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Abstract

Compliant mechanisms are of great interest in precision engineering. In this paper we propose a higher-order contin-

uation method to help their rigid-body kinematic design. Higher-order continuation method leads to direct accurate

plotting of the input-output relationship of any mechanism using only its geometrical closed-loop equations, i.e. with-

out complex derivation of any analytical model. These plots, called bifurcation diagrams, reveal essential information

as joint velocity profile and the presence of singular configurations. Moreover, the continuous and accurate computa-

tion of the mechanism configuration in the vicinity of singularities provides detailed information about the kinematic

behavior of the mechanism in its extreme positions. For the design of compliant mechanisms, the designer can ad-

vantageously use the bifurcation diagrams to first evaluate the relevance of the selected mechanism, then identify a

working configuration in order to obtain adequate kinematic properties without the derivation of the inverse kine-

matic model (IKM) or the direct kinematic model (DKM). The method is exemplified with a 3 universal-joint and

3 spherical-joint mechanism (3–US) mechanism, the IKM and DKM of which cannot be derived analytically. The

latter has a large workspace and special kinematic behaviors consisting of a screw-like motion and platform gyration,

which have not been studied before and could lead to interesting novel devices.

Keywords: compliant mechanism, mechanical design, continuation method, bifurcation diagram, 3–US mechanism,

singularity, workspace analysis

1. Introduction

The advantages of compliant mechanisms for precision applications are well known [2]. Their design can be

efficiently performed using the so-called rigid body replacement (RBR) method [1]. The synthesis is then achieved

by relying on a rigid-body mechanism, taking into account the properties of compliant joints by spring models.

Given their stiffness properties, parallel mechanisms are in this context of particular interest for the development of

compliant structures. Several studies are focused on the selection of appropriate parallel architectures for the design

of compliant mechanisms [4, 3, 14], which is a difficult design issue for two reasons. Firstly, a great number of

parallel mechanisms exist, including solutions with less than six degrees-of-freedom (DOF) that have the advantage

of simple mechanical design [7] and large workspace [8]. During the synthesis of a compliant mechanism using

the RBR method, one difficulty is to select an adequate parallel mechanism, which requires comparing numerous

designs. Secondly, compliant mechanisms usually have a limited workspace, and their synthesis therefore consists

in determining the most adequate configuration in the rigid-body mechanism workspace. The determination of a

relevant mechanism configuration is therefore also an issue, since parallel mechanisms can have a complex workspace,

and kinematic properties can largely vary within that workspace with presence of kinematic singularities. Efficient

kinematic analysis with determination of the presence of singularities is needed.

Several studies have been focused on the determination of mechanism workspace. Monte Carlo method [15],

branch-and-prune algorithm [16] as well as geometrical approaches [17, 18] have been proposed. These methods

exploit a priori knowledge of the mechanism properties to reduce computation time, which constitutes a serious
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drawback during a mechanism synthesis when several designs have to be compared. It has been demonstrated that the

workspace boundaries corresponds to singularity locii [19]. Haug et al. [20] and recently Hentz et al. [21, 22] have

consequently developed continuation-based methods to determine the workspace outer envelope by following one-

dimension paths on it. Any mechanism can be analyzed after simply deriving the geometrical closed-loop equations,

and with a limited computation time. This constitutes very interesting features for a systematic evaluation of mecha-

nism, but no information is obtained on accessible configurations within the workspace. In this paper, we introduce an

evaluation method based on the same theoretical background but with a complementary approach giving information

on the boundary and the inner properties of the workspace.

Kinematic analysis to study the geometrical model and properties of robots have been developed using different

methods including analytical [10, 9] and geometrical approaches [11, 8]. Both have their limitations since obtaining an

analytical model is not always possible and the geometrical approach efficiency strongly depends on the mechanism

and the user expertise. Moreover, considering the analysis of robot singular configurations, analytical approaches

generally fail. For these particular situations, Grassman-Cayley algebra and screw theory can be used to prove the

existence of singularity and to identify the nature of singular movements [14]. However, these methods lack gener-

ality and require advanced knowledge on the mechanism as well as designer expertise to determine the mechanism

kinematic properties. This is an issue, since singularities are either explicitly avoided or used for the synthesis of

compliant structures as detailed in [12].

A first main contribution of the present paper is a method identifying the presence of singularities for a mecha-

nism along any given set of end-effector configurations, at no extra computation time and with no loss of generality.

A second main contribution is the ability that offers the method to determine workspace and kinematic properties of

mechanisms that can be employed using only basic knowledge of a mechanism. It builds on the higher-order continu-

ation method [23, 24] for the continuous computation of joint angular positions along any parameterized end-effector

path. The results are presented in the form of so-called bifurcation diagrams displaying joint positions as functions of

the end-effector position. A third main contribution is that precise information on the mechanism kinematic properties

can be extracted, helping the designer in choosing a mechanism, its configuration, the actuated joints or the joints to

be suppressed in the particular situations of singularities.

The method is exemplified by a study of the kinematic behavior of the 3–US mechanism. Composed of three

identical legs connected to the end-effector (Fig.1), this mechanism is of simple architecture and can be of great

interest for compliant mechanisms. Each leg is linked to the base with a universal joint (U) and to the end-effector

with a spherical joint (S). The mechanism is also interesting because of the motions it can exhibit when the end-

effector lies in the plane of the base (Fig.1, left). As outlined in [12, 13, 14], the end-effector then exhibits two

rotations around axes in the base plane and a translation in the direction perpendicular to the plane. Such motions

have been successfully used in the surgical context for a compliant device [14]. Beyond this use, very little information

exists on the properties of the mechanism. It is therefore a case study that is suited for the introduction of the proposed

approach.

The paper is structured as follows: the 3–US kinematic modeling is introduced in Section 2 to outline the available

information on the mechanism. This sets the general formulation used in the method. The higher-order continuation

method is introduced in Section 3: it is the core of the general analysis. We propose to use the Diamanlab software

[25] and describe its main underlying principles. The analysis of the mechanism properties, including the workspace

boundaries and interesting features such as screw motion and self-motion are discussed in Section 4. A summary and

an outlook are proposed in Section 5.

2. Case study description: the 3–US mechanism

2.1. Introduction and parameterization

We consider the parameterization of the 3–US mechanism as given in Fig. 2. It is designed with three identical

legs equally distributed along a circle of radius R and center O. Each leg i, i ∈ {1, 2, 3}, is composed of a universal
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Figure 1: In-plane (left) and out-of-plane (right) configurations of the 3–US mechanism.

Figure 2: Parameterization of the 3–US mechanism.
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joint rigidly connected to a spherical joint. The universal joint center Ai is located at the intersection of the axes of its

two revolute joints. The axes of the first revolute joint of the universal joints intersect at O. The base frame is chosen

with O as center, vector x aligned with OA1 and vector y in the base plane. For symmetry reasons, the points Ai are

positioned with angles ∠A1OA2 = ∠A2OA3 = ∠A3OA1 = 2π/3. This joint arrangement is of particular interest as it

allows for the deployment of the structure [13]. The single plane containing O and the points Ai is designated as the

base plane in the following.

The center of the spherical joint of leg i is denoted by Bi. The centroid of the triangular platform B1B2B3 is denoted

by G. The configuration of the spherical joint centers is such that GBi = OAi, i ∈ {1, 2, 3}, so that the mechanism

architecture is defined only by two geometrical parameters: the radius R = OAi = GBi and the angle α = ∠AiOBi,

i ∈ {1, 2, 3}.
The angular positions of the first and second revolute joints of the universal joints are respectively defined by θ1i

and θ2i, i ∈ {1, 2, 3}. In the planar configuration depicted in Fig. 2, the angular positions are defined such that θ1i = 0

and θ2i = 0, i ∈ {1, 2, 3}. From a technological point of view, actuating the spherical joints is difficult. As the 3–US

mechanism has three DOF, we consider that either the first or the second revolute joints are actuated. Both situations

and their consequences are numerically studied in section 4. The input and intermediate coordinates are consolidated

in the state vector designated by u = (θ11, θ21, θ12, θ22, θ13, θ23).

The platform motions are rotational and translational in most of the cases [14]. Since the mechanism has three

DOF, one single set of three variables among the input and output coordinates is sufficient to constrain the mechanism.

The coordinates of the platform centroid G is chosen as output coordinate set in order to define the mechanism’s

configuration and is denoted by X.

2.2. Kinematic model

By definition, the output coordinate set X satisfies:

X = OG =
1

3

3
∑

i=1

OBi, (1)

and can be related to the input and intermediate coordinates by expressing the vectors OBi, i ∈ {1, 2, 3}, as:

OBi =

























(R − L2 cos (θ2i)) cos
(

2π
3

(i − 1)
)

− (L1 cos (θ1i) − L2 sin (θ2i) sin (θ1i)) sin
(

2π
3

(i − 1)
)

(L1 cos (θ1i) − L2 sin (θ2i) sin (θ1i)) cos
(

2π
3

(i − 1)
)

+ (R − L2 cos (θ2i)) sin
(

2π
3

(i − 1)
)

L1 sin (θ1i) + L2 sin (θ2i) cos (θ1i)

























, (2)

where L1 = R sin (α), L2 = 2R sin (α/2)2. Combining equations (1) and (2) yields three constraint equations linking

the output coordinates X to the state vector u.

Besides, the mobile platform rigidly connects the points Bi, that is:

‖B1B2‖ = ‖B2B3‖ = ‖B1B3‖ =
√

3R. (3)

Expanding equation (3) using the vectors expressions from equations (2) gives three additional constraint equa-

tions. The resulting system of six constraint equations for six unknowns is written explicitly in the code presented in

Appendix A.

The Inverse Kinematic Model (IKM) and the Direct Kinematic Model (DKM) are generally derived from con-

straint equations to determine the input-output relation of a mechanism, i.e. the geometrical relation between the

end-effector and the actuator positions. Specifically the IKM allows computing the actuated joint coordinates for

given output coordinates X. Reciprocally, the DKM allows computing X from the knowledge of the actuated joint

coordinates. Even if the mathematical formulation of the constraint equations seems affordable, to the best of our

knowledge, the derivation of the IKM or DKM for this mechanism is not achievable in an analytical manner in the

general case. Their numerical computation could be considered with for instance a classical Newton-Raphson method,

but such use remains difficult in the vicinity of singular configurations. This constitutes a strong limitation since the

vicinity of singular configurations is particularly interesting for the design of compliant mechanisms: indeed it cor-

responds to particular kinematic behavior which can be used notably for motion amplification purpose for example

[6, 14]. As outlined in the following, the proposed higher-order continuation method is particularly relevant and

accurate in such situations.
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3. Mechanism analysis using higher-order continuation method

The workspace exploration of a mechanism can be performed along parameterized paths. For instance, one of

the three output coordinates related to the end-effector centroid may be considered as a varying parameter, hereafter

denoted λ, while the other two are kept constant.

One deduces from the constraint equations (2) and (3) that the mechanism analysis can be formulated as the

general nonlinear parametric problem linking the input and intermediate coordinates u ∈ Rn (n = 6 here)

R(u, λ) = 0, (4)

where the parameter λ ∈ IR is to be varied along the path and R is a the vector-valued function. The solutions for the

under-determined system (4) define one-dimensional continua, hereafter called branches of solutions.

Continuation methods and related software, see [26, 24] enable to compute solution branches. Most of them rely

on first order predictor-corrector principles described in [27, 28, 29, 30] and approximate the solution branches as

a collection of points satisfying (4). Under analyticity assumptions, continuous solution branches may be actually

computed [38, 24].

3.1. Higher-order continuation method

Under analyticity assumptions, the solution for nonlinear problems may indeed be carried out through a Taylor-

based numerical method and higher-order Automatic Differentiation (AD) [31, 32, 33, 34]. In a nutshell, AD is a set

of techniques that enable to augment a given computer code with derivative computations, with an obvious advantage

in terms of ease of implementation and generality since derivative computations, Jacobians and higher-order terms are

performed in an automatic manner [24, 35, 36].

The Diamant approach [23, 24] is a higher-order continuation method that automates the Asymptotic Numerical

Method discussed in [37, 38]. Diamant is of particular interest for mechanism analysis since it may be used from the

constraint equations only. The related Matlab software is named Diamanlab [25, 42].

Following [38, 24], the solution for (4) is performed considering the nonlinear problem:

R(u(a), λ(a)) = 0, (5)

a =

〈

u (a) − u(0),
∂u

∂a
(0)

〉

+ (λ(a) − λ(0))
∂λ

∂a
(0) , (6)

where a is a measure of the pseudo arc-length (equation (6)) [27] along the branch of solutions (u(a), λ(a)) issued

from the point (u(0), λ(0)). This branch is locally approximated by means of two Taylor series:

(u(a), λ(a)) =
(

K
∑

k=0

ak

k!

∂ku

∂ak
(0),

K
∑

k=0

ak

k!

∂kλ

∂ak
(0)

)

=
(

K
∑

k=0

akuk,

K
∑

k=0

akλk

)

, (7)

where uk and λk are the Taylor coefficients of u(0) and λ(0) at order k, and K is the truncation order. Thanks to

analyticity, the generic problem (5) written in terms of the Taylor coefficients Rk of R

R(u(a), λ(a)) =

K
∑

k=0

akRk = 0, (8)

allows to deduce that:

Rk = 0, for k = 1 to K. (9)

The Taylor coefficient Rk (k = 1, ..,K) may be split into [39]

Rk = {R1}(uk, λk)T + {Rk|uk=0,λk=0} = 0, (10)

where the Jacobian {R1} of R is the same over the orders. The higher-order term {Rk|uk=0,λk=0} contains the nonlinear

contributions that are independent from the unknowns uk and λk. The higher-order terms and the solutions of linear

system (11) are computed each in turn following:
{

{R1|u1=Id,λ1=1}(uk, λk)T = −{Rk|uk=0,λk=0}, for k = 1 to K,

a = (uk − u0)u1 + (λk − λ0)λ1.
(11)
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Once the series are computed, the a posteriori error estimate (12) provides an adaptive step size control based on

a numerical radius of convergence a∗ of the series [38]

a∗ =

(

ε
||U1||
||UK ||

)
1

K−1

, (12)

where ε is a small parameter usually chosen equal to 10−6. It also enables to evaluate the interest for a correction.

Truncated Taylor series allow for the construction of accurate continuous solution branches and contain information

for the detection of bifurcation and instability points [40].

Bifurcation diagrams plot continuous solution branches comprising possible bifurcation points. These bifurcation

points correspond to the intersection of branches of solutions. They may be detected either by monitoring a change

of sign for the Jacobian determinant along the solution branch [27] or by implementing higher-order bifurcation

indicators [40, 41] from Taylor series information. For the sake of generality, see subsection 3.2, Diamanlab (Matlab

implementation of Diamant [25, 42]) implements the detection and branch switching processes proposed in [40].

Key points for the automation of the solution (5) are the generality of both the high-level nonlinear solver (11) and

AD for Taylor coefficient computations. In other words, only the constraint equations are necessary for the mechanism

analysis.

3.2. Implementation with Diamanlab

Diamanlab [42] builds on the general high-level nonlinear solver (11) for the continuous solution of the general

nonlinear problem (5). It is therefore of particular interest for mechanism analysis near to singular configurations.

From a user point of view, a nonlinear problem satisfying the analyticity assumption and written as in (5) may

be solved by deriving a user class from the general system class of Diamanlab and by implementing the mechanism

equations (1)-(2) and (3) as a user method R. Additional user-defined graphics may be coded within the user class. In

the following, each exploration is performed with a truncation order of K = 20, an threshold of ε = 1.10−6 in (12) and

a Newton-Raphson threshold of 1.10−6. Diamanlab moreover provides the detection of bifurcations [40], exploited

here to detect the mechanism singularities. A graphical user interface allows for an interactive management of the

continuation.

Diamanlab is available for academic research. The software includes a benchmark [25] of classical nonlinear

problems as a basis for the implementation of user-defined problems as well as the 3–US mechanism problem. The

interested readers may contact the second author for a copy of the Diamanlab software including the 3-US example,

see Appendix A.

4. Analysis of the 3–US mechanism properties for compliant mechanism design

The benefits for the design of compliant mechanisms coming from the use of bifurcation diagrams are illustrated

considering two meaningful singular situations. The screw motion of the platform obtained when its centroid is dis-

placed along the axis (O, z) is first presented in subsection 4.2 to emphasize the ability of the proposed method to

detect parallel and serial singularities. The kinematic behavior is similar to the one exhibited by the Wren mecha-

nism [45, 46]. Second a self-motion due to architectural singularity, with a circular trajectory which has not been

presented in the literature before, is described in subsection 4.3. Finally, in subsection 4.4 the workspace boundary is

obtained from the bifurcation plots local and global extremum and displayed.

4.1. Preliminary observations

The radius R and the arc length α of the legs are the two geometrical parameters that define the mechanism

behavior. The radius R only affects linearly the size of the workspace. It is therefore arbitrarily set to R = 10. The

angle α influences the volume and the shape of the workspace as well as the kinematic behavior. The angle α is chosen

equal to π
2

in order to avoid leg overlapping, which would strongly reduce the practical interest of the mechanism.

Cylindrical coordinates are adopted with O as origin and (O, z) as axis in accordance with the architecture of the

mechanism. The position of the centroid G is denoted by (ρG, φG, zG) with ρG the radius, φG the angular position and

zG the height. Taking into account the symmetry of the mechanism with respect to the (O, x, y) plane, the bifurcation

diagrams are plotted for zG ≥ 0 only.
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4.2. Screw motion, bifurcation and kinematic singularities

The proposed analysis is based on the information that can be extracted from bifurcation diagrams. These diagrams

are representations of the variable set u(λ) that plot the continuous evolution of u along the variation of λ. The initial

point (u(0), λ(0)) is computed from an initial guess using a Newton-Raphson algorithm. Then the continuation takes

place and the solution branches of the nonlinear problem under study are computed as sets of Taylor-based solution

branches stored in checkpoints [43, 44]. These checkpoints contain information about the initial point (u(0), λ(0)), the

series and its range of validity, and one (or several) oriented tangent vector that indicates the continuation direction.

A branch of solutions is constituted by the evolution of the septuplet (u, λ) = (θ11, θ21, θ12, θ22, θ13, θ23, λ). A projected

bifurcation diagram is a 2D representation of one or several branches of solutions.

The bifurcation diagram presented in Fig.3a plots the branches of solutions when the position of G varies along

the axis (O, z). The end-effector motion path is set by (ρG, φG, zG) = (0, 0, λ). For the sake of readability, curves for

(θ12, θ22) and respectively (θ13, θ23), are shifted by 2π and 4π. From Fig. 3a, it is possible to compute the configuration

of all the mechanism components. The representations of the mechanism for situations A to E (Fig.3a) are given in

Fig.3c. Square symbols in Fig.3a indicate values of θ1i and θ2i, i ∈ {1, 2, 3} that belong to the same septuplet. Arrows

indicate how the joint values vary with λ for this situation.

For this situation, analytical relationships between the end-effector position and the joint values can be established

after a specific analytical derivation, as detailed in Appendix B. The corresponding representation of the bifurcation

diagram is presented in Fig. 3b for sake of comparison. The accuracy of the continuation-based analysis is confirmed:

Fig. 3b corresponds to Fig. 3a after inclusion of the symmetry with respect to zG = 0.

A bifurcation point is identified when the end-effector is in the base plane, which happens for the two situations

(θ1i, θ2i) = (0, 0) and (θ1i, θ2i) = (π, 0), i ∈ {1, 2, 3}. They are indicated by red circles in Fig.3a. When leaving the

configuration A or E (Fig.3c) to reach non-planar configurations, it is possible to get two distinct pairs of values

of θ1i and θ2i, i ∈ {1, 2, 3} for one pose of the end-effector. This indicates the presence of two configurations for the

legs for a single end-effector pose. This can be observed in situations B, C and D in Fig. 3c where the legs 1 and

2 are in one configuration and the leg 3 is in the other configuration. The branches describing the two different leg

configurations do not exhibit same shape, nor the same slope at the origin zG = 0. In other words, the V-profile of the

curves representing the evolution of θ2i, i ∈ {1, 2, 3}, differs from the variation of θ1i, i ∈ {1, 2, 3}. One can see here that

the proposed evaluation method allows the designer to easily apprehend such differences, without any linearization

of the mechanism kinematics for local analysis as usually performed. It can be for instance beneficial to choose as

active joints the ones with lowest slopes at the origin since the actuator ranges of motion will be lowered for a given

end-effector displacement.

When the joints θ1i, i ∈ {1, 2, 3} are actuated, we observe at points A and E that the curves θ1i(zG) present a vertical

tangent: the platform can move locally without any variation of θ1i, i ∈ {1, 2, 3}. This signifies that the mechanism

undergoes a parallel singularity, which is in accordance with the results obtained in a previous work [14]. This means

that we can visualize the presence of a parallel singularity from the bifurcation diagram. The detection is possible if

the path used to build the diagram corresponds to the instantaneous motion gained by the mechanism end-effector,

which is here the case with an out-of-plane translation [14]. Singular configurations are interesting as they can be

candidate configurations for singularity-based compliant mechanism design as the one developed in [12]. In addition,

in the vicinity of such a singular configuration, a high amplification ratio can be obtained for θ1i when the branches

of solutions are those presenting vertical tangents. This is of particular interest when piezoelectric actuators requiring

mechanical amplification are needed, as it is the case in many compliant mechanical amplifiers.

When the end-effector is at the maximum height (configuration C in Fig. 3a and Fig. 3b), a so-called turning point

is reached, i.e. an extreme point. The absence of infinitesimal displacement δzG about that configuration implies

that the end-effector does not exhibit any translational motion. No end-effector displacement is obtained while the

variables describing the leg joints vary. Within the same exploration we here identify a serial singularity corresponding

to a workspace limit. Such situation can also be employed for a compliant mechanism as in its vicinity it can be used

as a way to increase the mechanism resolution.

4.3. Multiple bifurcations, architectural singularity and self-motion

The bifurcation diagram presented in Fig 4a plots the branches of solutions when the centroid G is driven along a

circle of radius R at height zG = R, that is by considering the path (ρG, φG, zG) = (10, λ, 10).
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The diagram is composed of two curves for each of the six components (θ11, θ21, θ12, θ22, θ13, θ23) that are part of

the state vector u. In Fig.4a, the plots of (θ12, θ22) and (θ13, θ23) are again shifted for the sake of clarity. For each joint

variable, it is possible to switch between two paths at bifurcation points represented by red circles. The bifurcations

do not occur for a single value of the angle φG but with 2π/3 shifts: six bifurcations are detected along the end-effector

path.

One solution branch corresponds to θ1i = π/2, i ∈ {1, 2, 3} (vertical curves on Fig.4a) with simultaneous linear

variation of the angles θ2i, i ∈ {1, 2, 3}. As outlined by Fig.4b, the end-effector exhibits a circular movement such that

(O, z) remains normal to the end-effector plane. Since the first joint angles are constant, it means the end-effector can

move in this situation even if the first joints on the base are maintained in their initial position. We can here observe

the existence of an architectural singularity [48], also called a self-motion. The continuation method allows us to

observe this particular motion using only the closed-loop equations. In addition, we can see that it is also possible for

the end-effector to describe a motion of circular shape without being permanently in singularity (see configurations

E-F on Fig.4b).

The three different joint evolutions observed during the platform motion have basically constant, linear or sinu-

soidal shapes. Once again, the bifurcation diagram gives the designer immediate and precise information on the joint

angle evolutions so he can pick-up the most suitable configurations of the mechanism for the design of a compliant

mechanism. Here, it is possible to obtain end-effector displacement with no velocity of θ1i. This means the joints θ1i

could be removed and thus the compliant mechanism architecture could be greatly simplified without modification

of the desired end-effector motion. At the same time, linear or sinusoidal evolutions of the other joint angles can

be exploited. The designer can make his decision depending on the most suitable input-output relationship for the

application. In particular, there is a factor two in the total range of motion on the joints (see Fig. 4a) between the two

situations for one gyration of the platform, which may be a determinant indicator.

Finally, one can observe that the bifurcation points allow the legs to switch from one profile to the other, for

example from a sinusoidal profile to a constant profile when considering the evolution of θ1i. If the joints θ1i are

actuated and the mechanism passes through a bifurcation point, there is a chance to lose control of the platform. In

this situation, the bifurcation points are probably configurations to be avoided by the designer.

4.4. Workspace estimation

The reachable workspace is the set of all positions that can be reached by the point G for at least one orientation

of the mobile platform. The shape of the workspace can help the designer to choose a design configuration regarding

the integration constraints. It is here obtained by extracting the local and global boundaries for each bifurcation

diagram obtained for a discrete map of positions (φG, ρG) with a continuous exploration of zG. We therefore obtain a

semi-discrete volume approximating the maximal workspace.

Workspace estimation can be simplified by taking into account mechanism symmetries. The mechanism is invari-

ant with respect to a rotation of 2π
3

radians around the axis (O, z). The workspace of each leg end is also symmetric

with respect to the plane (O,OAi, z) (Fig. 1). As said before, the (O, x, y) plane is a symmetry plane for the mecha-

nism. The workspace can thus be computed from one twelfth defined by 0 ≤ φG ≤ π3 and zG ≥ 0 and completed by

circular pattern repetition and symmetry.

In order to efficiently build the semi-discrete volume, an adaptive technique inspired from [50] is adopted. It is

based on a Newton-Raphson (NR) method to find an initial approximation at a given (φG, ρG). Then we associate

Diamanlab for the computation of branches of solutions along the path λ = zG to an iterative management of the 2D

grid construction. This construction encloses an angular do loop in the range [0, π
3
] with a step of π/90 radians (2◦),

and an adaptive loop performed on the radii ρ. This runs from ρ = 1 to ρ = L with a step of δρ = 1. The checkpoints

computed for the current (φG, ρG) are used as initial guesses for the NR method (until the NR convergence). If the NR

method fails, the step δρ is divided by two and the NR method is run again. The loop on ρ stops when δρ < 0.01. This

allows the building of the upper part of Fig.5. The lower part is built using the same process for φG ∈ [0, π
3
] and ρG

running from 10 down to 0. The lower checkpoints of the solution branches computed for ρG = 10 are used as initial

approximations. The surfaces that delimit the reachable workspace2 are represented in Fig.6.

23D figures are provided as supplementary material.
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(b) Poses at labelled points. The planar configuration with null joint angles is plotted in green.

Figure 4: Bifurcation diagram and associated mechanism configurations for (ρG , zG) = (10, 10).
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(a) Front view. (b) Back view.

Figure 5: 3D views of 1/12th of the reachable workspace (α = π/2; R = 10; φG ∈ [π/3; 2π/3]).

The reachable workspace is mainly composed of two parts, which can be seen on Fig.5a as upper and lower

volumes. The upper volume can be described as the volume existing between a portion of the sphere of radius L

(superimposed on Fig. 6) for zG ∈ [L1; L] = [10; 10
√

2] and a surface that is going through the center O. The funnel

shape along the vertical z-axis indicate restricted displacement along x- and y-axis which can help the designer to make

a decision of considering or not this workspace area. The lower volume is a set of end-effector positions that can be

reached with flipped configurations, a priori complex to integrate and probably of lesser interest for the designer.

Further analysis shows that this lower volume exists only for α ∈ [π/3, π/3 + π]. If α is not in this interval, only the

upper volume remains.

The shape of the workspace gives the designer the available volume and in addition it indicates the existence of

workspace areas that are close but non-connected through a direct end-effector path. Once again, such information on

the mechanism has been obtained using only basic knowledge on the mechanism, namely the closed-loop equations.

5. Conclusions and outlook

This paper presents the use of higher-order continuation method for the preliminary design of compliant mecha-

nisms using the rigid-body replacement method. The method is general. It can be applied to any mechanism since

only the geometrical closed-loop equations are required. It results in continuous bifurcation diagrams revealing the

kinematic input-output relationships as well as the presence of parallel singularities, serial singularities, architectural

singularities and workspace boundaries. The advantage of the method is fourfold:

1. The bifurcation diagrams give the input-output coordinate relationships for a given end-effector path. This is

helpful in selecting the most appropriate mechanism working configuration.

2. The different possible joint velocity profiles for a given end-effector path are made visible. This is helpful in

selecting the joints to be actuated. Those with non-linear behavior can be interesting for particular actuators

such as piezoelectric actuators requiring mechanical amplification.

3. Singular configurations are identified which may be considered as candidates for singularity-based compliant

mechanism design [12]. Some of the ones identified for the 3–US mechanism have never been described in the

literature, to our best knowledge.
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Figure 6: 3D view of the reachable workspace (α = π/2; R = 10).
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4. The workspace boundary defines the exact volume within which the end-effector can move. The possible

presence of disconnected portions of the workspace which, despite mutual proximity, are not be connected by

admissible trajectories is detected.

A 3–US mechanism has been analyzed in order to illustrate the relevance of the method for the design of com-

pliant mechanisms. The proposed analysis clearly shows the mechanism’s properties and interests: a large reachable

workspace and particular kinematic behavior as screw motion and platform gyration. These latter are respectively

illustrated with their bifurcation diagrams and commented.

Future works are to consider sensitivity analysis, already provided by Diamant [51, 52], to give the designer

additional information on, for instance, the sensitivity of kinematic properties to manufacturing errors. This point is

currently under investigation.
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Appendix A. Diamanlab implementation for the 3–US residual equations

function Residual = R(obj ,U)

global Ck

%Input geometrical data

R=10; % mechanism radius

alpha =90* pi /180; %angle AiOBi expressed in radius

xw =0; yw =0; %fixed abcissa and ordinate for the centroid X of the platform

%The Diamanlab unknown U=(X,zw) is split as follows

zw=U(7); %Height of the centroid X of the platform , continuation parameter

X(1:6)=U(1:6); %output coordinates X

if isa(U,’Taylor ’)

Residual =Taylor(get(U,’order’),zeros(get(obj ,’neq ’) ,1));

else

Residual =zeros(get(obj ,’neq ’),1);

end

%Local geometrical parameters

L=2*R*sin(alpha /2); %leg chord

alpha1=alpha; alpha2=alpha; alpha3=alpha; %angles AiOBi (all equal , here )

%projection of the ith cord on the x- and y_axis , respectively

L1x=R*sin(alpha1 ); L1y =2*R*( sin(alpha1 /2))^2; %independent from zw

L2x=R*sin(alpha2 ); L2y =2*R*( sin(alpha2 /2))^2;

L3x=R*sin(alpha3 ); L3y =2*R*( sin(alpha3 /2))^2;

%Equation (2): Coordinates of B1

xB1=R-L1y*cos(X(2));

yB1=( L1x*cos(X(1))- L1y*sin(X(2))* sin(X(1)));

zB1=L1x*sin(X(1))+ L1y*sin(X(2))*cos(X(1));

%Equation (2): Coordinates of B2

xB2=(R-L2y*cos(X(4)))*cos (2*pi /3)-(L2x*cos(X(3))-L1y*sin(X(4))* sin(X(3)))* sin (2* pi /3);

yB2=( L2x*cos(X(3))- L2y*sin(X(4))* sin(X(3)))* cos (2*pi /3)+(R-L2y*cos(X(4)))* sin (2* pi /3);

zB2=L2x*sin(X(3))+ L2y*sin(X(4))*cos(X(3));

%Equation (2): Coordinates of B3

xB3=(R-L3y*cos(X(6)))*cos (4*pi /3)-(L3x*cos(X(5))-L3y*sin(X(6))* sin(X(5)))* sin (4* pi /3);

yB3=( L3x*cos(X(5))- L3y*sin(X(6))* sin(X(5)))* cos (4*pi /3)+(R-L3y*cos(X(6)))* sin (4* pi /3);

zB3=L3x*sin(X(5))+ L3y*sin(X(6))*cos(X(5));

%Distances between the spherical joint centers

d12=sqrt ((xB1 -xB2 )^2+(yB1 -yB2 )^2+(zB1 -zB2 )^2); %|| B1B2 ||

d23=sqrt ((xB3 -xB2 )^2+(yB3 -yB2 )^2+(zB3 -zB2 )^2); %|| B1B2 ||

d13=sqrt ((xB3 -xB1 )^2+(yB3 -yB1 )^2+(zB3 -zB1 )^2); %|| B1B3 ||

%Equation (1)

%Coordinates of the centroid G of the triangle B1B2B3

xG=( xB1+xB2+xB3 )/3; yG =(yB1+yB2+yB3 )/3; zG=( zB1+zB2+zB3 )/3;

%Calculation of the 6 components of the residual

%Constraint (3): || B1B2 ||=|| B2B3 ||=||B1B3 ||= sqrt (3)* R

Residual (1)= d12 -sqrt (3)* R; Residual (2)= d23 -sqrt (3)* R; Residual (3)= d13 -sqrt (3)* R;

%Constraint imposing G=X

Residual (4)=xG -xw; Residual (5)= yG -yw; Residual (6)= zG -zw;

end

Appendix B. Analytical computation of the bifurcation diagram related to the screw motion

Parameterization

The three legs behave identically during the mechanism screw motion. Only the first leg is therefore considered and we will

not designate in the following the leg number by a subscript index. The cartesian coordinates of point B as a function of the angles
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z
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(a) Maximal workspace of a leg for R = 10 and α =

π/2.

(b) Cylindrical coordinates of B.

Figure B.7: Parameterization of the leg end B and its workspace.

θ1 and θ2 (Fig. B.7b) are equal to:

OB =





















R − L2 cos (θ2)

L1 cos (θ1) − L2 sin (θ2) sin (θ1)

L1 sin (θ1) + L2 sin (θ2) cos (θ1)





















, (B.1)

with L1 = R sin (α) and L2 = 2R sin (α/2)2. If disconnected from the platform, the tip of the leg B can describe a truncated sphere of

radius 2R sin
(

α
2

)

around the axis of its first revolute joint (Figure B.7a). Cylindrical coordinates (r, θc, x) are used with the revolute

joint axis (O, x) defined as the cylindrical axis (Fig. B.7b). The cartesian coordinates of point B are thus also equal to:

OB =





















R + x

r cos (θc)

r sin (θc)





















=























R + x√
L2 − x2 cos (θc)√
L2 − x2 sin (θc)























, (B.2)

with x = −L2 cos (θ2) and L = 2R sin(α/2).

The altitude of the platform zG is equal to the third component of OB. Building analytically the bifurcation diagram requires

the derivation of the relationships between the angles θ1, θ2 and zG.

Analytical relationship between the altitude zG and the angle θ2

During the platform motion, the point B remains at a distance R from (O, z). The projection of B on the plane (O, x, y) lies

therefore on a circle of radius R and the relation between θc and x is:

R2 = (R + x)2
+

(√
L2 − x2 cos (θc)

)2

. (B.3)

Expressing θc in terms of x, yields the four solutions:

θc ∈














± arccos















√

x2 + 2R · x
x2 − L2















, π ± arccos















√

x2 + 2R · x
x2 − L2





























. (B.4)

with x , ±L which is guaranteed since x = −L2 cos (θ2) from (B.1) gives x ∈ [−L2, L2] and L2 < L. Using the relation x =

−L2 cos (θ2) in (B.4) gives:

zG =
√

L2 − x2 sin















± arccos















√

x2 + 2R · x
x2 − L2





























= ±L
√

1 − cos(θ2) (B.5)

which gives the analytical relation between zG and θ2.
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The derivative of zG with respect to θ2 is not defined for θ2 = 0, but a power series in θ2 = 0 indicates that:



























lim
θ2→0−

dzG

dθ2
= − L
√

2
,

lim
θ2→0+

dzG

dθ2
=

L
√

2
.
. (B.6)

with L = 2R sin
(

α

2

)

. This confirms the tangent discontinuity observed on the analytical bifurcation diagram of Fig. 3b.

Analytical relationship between the altitude zG and the angle θ1

The angle θ2 can be expressed as a function of zG from equation (B.5):

θ2 = arccos

(

1 −
z2

G

L2

)

, (B.7)

with L = 2R sin
(

α

2

)

. Using (B.7) in (B.1), one deduces:

zG = L1 sin (θ1) + L2 sin

(

arccos

(

1 −
z2

G

L2

))

cos (θ1) = L1 sin (θ1) + L2

√

1 −
(

1 −
z2

G

L2

)2

cos (θ1) . (B.8)

Four values of θ1 can be obtained as functions of zG:

θ1 ∈























2 arctan

























L1 ±
√

c(zG)2 + L2
1
− z2

G

c(zG) + zG

























, π − 2 arctan

























L1 ±
√

c(zG)2 + L2
1
− z2

G

c(zG) + zG















































(B.9)

for zG , ±
L
√

2L2
2
−L2

L2
with c(zG) = L2

√

1 −
(

1 − z2
G

L2

)2

, L1 = R sin (α), L2 = 2R sin (α/2)2. This allows us to build the second part of

the bifurcation diagram in Fig. 3b
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