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Abstract

Imaging neuroscience links human behavior to aspects of brain biology in ever-
increasing datasets. Existing neuroimaging methods typically perform either dis-
covery of unknown neural structure or testing of neural structure associated with
mental tasks. However, testing hypotheses on the neural correlates underlying
larger sets of mental tasks necessitates adequate representations for the observa-
tions. We therefore propose to blend representation modelling and task classifica-
tion into a unified statistical learning problem. A multinomial logistic regression
is introduced that is constrained by factored coefficients and coupled with an au-
toencoder. We show that this approach yields more accurate and interpretable
neural models of psychological tasks in a reference dataset, as well as better gen-
eralization to other datasets.

keywords: Brain Imaging, Cognitive Science, Semi-Supervised Learning, Sys-
tems Biology

1 Introduction

Methods for neuroimaging research can be grouped by discovering neurobiological structure or as-
sessing the neural correlates associated with mental tasks. To discover, on the one hand, spatial
distributions of neural activity structure across time, independent component analysis (ICA) is often
used [6]. It decomposes the BOLD (blood-oxygen level-dependent) signals into the primary modes
of variation. The ensuing spatial activity patterns are believed to represent brain networks of func-
tionally interacting regions [26]. Similarly, sparse principal component analysis (SPCA) has been
used to separate BOLD signals into parsimonious network components [28]. The extracted brain
networks are probably manifestations of electrophysiological oscillation frequencies [17]. Their
fundamental organizational role is further attested by continued covariation during sleep and anes-
thesia [10]. Network discovery by applying ICA or SPCA is typically performed on task-unrelated
(i.e., unlabeled) “resting-state” data. These capture brain dynamics during ongoing random thought
without controlled environmental stimulation. In fact, a large portion of the BOLD signal variation
is known not to correlate with a particular behavior, stimulus, or experimental task [10].

To test, on the other hand, the neural correlates underlying mental tasks, the general linear model
(GLM) is the dominant approach [13]. The contribution of individual brain voxels is estimated ac-
cording to a design matrix of experimental tasks. Alternatively, psychophysiological interactions
(PPI) elucidate the influence of one brain region on another conditioned by experimental tasks [12].
As a last example, an increasing number of neuroimaging studies model experimental tasks by train-
ing classification algorithms on brain signals [23]. All these methods are applied to task-associated
(i.e., labeled) data that capture brain dynamics during stimulus-guided behavior. Two important
conclusions can be drawn. First, the mentioned supervised neuroimaging analyses typically yield
results in a voxel space. This ignores the fact that the BOLD signal exhibits spatially distributed
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patterns of coherent neural activity. Second, existing supervised neuroimaging analyses cannot ex-
ploit the abundance of easily acquired resting-state data [8]. These may allow better discovery of the
manifold of brain states due to the high task-rest similarities of neural activity patterns, as observed
using ICA [26] and linear correlation [9].

Both these neurobiological properties can be conjointly exploited in an approach that is mixed
(i.e., using rest and task data), factored (i.e., performing network decomposition), and multi-
task (i.e., capitalize on neural representations shared across mental operations). The integra-
tion of brain-network discovery into supervised classification can yield a semi-supervised learn-
ing framework. The most relevant neurobiological structure should hence be identified for
the prediction problem at hand. Autoencoders suggest themselves because they can emulate
variants of most unsupervised learning algorithms, including PCA, SPCA, and ICA [15, 16].

Figure 1: Model architecture Linear
autoencoders find an optimized com-
pression of 79,941 brain voxels into n
unknown activity patterns by improving
reconstruction from them. The decom-
position matrix equates with the bottle-
neck of a factored logistic regression.
Supervised multi-class learning on task
data (Xtask) can thus be guided by un-
supervised decomposition of rest data
(Xrest).

Autoencoders (AE) are layered learning models that con-
dense the input data to local and global representations
via reconstruction under compression prior. They behave
like a (truncated) PCA in case of one linear hidden layer
and a squared error loss [3]. Autoencoders behave like a
SPCA if shrinkage terms are added to the model weights
in the optimization objective. Moreover, they have the
characteristics of an ICA in case of tied weights and
adding a nonlinear convex function at the first layer [18].
These authors further demonstrated that ICA, sparse au-
toencoders, and sparse coding are mathematically equiva-
lent under mild conditions. Thus, autoencoders may flex-
ibly project the neuroimaging data onto the main direc-
tions of variation.

In the present investigation, a linear autoencoder will
be fit to (unlabeled) rest data and integrated as a rank-
reducing bottleneck into a multinomial logistic regression
fit to (labeled) task data. We can then solve the com-
pound statistical problem of unsupervised data represen-
tation and supervised classification, previously studied in
isolation. From the perspective of dictionary learning, the
first layer represents projectors to the discovered set of ba-
sis functions which are linearly combined by the second
layer to perform predictions [20]. Neurobiologically, this
allows delineating a low-dimensional manifold of brain
network patterns and then distinguishing mental tasks by
their most discriminative linear combinations. Theoreti-
cally, a reduction in model variance should be achieved
by resting-state autoencoders that privilege the most neu-
robiologically valid models in the hypothesis set. Practi-
cally, neuroimaging research frequently suffers from data
scarcity. This limits the set of representations that can be
extracted from GLM analyses based on few participants. We therefore contribute a computational
framework that 1) analyzes many problems simultaneously (thus finds shared representations by
“multi-task learning”) and 2) exploits unlabeled data (since they span a space of meaningful config-
urations).

2 Methods

Data. As the currently biggest openly-accessible reference dataset, we chose resources from the
Human Connectome Project (HCP) [4]. Neuroimaging task data with labels of ongoing cognitive
processes were drawn from 500 healthy HCP participants (cf. Appendix for details on datasets). 18
HCP tasks were selected that are known to elicit reliable neural activity across participants (Table
1). In sum, the HCP task data incorporated 8650 first-level activity maps from 18 diverse paradigms
administered to 498 participants (2 removed due to incomplete data). All maps were resampled to a
common 60× 72× 60 space of 3mm isotropic voxels and gray-matter masked (at least 10% tissue
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probability). The supervised analyses were thus based on labeled HCP task maps with 79,941 voxels
of interest representing z-values in gray matter.

Cognitive Task Stimuli Instruction for participants
1 Reward Card game Guess the number of a mystery card for gain/loss of money2 Punish
3 Shapes Shape pictures Decide which of two shapes matches another shape geometrically
4 Faces Face pictures Decide which of two faces matches another face emotionally
5 Random Videos with objects Decide whether the objects act randomly or intentionally6 Theory of mind
7 Mathematics Spoken numbers Complete addition and subtraction problems
8 Language Auditory stories Choose answer about the topic of the story
9 Tongue movement

Visual cues
Move tongue

10 Food movement Squeezing of the left or right toe
11 Hand movement Tapping of the left or right finger
12 Matching Shapes with textures Decide whether two objects match in shape or texture
13 Relations Decide whether object pairs differ both along either shape or texture
14 View Bodies Pictures Passive watching
15 View Faces Pictures Passive watching
16 View Places Pictures Passive watching
17 View Tools Pictures Passive watching
18 Two-Back Various pictures Indicate whether current stimulus is the same as two items earlier

Table 1: Description of psychological tasks to predict.

These labeled data were complemented by unlabeled activity maps from HCP acquisitions of uncon-
strained resting-state activity [25]. These reflect brain activity in the absence of controlled thought.
In sum, the HCP rest data concatenated 8000 unlabeled, noise-cleaned rest maps with 40 brain maps
from each of 200 randomly selected participants.

We were further interested in the utility of the optimized low-rank projection in one task dataset
for dimensionality reduction in another task dataset. To this end, the HCP-derived network decom-
positions were used as preliminary step in the classification problem of another large sample. The
ARCHI dataset [21] provides activity maps from diverse experimental tasks, including auditory and
visual perception, motor action, reading, language comprehension and mental calculation. Analo-
gous to HCP data, the second task dataset thus incorporated 1404 labeled, grey-matter masked, and
z-scored activity maps from 18 diverse tasks acquired in 78 participants.

Linear autoencoder. The labeled and unlabeled data were fed into a linear statistical model com-
posed of an autoencoder and dimensionality-reducing logistic regression. The affine autoencoder
takes the input x, projects it into a coordinate system of latent representations z and reconstructs it
back to x′ by

z = W0x + b0 x′ = W1z + b1, (1)

where x ∈ Rd denotes the vector of d = 79,941 voxel values from each rest map, z ∈ Rn is the n-
dimensional hidden state (i.e., distributed neural activity patterns), and x′ ∈ Rd is the reconstruction
vector of the original activity map from the hidden variables. Further, W0 denotes the weight matrix
that transforms from input space into the hidden space (encoder), W1 is the weight matrix for back-
projection from the hidden variables to the output space (decoder). b0 and b1 are corresponding
bias vectors. The model parameters W0,b0,b1 are found by minimizing the expected squared
reconstruction error

E [LAE(x)] = E
[
‖x− (W1(W0x + b0) + b1)‖2

]
. (2)

Here we choose W0 and W1 to be tied, i.e. W0 = WT
1 . Consequently, the learned weights are

forced to take a two-fold function: That of signal analysis and that of signal synthesis. The first
layer analyzes the data to obtain the cleanest latent representation, while the second layer represents
building blocks from which to synthesize the data using the latent activations. Tying these processes
together makes the analysis layer interpretable and pulls all non-zero singular values towards 1.
Nonlinearities were not applied to the activations in the first layer.

Factored logistic regression. Our factored logistic regression model is best described as a variant
of a multinomial logistic regression. Specifically, the weight matrix is replaced by the product
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of two weight matrices with a common latent dimension. The later is typically much lower than
the dimension of the data. Alternatively, this model can be viewed as a single-hidden-layer feed-
forward neural network with a linear activation function for the hidden layer and a softmax function
on the output layer. As the dimension of the hidden layer is much lower than the input layer, this
architecture is sometimes referred to as a “linear bottleneck” in the literature. The probability of an
input x to belong to a class i ∈ {1, . . . , l} is given by

P (Y = i|x;V0,V1, c0, c1) = softmaxi(fLR(x)), (3)

where fLR(x) = V1(V0x + c0) + c1 computes multinomial logits and softmaxi(x) =
exp(xi)/

∑
j exp(xj). The matrix V0 ∈ Rdxn transforms the input x ∈ Rd into n latent com-

ponents and the matrix V1 ∈ Rnxl projects the latent components onto hyperplanes that reflect l
label probabilities. c0 and c1 are bias vectors. The loss function is given by

E [LLR(x,y)] ≈ 1

NXtask

NXtask∑
k=0

log(P (Y = y(k)|x(k);V0,V1, c0, c1)). (4)

Layer combination. The optimization problem of the linear autoencoder and the factored logistic
regression are linked in two ways. First, their transformation matrices mapping from input to the
latent space are tied

V0 = W0. (5)

We hence search for a compression of the 79,941 voxel values into n unknown components that
represent a latent code optimized for both rest and task activity data. Second, the objectives of the
autoencoder and the factored logistic regression are interpolated in the common loss function

L(θ, λ) = λLLR + (1− λ)
1

NXrest

LAE + Ω. (6)

In so doing, we search for the combined model parameters θ = {V0,V1, c0, c1,b0,b1} with
respect to the (unsupervised) reconstruction error and the (supervised) task detection. LAE is de-
vided by NXrest to equilibrate both loss terms to the same order of magnitude. Ω represents an
ElasticNet-type regularization that combines `1 and `2 penalty terms.

Optimization. The common objective was optimized by gradient descent in the SSFLogReg pa-
rameters. The required gradients were obtained by using the chain rule to backpropagate error
derivatives. We chose the rmsprop solver [27], a refinement of stochastic gradient descent. Rmsprop
dictates an adaptive learning rate for each model parameter by scaled gradients from a running av-
erage. The batch size was set to 100 (given much expected redundancy in Xrest and Xtask), matrix
parameters were initalized by Gaussian random values multiplied by 0.004 (i.e., gain), and bias
parameters were initalized to 0.

The normalization factor and the update rule for θ are given by

v(t+1) = ρv(t) + (1− ρ)
(
∇θf(x(t), y(t), θ(t))

)2
θ(t+1) = θ(t) + α

∇θf(x(t), y(t), θ(t))√
v(t+1) + ε

,

(7)

where f is the loss function computed on a minibatch sample at timestep t, α is the learning rate
(0.00001), ε a global damping factor (10−6), and ρ the decay rate (0.9 to deemphasize the magni-
tude of the gradient). Note that we have also experimented with other solvers (stochastic gradient
descent, adadelta, and adagrad) but found that rmsprop converged faster and with similar or higher
generalization performance.

Implementation. The analyses were performed in Python. We used nilearn to handle the large
quantities of neuroimaging data [1] and Theano for automatic, numerically stable differentiation
of symbolic computation graphs [5, 7]. All Python scripts that generated the results are accessible
online for reproducibility and reuse (http://github.com/banilo/nips2015).
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3 Experimental Results

Serial versus parallel structure discovery and classification. We first tested whether there is a
substantial advantage in combining unsupervised decomposition and supervised classification learn-
ing. We benchmarked our approach against performing data reduction on the (unlabeled) first half
of the HCP task data by PCA, SPCA, ICA, and AE (n = 5, 20, 50, 100 components) and learn-
ing classification models in the (labeled) second half by ordinary logistic regression. PCA reduced
the dimensionality of the task data by finding orthogonal network components (whitening of the
data). SPCA separated the task-related BOLD signals into network components with few regions
by a regression-type optimization problem constrained by `1 penalty (no orthogonality assumptions,
1000 maximum iterations, per-iteration tolerance of 10-8, α = 1). ICA performed iterative blind
source separation by a parallel FASTICA implementation (200 maximum iterations, per-iteration
tolerance of 0.0001, initialized by random mixing matrix, whitening of the data). AE found a code
of latent representations by optimizing projection into a bottleneck (500 iterations, same imple-
mentation as below for rest data). The second half of the task data was projected onto the latent
components discovered in its first half. Only the ensuing component loadings were submitted to
ordinary logistic regression (no hidden layer, `1 = 0.1, `2 = 0.1, 500 iterations). These serial two-
step approaches were compared against parallel decomposition and classification by SSFLogReg
(one hidden layers, λ = 1, `1 = 0.1, `2 = 0.1, 500 iterations). Importantly, all trained classifica-
tion models were tested on a large, unseen test set (20% of data) in the present analyses. Across
choices for n, SSFLogReg achieved more than 95% out-of-sample accuracy, whereas supervised
learning based on PCA, SPCA, ICA, and AE loadings ranged from 32% to 87% (Table 2). This
experiment establishes the advantage of directly searching for classification-relevant structure in the
fMRI data, rather than solving the supervised and unsupervised problems independently. This effect
was particularly pronounced when assuming few hidden dimensions.

n PCA + LogReg SPCA + LogReg ICA + LogReg AE + LogReg SSFLogReg
5 45.1 % 32.2 % 37.5 % 44.2 % 95.7%
20 78.1 % 78.2 % 81.0 % 63.2 % 97.3%
50 81.7 % 84.0 % 84.2 % 77.0 % 97.6%
100 81.3 % 82.2 % 87.3 % 76.6 % 97.4%

Table 2: Serial versus parallel dimensionality reduction and classification. Chance is at 5,6%.

Model performance. SSFLogReg was subsequently trained (500 epochs) across parameter
choices for the hidden components (n = 5, 20, 100) and the balance between autoencoder and
logistic regression (λ = 0, 0.25, 0.5, 0.75, 1). Assuming 5 latent directions of variation should yield
models with higher bias and smaller variance than SSFLogReg with 100 latent directions. Given the
18-class problem of HCP, setting λ to 0 consistently yields generalization performance at chance-
level (5,6%) because only the unsupervised layer of the estimator is optimized. At each epoch (i.e.,
iteration over the data), the out-of-sample performance of the trained classifier was assessed on 20%
of unseen HCP data. Additionally, the “out-of-study” performance of the learned decomposition
(W0) was assessed by using it as dimensionality reduction of an independent labeled dataset (i.e.,
ARCHI) and conducting ordinary logistic regression on the ensuing component loadings.

n = 5 n = 20 n = 100
λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Out-of-sample
accuracy 6.0% 88.9% 95.1% 96.5% 95.7% 5.5% 97.4% 97.8% 97.3% 97.3% 6.1% 97.2% 97.0% 97.8% 97.4%
Precision (mean) 5.9% 87.0% 94.9% 96.3% 95.4% 5.1% 97.4% 97.1% 97.0% 97.0% 5.9% 96.9% 96.5% 97.5% 96.9%
Recall (mean) 5.6% 88.3% 95.2% 96.6% 95.7% 4.6% 97.5% 97.5% 97.4% 97.4% 7.2% 97.2% 97.2% 97.9% 97.4%
F1 score (mean) 4.1% 86.6% 94.9% 96.4% 95.4% 3.8% 97.4% 97.2% 97.1% 97.1% 5.3% 97.0% 96.7% 97.7% 97.2%
Reconstr. error (norm.) 0.76 0.85 0.87 1.01 1.79 0.64 0.67 0.69 0.77 1.22 0.60 0.65 0.68 0.73 1.08
Out-of-study
accuracy 39.4% 60.8% 54.3% 60.7% 62.9% 77.0% 79.7% 81.9% 79.7% 79.4% 79.2% 82.2% 81.7% 81.3% 75.8%

Table 3: Performance of SSFLogReg across model parameter choices. Chance is at 5.6%.

We made three noteworthy observations (Table 3). First, the most supervised estimator (λ = 1)
achieved in no instance the best accuracy, precision, recall, or f1 scores on HCP data. Classification
by SSFLogReg is therefore facilitated by imposing structure from the unlabeled rest data. Confirmed
by the normalized reconstruction error (E = ‖x − x̂‖/‖x‖), little weight on the supervised term is
sufficient for good model performance while keeping E low and task-map decomposition rest-like.
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Figure 2: Effect of bottleneck in a 38-task classificaton problem Depicts the f1 prediction scores
for each of 38 psychological tasks. Multinomial logistic regression operating in voxel space (blue
bars) was compared to SSFLogReg operating in 20 (left plot) and 100 (right plot) latent modes
(grey bars). Autoencoder or rest data were not used for these analyses (λ = 1). Ordinary logistic
regression yielded 77.7% accuracy out of sample, while SSFLogReg scored at 94.4% (n = 20) and
94.2% (n = 100). Hence, compressing the voxel data into a component space for classification
achieves higher task separability. Chance is at 2, 6%.

Second, the higher the number of latent components n, the higher the out-of-study performance with
small values of λ. This suggests that the presence of more rest-data-inspired hidden components
results in more effective feature representations in unrelated task data. Third, for n = 20 and 100
(but not 5) the purely rest-data-trained decomposition matrix (λ = 0) resulted in noninferior out-of-
study performance of 77.0% and 79.2%, respectively (Table 3). This confirms that guiding model
learning by task-unrelated structure extracts features of general relevance beyond the supervised
problem at hand.

Individual effects of dimensionality reduction and rest data. We first quantified the impact of
introducing a bottleneck layer disregarding the autoencoder. To this end, ordinary logistic regression
was juxtaposed with SSFLogReg at λ = 1. For this experiment, we increased the difficulty of the
classification problem by including data from all 38 HCP tasks. Indeed, increased class separability
in component space, as compared to voxel space, entails differences in generalization performance
of ≈ 17% (Figure 2). Notably, the cognitive tasks on reward and punishment processing are among
the least predicted with ordinary but well predicted with low-rank logistic regression (tasks 1 and
2 in Figure 2). These experimental conditions have been reported to exhibit highly similar neural
activity patterns in GLM analyses of that dataset [4]. Consequently, also local activity differences (in
the striatum and visual cortex in this case) can be successfully captured by brain-network modelling.

We then contemplated the impact of rest structure (Figure 3) by modulating its influence (λ =
0.25, 0.5, 0.75) in data-scarce and data-rich settings (n = 20, `1 = 0.1, `2 = 0.1). At the beginning
of every epoch, 2000 task and 2000 rest maps were drawn with replacement from same amounts of
task and rest maps. In data-scarce scenarios (frequently encountered by neuroimaging practitioners),
the out-of-sample scores improve as we depart from the most supervised model (λ = 1). In data-rich
scenarios, we observed the same trend to be apparent.

Feature identification. We finally examined whether the models were fit for purpose (Figure 4).
To this end, we computed Pearson’s correlation between the classifier weights and the averaged
neural activity map for each of the 18 tasks. Ordinary logistic regression thus yielded a mean cor-
relation of ρ = 0.28 across tasks. For SSFLogReg (λ = 0.25, 0.5, 0.75, 1), a per-class-weight map
was computed by matrix multiplication of the two inner layers. Feature identification performance
thus ranged between ρ = 0.35 and ρ = 0.55 for n = 5, between ρ = 0.59 and ρ = 0.69 for n = 20,
and between ρ = 0.58 and ρ = 0.69 for n = 100. Consequently, SSFLogReg puts higher absolute
weights on relevant structure. This reflects an increased signal-to-noise ratio, in part explained by
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Figure 3: Effect of rest structure Model performance of SSFLogReg (n = 20, `1 = 0.1, `2 = 0.1)
for different choices of λ in data-scarce (100 task and 100 rest maps, hot color) and data-rich (1000
task and 1000 rest maps, cold color) scenarios. Gradient descent was performed on 2000 task and
2000 rest maps. At the begining of each epoch, these were drawn with replacement from a pool of
100 or 1000 different task and rest maps, respectively. Chance is at 5.6%.

Figure 4: Classification weight maps The voxel predictors corresponding to 5 exemplary (of 18
total) psychological tasks (rows) from the HCP dataset [4]. Left column: multinomial logistic re-
gression (same implementation but without bottleneck or autoencoder), middle column: SSFLogReg
(n = 20 latent components, λ = 0.5, `1 = 0.1, `2 = 0.1), right column: voxel-wise average across
all samples of whole-brain activity maps from each task. SSFLogReg a) puts higher absolute weights
on relevant structure, b) lower ones on irrelevant structure, and c) yields BOLD-typical local con-
tiguity (without enforcing an explicit spatial prior). All values are z-scored and thresholded at the
75th percentile.

the more BOLD-typical local contiguity. Conversely, SSFLogReg puts lower probability mass on
irrelevant structure. Despite lower interpretability of the results from ordinary logistic regression,
the salt-and-pepper-like weight maps were sufficient for good classification performance. Hence,
SSFLogReg yielded class weights that were much more similar to features of the respective training
samples for all choices of n and λ. SSFLogReg therefore captures genuine properties of task activity
patterns, rather than participant- or study-specific artefacts.
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Miscellaneous observations. For the sake of completeness, we informally report modifications of
the statistical model that did not improve generalization performance. a) Introducing stochasticity
into model learning by input corruption of Xtask deteriorated model performance in all scenarios.
Adding b) rectified linear units (ReLU) to W0 or other commonly used nonlinearities (c) sigmoid,
d) softplus, e) hyperbolic tangent) all led to decreased classification accuracies, probably due to
sample size limits. Further, f) “pretraining” of the bottleneck W0 (i.e., non-random initialization)
by either corresponding PCA, SPCA or ICA loadings did not exhibit improved accuracies, neither
did g) autoencoder pretraining. Moreover, introducing an additional h) overcomplete layer (100
units) after the bottleneck was not advantageous. Finally, imposing either i) only `1 or j) only `2
penalty terms was disadvantageous in all tested cases. This favored ElasticNet regularization chosen
in the above analyses.

4 Discussion and Conclusion

Using the flexibility of factored models, we learn the low-dimensional representation from high-
dimensional voxel brain space that is most important for prediction of cognitive task sets. From
a machine-learning perspective, factorization of the logistic regression weights can be viewed as
transforming a “multi-class classification problem” into a “multi-task learning problem”. The higher
generalization accuracy and support recovery, comparing to ordinary logistic regression, hold po-
tential for adoption in various neuroimaging analyses. Besides increased performance, these models
are more interpretable by automatically learning a mapping to and from a brain-network space. This
domain-specific learning algorithm encourages departure from the artificial and statistically less at-
tractive voxel space. Neurobiologically, brain activity underlying defined mental operations can be
explained by linear combinations of the main activity patterns. That is, fMRI data probably con-
centrate near a low-dimensional manifold of characteristic brain network combinations. Extracting
fundamental building blocks of brain organization might facilitate the quest for the cognitive prim-
itives of human thought. We hope that these first steps stimulate development towards powerful
semi-supervised representation extraction in systems neuroscience.

In the future, automatic reduction of brain maps to their neurobiological essence may leverage data-
intense neuroimaging investigations. Initiatives for data collection are rapidly increasing in neu-
roscience [22]. These promise structured integration of neuroscientific knowledge accumulating
in databases. Tractability by condensed feature representations can avoid the ill-posed problem
of learning the full distribution of activity patterns. This is not only relevant to the multi-class
challenges spanning the human cognitive space [24] but also the multi-modal combination with
high-resolution 3D models of brain anatomy [2] and high-throughput genomics [19]. The biggest
socioeconomic potential may lie in across-hospital clinical studies that predict disease trajectories
and drug responses in psychiatric and neurological populations [11].
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5 Appendix

Data. As the currently biggest openly-accessible reference dataset, we chose the Human Connectome Project
(HCP) resources [4]. Neuroimaging task data with labels of ongoing cognitive processes were drawn from
500 healthy HCP participants. 18 HCP tasks were selected that are known to elicit reliable neural activity
across participants. The task paradigms include 1) working memory/cognitive control processing, 2) incentive
processing, 3) visual and somatosensory-motor processing, 4) language processing (semantic and phonological
processing), 5) social cognition, 6) relational processing, and 7) emotional processing. All data were acquired
on the same Siemens Skyra 3T scanner. Whole-brain EPI acquisitions were acquired with a 32 channel head coil
(TR=720ms, TE=33.1ms, flip angle=52, BW=2290Hz/Px, in-plane FOV=280mm × 180mm, 72 slices, 2.0mm
isotropic voxels). The “minimally preprocessed” pipeline includes gradient unwarping, motion correction,
fieldmap-based EPI distortion correction, brain-boundary-based registration of EPI to structural T1-weighted
scans, nonlinear (FNIRT) registration into MNI space, and grand-mean intensity normalization. Activity maps
were spatially smoothed with a Gaussian kernel of 4mm (FWHM). A GLM was implemented by FILM from the
FSL suite with model regressors from convolution with a canonical hemodynamic response function and from
temporal derivatives. HCP tasks were conceived to modulate activity in a maximum of different brain regions
and neural systems. Indeed, at least 70% of the participants showed consistent brain activity in contrasts from
the task battery, which certifies excellent activity patterns covering extended parts of the brain [4]. In sum,
the HCP task data incorporated 8650 first-level activity maps from 18 diverse paradigms administered to 498
participants (2 removed due to incomplete data). All maps were resampled to a common 60x72x60 space of
3mm isotropic voxels and gray-matter masked (at least 10% tissue probability). The supservised analyses were
based on labeled HCP task maps with 79,941 voxels of interest representing z-values in gray matter.

These labeled data were complemented by unlabeled activity maps from HCP acquisitions of unconstrained
resting-state activity [25]. These reflect brain activity in the absence of controlled thought. In line with the goal
of the present study, acquisition of these data was specifically aimed at the study of task-rest correspondence.
From each participant, we included two time-series for left and right phase encoding with 1,200 maps of
multiband, gradient-echo planar imaging acquired during a period of 15min (TR=720 ms, TE=33.1 ms, flip
angle=52, FOV=280mm × 180mm, and 2.0mm isotropic voxels). Besides run duration, the task acquisitions
were identical to the resting-state fMRI acquisitions for maximal compatibility between task and rest data. We
here drew on “minimally preprocessed” rest data from 200 randomly selected healthy participants. PCA was
applied to each set of 1,200 rest maps for denoising by keeping only the 20 main modes of variation. In sum,
the HCP rest data concatenated 8000 unlabeled, noise-cleaned rest maps with 40 brain maps from each of 200
randomly selected participants.

We further evaluated whether the low-dimensional space learned in HCP task/rest data can be re-used as a
feature extraction step for learning classification models in an independent task dataset. These experiments
therefore probe the generality of the learned representation by assessing transfer learning effects. To this end,
the HCP-derived network decompositions were used as preliminary step in the classification problem of another
large sample. The ARCHI dataset [21] provides activity maps from diverse experimental tasks, including
auditory and visual perception, motor action, reading, language comprehension and mental calculation. 81
right-handed healthy participants (3 not included in present analyses due to incomplete data) without psychiatric
or neurological history participated in four fMRI sessions acquired under different experimental paradigms.
The functional maps were warped into the MNI space and resampled to isotropic 3mm resolution. Whole-brain
EPI data were acquired with the same Siemens Trio with a 32 channel head coil (TR=2400ms, TE=30ms, flip
angle=60, in-plane FOV=192mm × 192mm, 40 slices, 3.0mm isotropic voxels). Standard preprocessing was
performed with Nipype [14], including slice timing, motion correction, alignment, and spatial normalization.
Activity maps were spatially smoothed by a Gaussian kernel of 5mm (FWHM). Analogous to HCP data, the
second task dataset incorporated 1404 labeled, grey-matter masked, and z-scored activity maps from 18 diverse
tasks acquired in 78 participants.
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Figure 5: Weight maps of a same hidden factor ranging from unsupervised to supervised
regime One of the n factors from the hidden layer (W0) was plotted for the same data (full HCP
dataset) and the same model choices (n = 20, `1 = 0.1, `2 = 0.1) along a λ-grid between purely
unsupervised (λ = 0.0, top row) and purely supervised (λ = 1.0, bottom row) settings. As qual-
itative evidence, a slow transition from rest- to task-typical brain networks was observed in brain
space. Although difficult to quantify, rest network elements appear to get ’reassembled’ to latent
factors of the LR. This increased confidence that the improved model performance of rest-informed
fLR is not only an arbitrary effect of spatially smooth noise. All values are z-scored.
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