshaped sparse code ui0 . (c) Cross-correlation ZT

Jvi0

p̄i and q̄i: large differences of average gray levels |p̄i − q̄i|
should be penalised. We propose to add a term −λ|p̄i − q̄i|2
to (5) to finally get the log-likelihood

LJ(C, T ) =
1

‖ZJ‖F
TrZT

JV − λ
∑
i∈J
|p̄i − q̄i|2 , (6)

where λ > 0 is some weighting parameter (default is 1).
Figure 2 compares the proposed approach to the align-

ment pooling method. A patch qi0 is selected in a resized
candidate region of Fig. 2a. Figures 2b and 2c show the sim-
ilarity maps between qi0 and all the patches (pi)i∈J with
J = {1, . . . ,M} extracted from T . Without dictionary learn-
ing, see Fig. 2b, this similarity map is directly given by the
sparse code ui0 of the patch qi0 in Lp. With the proposed
approach at Fig. 2c, it is given by ZT

Jvi0 where vi0 is the
sparse code of qi0 in Dp. The alignment pooling consists in
selecting the coefficient of the sparse code corresponding to
the contribution of the patch pi0 at the same location as qi0
(red circles in Fig. 2b and 2c). With a standard alignment
pooling, little matching is found between the patches pi0 and
qi0 . In the set of the template patches used as the dictionary,
a lot of atoms (patches) are similar and the atoms selected
by the sparse decomposition do not necessarily include the
aligned patch pi0 . This effect can be reduced by considering
templates from different frames. Our approach gives better
matching results because the learnt dictionary is of reduced
dimension and the template patches (pi)i∈J are described by
several atoms of Dp. A match is found every time pi, i ∈ J ,
shares atoms with qi0 . Figure 2c shows several matches in
particular with the aligned patch.

4. TRACKING ALGORITHM

Object tracking is carried out by particle filtering [10]. Given
a sequence of observations y1:k = (y1, . . . ,yk) up to time k,

Fig. 3: Qualitative tracking results on the sequences Woman
and Suv with different pooling strategies: proposed in red,
maximum pooling in green, average pooling in blue and
alignment pooling in black.

the aim is to estimate the object state xk from the posterior
density p(xk|y1:k) which is recursively approximated with a
set of Np weighted particles {x(m)

k , w
(m)
k }Np

i=1: p(xk|y1:k) ≈∑Np

i=1 w
(m)
k · δ(xk − x

(m)
k ). The target object is represented

by a bounding window. The state vector is defined as xk =
[ck,dk]

T where ck =
[
cxk, c

y
k

]
is the position of the top left

corner and dk =
[
dxk, d

y
k

]
is the size of the window. To

obtain the set of particles at time k from the previous parti-
cles {x(m)

k−1, w
(m)
k−1}

Np

i=1, the particle filter algorithm includes
two major steps: prediction and update. During prediction,
the samples x

(m)
k are propagated according to the dynamic

model using the prior density p(x(m)
k |x(m)

k−1). As often, we as-
sume that xk evolves as a Gaussian random walk: xk|xk−1 ∼
N (xk−1,Σ) where Σ is a diagonal covariance matrix which
defines the uncertainty region around the previous state. Dur-
ing the second stage, the weights w(m)

k are updated according
to the recursive expression: w(m)

k = w
(m)
k−1 ·p(yk|x

(m)
k ) where

the observation likelihood p(yk|xk) measures the matching
between the observation and the state. We define the likeli-
hood directly from expression (6) as

p(yk|x
(m)
k ) ∝ exp

{
µ · LJ(C, T )

}
, (7)

where C is the candidate region identified by x
(m)
k and µ is

a tuning parameter. Finally, after weight normalisation and if
necessary, particle resampling, the object state is obtained by
MMSE (Minimum Mean Square Error) estimation

x̂k = E
[
xk|y1:k

]
=

Np∑
m=1

w
(m)
k x

(m)
k . (8)

5. EXPERIMENTAL VALIDATION

In this section, we validate our approach by comparing it to
other pooling strategies. The optimisation problems (1), (3)



0 20 40 60 80 100
0

10

20

30

40

Proposed Max. Pool.
Alg. Pool. Avg. Pool.

(a) Center error for sequence
Woman

0 20 40 60 80 100
0

10

20

30

40

Proposed Avg. Pool.
Max. Pool. Alg. Pool.

(b) Center error for sequence
Suv

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Proposed Alg. Pool.
Max. Pool. Avg. Pool.

(c) Overlap rate for sequence
Woman

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Proposed Avg. Pool.
Max. Pool. Alg. Pool.

(d) Overlap rate for sequence
Suv

Fig. 4: Quantitative tracking results on the sequences Woman
and Suv

and (4) are solved using the Spams Matlab toolbox1 [11] with
ρ = 0.25. J is set to a fixed grid of step 8. For particle filter-
ing,Np = 600 particles, µ = 4.6 and Σ = diag (20, 20, 4, 4).
Concerning the proposed method, the size of the dictionary is
set to K = 64.

Four pooling strategies are considered: alignment pool-
ing (without dictionary learning) and maximum, average or
alignment pooling (proposed method) with dictionary learn-
ing. They are compared in the first 100 frames of the se-
quences Suv and Woman. For a fair comparison, all the
trackers adopt the same dynamical model, only the observa-
tion likelihood differs. Figure 3 shows the qualitative tracking
results obtained on a few images of the sequences. These se-
quences present challenging scenarios with partial occlusion
and illumination changes. Figure 4 shows the quantitative
tracking results. The first row depicts the center location er-
ror (in pixels) between the ground truth bounding box and the
estimated bounding box. The second row depicts the overlap
rate [12] which is the ratio between the area of the intersection
of both bounding boxes and the area of the union.

The maximum and average pooling give the worst perfor-
mance in the first frames of both videos, because they use a
similarity between patches regardless of their locations. How-
ever this lack of precision is compensated by a good robust-

1http://spams-devel.gforge.inria.fr/

R(α = 0.5) AUC
Max Alg Prop Max Alg Prop

Bolt 0.05 0.09 0.03 0.05 0.14 0.04
CarScale 0.14 1.00 0.98 0.23 0.74 0.74
David3 0.04 0.24 0.29 0.05 0.21 0.22
FaceOcc1 0.22 0.18 1.00 0.29 0.27 0.82
FleetFace 0.29 0.55 0.62 0.40 0.49 0.48
Freeman4 0.03 0.01 0.03 0.02 0.08 0.12
Singer1 0.34 0.59 0.61 0.29 0.57 0.65

Table 1: Success rate R(α = 0.5) and Area Under the Curve
(AUC)

∫
R(α)dα for the proposed method, max pooling and

alignment pooling.

ness, and the performances are maintained or even can im-
prove along the sequences. On the opposite, the alignment
pooling is more accurate at the beginning of the sequences,
because its takes into account the spatial information and a
similarity is found between aligned patches. But the tracking
results degrade along the videos. As shown in Figure 2, it
can miss the matching between patches that are similar. For
example on the Suv sequence, the target partially exits the
image around frame 30. When the target comes back, the
maximum and average pooling can find it whereas the align-
ment pooling fails. Along both sequences, the best tracking
performance is achieved with our approach. The proposed
cross-correlation based similarity is both accurate and robust.
As the maximum and average pooling, our tracker can retrieve
the target after a partial exit and as the alignment pooling, it
preserves the spatial information.

Table 1 gathers results obtained on a set of publicly avail-
able video sequences [13]. It compares success rates R(α)
that are the proportions of frames for which the overlap rate
is ≥ α. To this aim, we compare the values of R(α = 0.5)
and, in the spirit of the usual AUC, the Area Under the Curve
{α ∈ (0, 1), R(α)} which is a more general indicator. The
proposed method either equals or outperforms other methods.

6. CONCLUSIONS

In this paper we propose a sparse representation of patches in
a learnt dictionary to model the appearance of an object. Then
tracking is performed by a matched filter on the sparse codes
of the patches extracted from the candidate. This method gen-
eralises the alignment pooling method and improves on other
pooling strategies with learnt dictionaries such that the max
or average pooling. Numerical results show that it compares
favourably with previous works.
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