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The forest of mutations associated to a multitype branching forest is obtained by merging together all vertices of its clusters and by preserving connections between them. We first show that the forest of mutations of any mulitype branching forest is itself a branching forest. Then we give its progeny distribution and describe some of its crucial properties in terms the initial progeny distribution. We also obtain the limiting behaviour of the number of mutations both when the total number of individuals tends to infinity and when the number of roots tends to infinity. The continuous time case is then investigated by considering multitype branching forests with edge lengths. When mutations are non reversible, we give a representation of their emergence times which allows us to describe the asymptotic behaviour of the latters, when the ratios of successive mutation rates tend to 0.

Introduction

The homogeneous multitype branching hypothesis provides a relevant model of population growth in the absence of any competitive or environmental constraint. In particular, it is widely used in population genetics, when studying successive mutations whose accumulation leads to the development of cancer. Then determining the statistics of the emergence times of mutations, or evaluating the distribution of the population size of mutant cells at any time become important challenges. In the extensive literature on the subject, let us simply cite [START_REF] Iwasa | Population genetics of tumor suppressor genes[END_REF], [START_REF] Haeno | The evolution of two mutations during clonal expansion[END_REF], [START_REF] Durrett | Evolution of resistance and progression to disease during clonal expansion of cancer[END_REF], and [START_REF] Durrett | Population genetics of neutral mutations in exponentially growing cancer cell populations[END_REF].

This work is concerned with the mathematical study of mutations in multitype branching frameworks. We first focus on the problem of the total number of mutations under very general assumptions. This number is not a functional of the associated branching process and its study requires the complete knowledge of the multitype branching structure, that is the underlying plane forest. Then we show that the forest of mutations associated to any multitype forest, is itself a multitype branching forest whose progeny distribution can be explicitely computed. This result allows us to investigate the asymptotic behaviour of the number of mutations, when either the total population or the initial number of individuals tend to infinity.

When time is continuous, we are mainly interested in emergence times of new mutations in the non reversible case. The characterisation of these times requires a good knowledge of the corresponding multitype branching process and the main tool in this study consists in a recent extention of the Lamperti representation in higher dimensions. Emergence times are then expressed in terms of the underlying multivariate compound Poisson process, which allows us to obtain some accurate approximations of their law.

We start with some preliminaries on the coding of multitype branching forests by multivariate random walks in Section 2.1. Then we state and prove our results on the A cluster or a subtree of type i ∈ [d] of a d-type forest (f , c f ) ∈ F d is a maximal connected subgraph of (f , c f ) whose all vertices are of type i. Formally, t is a cluster of type i of (f , c f ), if it is a connected subgraph whose all vertices are of type i and such that either the root of t has no parent or the type of its parent is different from i. Moreover, if the parent of a vertex v ∈ v(t) c belongs to v(t), then c f (v) = i. Clusters of type i in t 1 are ranked according to the order of their roots in the breadth first search order of t 1 , see Figures 1 and2. Then if the number of clusters of type i is finite in t 1 , we continue by ranking clusters of type i in t 2 , and so on. Note that with this procedure, it is possible that clusters of t k , t k+1 , . . . , for some k, are not ranked. We denote by t 

k , . . . } is called the subforest of type i of (f , c f ). We denote by u (i) [START_REF] Alexander | Conditional distributions and waiting times in Multitype branching processes[END_REF] , u (i) 2 , . . . the elements of v(f (i) ), ranked in the breadth first search order of f (i) . The subforests of the 2-type forest given in Figure 1 are represented in Figure 2. 
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(2) Figure 2. The subforests of the 2-type forest given in Figure 1 with their deapth first search labeling.
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To any forest (f , c f ) ∈ F d , we associate the forest of mutations, denoted by ( f , cf ) ∈ F d , which is the forest of F d obtained by aggregating all the vertices of each subtree of (f , c f ) with a given type, in a single vertex with the same type, and preserving an edge between each pair of connected subtrees. An example is given in Figure 1.

For a forest (f , c f ) ∈ F d and u ∈ v(f ), when no confusion is possible, we denote by p i (u) the number of children of type i of u. For each i ∈ [d], let n i ∈ Z + ∪ {∞} be the number of vertices in the subforest f (i) of (f , c f ). Then let us define the d-dimensional chain x (i) = (x i,1 , . . . , x i,d ), with length n i and whose values belong to the set Z d , by x

(i) 0 = 0 and if n i ≥ 1, (2.1) x i,j n+1 -x i,j n = p j (u (i) n+1 ) , if i = j and x i,i n+1 -x i,i n = p i (u (i) n+1 ) -1 , 0 ≤ n ≤ n i -1 , where (u (i) n ) n≥1
is the labeling of the subforest f (i) in its own breadth first search order. Note that the chains (x i,j n ), for i = j are nondecreasing whereas

(x i,i n ) is a downward skip free chain, i.e. x i,i n+1 -x i,i n ≥ -1, for 0 ≤ n ≤ n i -1. Besides, if n i is finite, then n i = min{n : x i,i n = min 0≤k≤n i x i,i k }.
Let us also mention that from Theorem 2.7 of [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF], when trees of (f , c f ) are finite, the data of the chains x (1) , . . . , x (d) together with the sequence of ranked roots of (f , c f ), allow us to reconstruct this forest.

Let us now apply this coding to multitype branching forests. Let ν := (ν 1 , . . . , ν d ), where ν i is some distribution on Z d + . We consider a branching process with progeny distribution ν, that is a population of individuals which reproduce independently of each other at each generation. Individuals of type i give birth to n j children of type j ∈ [d] with probability ν i (n 1 , . . . , n d ). For i, j ∈ [d], we denote by m ij the mean number of children of type j, given by an individual of type i, i.e.

m ij = (n 1 ,...,n d )∈Z d + n j ν i (n 1 , . . . , n d ) .
We say that ν is non singular if there is i ∈

[d] such that ν i (n : n 1 + • • • + n d = 1) < 1. The matrix M = (m ij ) is said to be irreducible if for all i, j, m ij < ∞ and there exists n ≥ 1 such that m (n) ij > 0, where m (n)
ij is the ij entry of the matrix M n . If moreover the power n does not depend on (i, j), then M is said to be primitive. In the latter case, according to Perron-Frobenius theory, the spectral radius ρ of M is the unique eigenvalue which is positive, simple and with maximal modulus. If ρ ≤ 1, then the population will become extinct almost surely, whereas if ρ > 1, then with positive probability, the population will never become extinct. We say that ν is subcritical if ρ < 1, critical if ρ = 1 and supercritical if ρ > 1. We sometimes say that µ is irreducible, primitive, (sub)critical or supercritical, when this is the case for M . By multitype branching forest with progeny distribution ν, we mean a sequence with a finite (deterministic) or infinite number of independent multitype branching trees with progeny distribution ν. A multitype branching forest will be considered as a random variable defined on the probability space (Ω, F, P ) and with values in F d . To any multitype branching forest F , we associate the random sequences

X = {X (i) , i ∈ [d]}, where X (i) = {(X i,1 n , . . . , X i,d n ), 0 ≤ n ≤ n i },
which are constructed as in (2.1). It has been proved in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF], Theorem 3.1 that if F is a primitive and (sub)critical branching forest with a finite number of trees, then X (i) , i ∈ [d] are independent random walks whose step distribution νi is defined by

(2.2) νi (k 1 , . . . , k d ) := ν i (k 1 , . . . , k i-1 , k i + 1, k i+1 , . . . , k d ) , for all (k 1 , . . . , k d ) ∈ Z d
+ , and stopped at the smallest solution (N 1 , . . . , N d ) of the system

(2.3) x j + d i=1 X i,j (N i ) = 0 , j ∈ [d] .
In this equation, N i is the total number of vertices of type i in F and x i is the total number of trees in this forest whose root is of type i. We will say that F is issued from x = (x 1 , . . . , x d ). Note that the variables N i are random, whereas the x i 's are deterministic.

2.2. The total number of mutations and its asymptotics. A mutation of type i, is the birth event of an individual of type i from an individual of any type j = i. The aim of this section is to study the evolution of mutations in a multitype branching forest. Our main result asserts that the forest of mutations, that is the forest obtained by merging together all the vertices of a same cluster, is itself a branching forest if and only if for each i ∈ [d], one of the following conditions is satisfied,

(A i ) m ii ≤ 1 , (B i )
m ii > 1 and for all j = i, m ij = 0.

Moreover, its progeny distribution can be expressed in terms of this of the initial forest. Note that the branching property of the forest of mutations is intuitively clear. In the neutral case, it has been pointed out in [START_REF] Taïb | Branching processes and neutral evolution[END_REF].

Theorem 

k i = 0}
, which is defined by

(2.4) µ i (k) = n≥1 n -1 ν * n i (k + (n -1)e i ) , k ∈ S i , if (A i ) is satisfied. If (B i
) is satisfied, then µ i is the Dirac mass at 0. Moreover µ satisfies the following properties:

1. Let M = ( mij ) be the mean matrix of µ and let r ≥ 1. Then µ i admits moments of order r if and only if either for all j = i, m ij = 0 or ν i admits moments of order r and m ii < 1. In the latter case, for all i, j such that i = j, mij =

m ij 1-m ii . 2. Assume that mij < ∞, for all i, j ∈ [d]. Then M is irreducible if and only if M is irreducible. If M is primitive, then so is M . The converse is not true. 3.
Assume that M is primitive, then M is subcritical (resp. critical, resp. supercritical) if and only if M is subcritical (resp. critical, resp. supercritical). If for some i ∈ [d], none of the conditions (A i ) and (B i ) holds, then there is j = i such that individuals of type i in F give birth to an infinite number of children of type j with positive probability. Therefore F is not a branching forest in our sense.

Proof.

Since the result only bears on the progeny law of forests, we do not loose any generality by assuming that F has an infinite number of trees. Then the stochastic processes X = {X (i) , i ∈ [d]} obtained from F , as in (2.1) are defined on the whole integer line {0, 1, . . . }. Note that their definition slighly extends the definition which is given in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF]. Indeed, without any more assumption on ν, trees of the forest can be infinite, so that the process X is not necessarily a coding of the forest, that is, if some trees are infinite then it is not possible to reconstruct the whole forest from X and the sequence of its roots. However, it is straightforward to check that X (i) , i ∈ [d] are independent random walks and that the step distribution of X (i) is νi , which is defined in (2.2). In particular, the law of X characterizes this of F . Now, let us consider the forest of mutations F . By construction, this forest is composed of an infinite number of independent and identically distributed trees. Hence, in order to show that F is a branching forest, it suffices to show that its trees are branching trees.

Let us denote by {X (i) , i ∈ [d]} the process which is defined from F as in (2.1). Let i ∈ [d] and assume first that (A i ) holds. Then we define the first passage time process of the random walks

X i,i , i ∈ [d] by, τ (i) k = inf{n ≥ 0 : X i,i n = -k} , k ≥ 0 .
Since m ii ≤ 1, then from the law of large numbers, lim inf n→∞ X i,i n = -∞, a.s., so that τ (i) k is almost surely finite for all k ≥ 0 and lim k→∞ τ

(i) k = ∞, a.s. Moreover, for all i, j ∈ [d], X i,j k = X i,j (τ (i) k ) , k ≥ 0 .
Indeed, the effect of the time change by τ (i) k is to merge all vertices of a same cluster of type i into a single vertex. Note that X (i) , i ∈ [d] are independent random walks.

Assume with no loss of generallity that the root of the first tree in F has type 1, then a slight extention Theorems 2.7 and 3.1 in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF] to any progeny distribution, allows us to show that this first tree is coded by the processes (X

(i) k , 0 ≤ k ≤ N i ), i ∈ [d], where (N 1 , . . . , N d ) is the smallest solution of the system (2.5) r j + d i=1 X i,j (N i ) = 0 , j ∈ [d] ,
and (r 1 , . . . , r d ) = (1, 0, . . . , 0). Note that in our case, N i can be infinite. This extended notion of smallest solution is defined in [START_REF] Chaumont | Breadth first search coding of multitype forests with application to Lamperti representation[END_REF], see Lemma 1 therein. This coding result implies that the first tree in F can be reconstructed from the processes (X

(i) k , 0 ≤ k ≤ N i ), i ∈ [d]
and applying part 3. of Theorem 3.1 in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF], we obtain that this tree is a branching tree whose progeny distribution µ = (µ i , i ∈ [d]) is given by

µ i (k 1 , . . . , k d ) = P (X (i) 1 = (k 1 , . . . , k i-1 , -1, k i+1 , k d )) , (k 1 , . . . , k d ) ∈ S i .
Then in order to make this law explicit in terms of ν, we apply the Ballot theorem for cyclically exangeable sequences due to Takács [START_REF] Takács | The probability law of the busy period for two types of queuing processes[END_REF]. Since conditionally on X i,j , i = j, X i,i is downward skip free with cyclical exchangeable increments, we have for all (k 1 , . . . , k d ) ∈ S i , P (X

(i) 1 = (k 1 , . . . , k i-1 , -1, k i+1 , . . . , k d )) = n≥1 P (X (i) n = (k 1 , . . . , k i-1 , -1, k i+1 , . . . , k d ), τ (i) 1 = n) = n≥1 1 n P (X (i) n = (k 1 , . . . , k i-1 , -1, k i+1 , . . . , k d )) ,
which gives (2.4) from (2.2). If (B i ) holds, then by definition, individuals of type i in F are all leaves and hence, X i,j ≡ 0, for all j = i and X i,i n = -n, for all n ≥ 0, see (2.1). In this case, the conclusion follows immediately.

Let us now prove properties 1-3 of µ. First note that for all i = j, m ij = 0 if and only if mij = 0. Then let r ≥ 1, assume that µ i admits moments of order r and that there is

j = i such that m ij = E(X i,j 1 ) > 0. The variable τ (i)
1 is a stopping time in the filtration generated by X (i) to which the increasing random walk X i,j is adapted. Then by applying Theorem 5.4 in [START_REF] Gut | Stopped random walks. Limit theorems and applications[END_REF], we obtain that E((X i,j 1 ) r ) < ∞ and E((τ

(i) 1 ) r ) < ∞. In particular τ (i) 1 < ∞, a.s. Now by definition, the random walk (X i,i n ) can be written as X i,i n = Y i,i n -n, where (Y i,i n ) is an increasing random walk. Since Y i,i (τ (i) 1 ) = τ (i) 1 -1 and E((τ (i) 1 ) r ) < ∞, we have E |Y i,i (τ (i)
1 )| r < ∞ and by applying Theorem 5.4 in [START_REF] Gut | Stopped random walks. Limit theorems and applications[END_REF] again, we obtain that

E |Y i,i 1 | r < ∞, and hence E |X i,i 1 | r < ∞.
So we have proved that ν admits moments of order r. Then it follows from the definition of τ (i) 1

and from Lemma 3.1 in [START_REF] Kesten | Two renewal theorems for general random walks tending to infinity[END_REF] that E((τ

(i) 1 ) r ) < ∞ implies lim n→∞ X i,i n = -∞,
and hence m ii < 1, from the law of large numbers.

Conversely, if m ij = 0 for all j = i, then mij = 0 for all j = i and µ i is the Dirac mass at 0, so it admits moments of order r. Now assume that ν i admits moments of order r and m ii < 1. Then it follows directly from Lemma 3.1 in [START_REF] Kesten | Two renewal theorems for general random walks tending to infinity[END_REF] that E((τ

(i) 1 ) r ) < ∞. Moreover from Theorem 5.2 in [10], E(X i,j (τ (i) 1 ) r ) < ∞,
for all j = i, which means that µ i admits moments of order r. If ν i admits moments of order 1 and m ii < 1, then it follows from the optional stopping theorem applied to the martingale (X i,j n -nE(X i,j 1 )), that E(X i,i (τ

(i) 1 )) = -1 = E(X i,i 1 )E(τ (i) 1 ) = (m ii -1)E(τ (i) 1 
), and when i = j, E(X i,j (τ

(i) 1 )) = E(X i,j
1 )E(τ

(i) 1 ) = m ij
1-m ii and part 1 is proved. If M is irreducible, then for all i, there is j = i such that mij > 0. From part 1., ν i admits moments of order 1 and m ii < 1, for all i. In this case,

M + ∆ 2 = ∆ 1 M , where ∆ 1 = diag( 1 1 -m ii ) and ∆ 2 = diag( m ii 1 -m ii ) ,
and we derive from this identity that M is irreducible. Conversely if M is irreducible, then for all i, there is j = i such that m ij > 0 and hence mij > 0. Since by assumption, mij < ∞, for all i, j, then from part 1., m ii < 1, and M + ∆ 2 = ∆ 1 M holds. We derive from this identity that M is irreducible. Now if M is primitive, then it is irreducible and as before,

m ii < 1 for all i ∈ [d]. Moreover, M = (I -diag(m ii ))M + diag(m ii ) .
Therefore M is primitive. The converse cannot be true since there are nonnegative, irreducible matrices whose main diagonal is zero and which are not primitive. We can find distributions ν such that it is the case for M and hence for (I -diag(m ii ))M . If m ii > 0, for all i, then it follows from general theory of nonnegative matrices that M = (I -diag(m ii ))M + diag(m ii ) becomes primitive, see [START_REF] Seneta | Non-negative matrices and Markov chains[END_REF]. Let us now prove 3. Recall that by definition, since M is primitive, µ i admits moments of order 1 for all i ∈ [d]. Then from the same arguments as in part 2.,

M = (I -diag(m ii ))M + diag(m ii ) and m ii < 1 for all i ∈ [d].
Assume that M is surpercritical, then there is a positive vector x such that M x > x. Therefore, (I -diag(m ii ))M x > (I -diag(m ii ))x and since m ii < 1, we obtain M x > x. Hence M is supercritical. Conversely, assume that M is supercritical. Then there is a positive vector x such that M x > x, so that

M x = (I -diag(m ii ))M x + diag(m ii )x > (I - diag(m ii ))x + diag(m ii )x = x and thus M is supercritical. Then the identity M = (I -diag(m ii ))M + diag(m ii ) allows us to derive that M is critical if and only if this is the case for M . Finally assume that m ii > 1 for some i ∈ [d]. If m ij = 0, for all j = i, then it is clear that individuals of type i in F are leaves. If m ij > 0, for some j ∈ [d]
, then since clusters of type i are supercritical, some of them have infinitely many children with positive probability. Conditionally to this event, such a cluster produces almost surely infinitely many children of type j, which is equivalent to say that individuals of type i in F give birth to an infinite number of children of type j with positive probability. 2

Let us now consider a multitype branching forest F with progeny distribution ν, with a finite number of trees and let

Z n = (Z (1) n , . . . , Z (d) n ), n ≥ 0 be the associated branching process, that is for each i ∈ [d], Z (i)
n is the total number of individuals of type i present in F at generation n. For x = (x 1 , . . . , x d ) ∈ Z d + , we denote by P x the law on (Ω, F) under which F is issued from x. In particular, P x (Z 0 = x) = 1. Then the next result gives the law of the total number of mutations in the forest F , that is the number of mutations up to the last generation whose rank is the extinction time, T := inf{n : Z n = 0}. For i, j ∈ [d], let us denote by M i the total number of mutations of type i in F , up to time T and by M ij the total number of mutations of type j produced by individuals of type i. In particular, M ii = 0 and M i and M ij satisfy the relations

M j = d i=1 M ij , j ∈ [d].
Note that if ν is primitive and supercritical, then P x (T = ∞) > 0 for all x ∈ Z d + , so that under P x , M i and M ij are infinite with positive probability, for some i, j ∈ [d]. We also emphasize that M i and M ij are not functionals of the branching process (Z n ).

Corollary 2.2. Assume that

(A i ) or (B i ) holds for all i ∈ [d]. Then for all integers x i , n i , k ij , i, j ∈ [d], such that x i ≥ 0, n i = -k ii , for i = j, k ij ≥ 0, and for all j ∈ [d], n j = x j + i =j k ij , P x (M 1 = n 1 -x 1 , . . . , M d = n d -x d , M ij = k ij , ∀i = j) = det(K) n1 . . . nd d i=1 µ * n i i (k i1 , . . . , k i(i-1) , 0, k i(i+1),...,k id ),
where µ i is defined in Theorem 2.1 and

µ * 0 i = δ 0 , ni = n i ∨ 1, K is the matrix (-k ij ) i,j
to which we removed the line i and the column i for all i such that n i = 0.

Proof.

This result is a direct consequence of Theorem 1.2 in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF] and Theorem 2.1 applied to the forest of mutations F . Indeed, it suffices to note that x i +M i corresponds to the total number of individuals of type i in F . Note however that Theorem 1.2 in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF] is proved only in the case where ν is primitive and (sub)critical. But using the coding which is presented in Section 2.1 and appyling Lemma 1 in [START_REF] Chaumont | Breadth first search coding of multitype forests with application to Lamperti representation[END_REF], we can check that it is still valid in the general case by following along the lines the proof which is given in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF]. 2

If for some i ∈ [d], none of the conditions (A i ) and (B i ) holds, then the definition of the vector of mutation sizes (M 1 , . . . , M d ) still makes sense. In this case, it is possible to obtain its law by extending Theorem 2.1 to branching forests whose progeny laws give mass to infinity. Note also that Corollary 2.2 can be considered as an extension of Theorem 1 in [START_REF] Bertoin | The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations[END_REF], where a similar formula is given in the neutral case.

We now turn our attention to the asymptotic behaviour of the number of mutations, when the total population is growing to infinity. Our first result is concerned with the critical case and is a direct consequence of Proposition 2 in [START_REF] Penisson | Various ways of conditioning multitype Galton-Watson processes[END_REF] and Theorem 2.1. If M is primitive, then we denote by u and v the unique right and left positive eigenvectors of M which are associated to the eigenvalue 1 and normalized by u.1 = u.v = 1. Recall that, for a multitype branching forest F , when no confusion is possible, N i denotes the total population of type i in F and M i denotes the total number of mutations of type i in F . Note also that when ν is primitive and critical, then (A i ) necessarily holds for all i ∈ [d], so that from Theorem 2.1, the forest of mutations F associated to F is a branching forest with progeny distribution µ defined by (2.4).

Corollary 2.3. Let F be a branching forest with a non singular, primitive and critical progeny distribution ν. Assume that for all i ∈ [d], µ i admits moments of order d + 1. If moreover M is primitive and the covariance matrices Σ i , Σ i of ν i and µ i , respectively are positive definite. Then m ii < 1, for all i ∈ [d] and there are constants

C 1 , C 2 > 0 such that for all x 0 ∈ Z d + , lim n→∞ n d/2+1 P x 0 (M i = n(1 -m ii )v i , i ∈ [d]) = C 1 x 0 .u , lim n→∞ n d+1 P x 0 (M i = n(1 -m ii )v i , N i = nv i , i ∈ [d]) = C 2 x 0 .u .
Proof. Since by assumption, M is primitive, then for all i, there is j = i such that mij > 0, and hence m ij > 0. Therefore, from part 1. of Theorem 2.1, m ii < 1, for all i. Moreover, from our assumptions and part 3. of Theorem 2.1, µ is critical. Besides, it is plain that M is non singular. Then conditions of Proposition 2 in [START_REF] Penisson | Various ways of conditioning multitype Galton-Watson processes[END_REF] are satisfied for the multitype branching process associated to F and the first assertion follows with ū and v, the normalized, positive right and left eigenvectors of M associated to the eigenvalue 1. Then recall from the proof of part 3. of Theorem 2.1 that M = (I -diag(m ii ))M + diag(m ii ). We derive from this identity that ū = u and v = cv(I -diag(m ii )), where c = u • v(I -diag(m ii )) -1 and the first assertion follows.

The proof of the second assertion follows the same lines as the proof of Proposition 2 in [START_REF] Penisson | Various ways of conditioning multitype Galton-Watson processes[END_REF]. In this case, since the number of mutations is taken into account together with the total number of individuals, a 2d-dimensional random walk is involved in the proof, which explains that the rate of convergence in now d + 1. 2 Note that the constants C 1 and C 2 can be made explicit in terms of the distributions ν and µ by properly exploiting the proof of Proposition 2 in [START_REF] Penisson | Various ways of conditioning multitype Galton-Watson processes[END_REF].

Through the next result we focus on the asymptotic behaviour of the number of mutations in a branching forest when the initial number of individuals x = (x 1 , . . . , x d ) tends to infinity along some given direction.

Theorem 2.4. Let F (x) be any family of multitype branching forests defined on the space (Ω, F, P ), indexed by x ∈ Z d + and such that for each x, F (x) has progeny distribution ν and is issued from x. For i ∈ [d], let N i (x) (resp. M i (x)) be the total number of individuals (resp. of mutations) of type i in F (x). Assume that ν is primitive and

let w ∈ Z d + \ {0}. 1. If ν is critical, then lim n→∞ N i (nw) n = ∞ and lim n→∞ M i (nw) N i (nw) = 1 -m ii , in probability. 2. If ν is subcritical, then lim n→∞ N i (nw) n = c i (w) and lim n→∞ M i (nw) n = w i + (1 -m ii )c i (w) , in probability, where c i (w) := d k=1 w k (I -M ) -1 ki . In any case, m ii < 1, for all i ∈ [d].
Proof. In order to prove our result, it suffices to construct some particular family of forests F (x), such that for each x, F (x) has progeny distribution ν and is issued from x ∈ Z d + , and to show that the limits in the statement hold.

Recall the coding of multitype branching forests which is presented at the end of Section 2.2 and let X (i) = {X i,j , j ∈ [d]} be d independent random walks whose respective step distributions are νi , i ∈ [d] defined in (2.2). Then for each x ∈ Z d + , we construct a forest F (x) such that F (x) is encoded by the random walks X (i) , i ∈ [d] and contains exactly x i trees whose root is of type i. This construction is possible in the primitive, (sub)critical case, thanks to part 3. of Theorem 3.1 in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF].

Then N i (x) and X (i) , i ∈ [d], satisfy identity (2.3). Moreover, for k = i, the number of mutations of type i issued from an individual of type k is X k,i (N k (x)), so that the total number of mutations of type i is

M i (x) = k =i X k,i (N k (x)) = -x i -X i,i (N i (x)) .
We derive from Lemma 2.2 in [START_REF] Chaumont | Coding multitype forests: application to the law of the total population of branching forests[END_REF], that if

x 1 , x 2 ∈ Z d + are such that x 1 ≤ x 2 , then the couple of random variables (N i (x 2 ) -N i (x 1 ), X i,i (N i (x 2 ) -X i,i (N i (x 1 ))) is inde- pendent of process ((N i (x), X i,i (N i (x))), x ≤ x 1 )
and has the same law as (N i (x 2x 1 ), X i,i (N i (x 2 -x 1 )). Therefore, for any w ∈ Z d + , ((N i (nw), X i,i (N i (nw)), n ≥ 0) is a bivariate random walk whose step distribution is the law of (N i (w), X i,i (N i (w)).

Let Z = (Z (1) , . . . , Z (d) ) be the branching process associated to F (w). Then by definition of N i (w), we have

N i (w) = ∞ n=0 Z (i) n . But E w (Z n ) = wM n , so that E w (Z (j) n ) = d i=1 w i m (n)
ij and since ν is primitive, we have from Frobenius Theorem for primitive matrices, m [START_REF] Athreya | Branching Processes[END_REF]. So we have proved that E(N i (w)) < ∞ if and only if ν is subcritical. Moreover, if ν is subcritical, then I -M is invertible and it follows from the above expressions that

(n) ij ∼ u i v j ρ n , see Theorem 1, Section V.2 in
E(N i (w)) = d i=1 w i (I -M ) -1 ij .
Then assertions 1. and 2. follow directly from the law of large numbers.

Finally, since ν and µ are primitive, by definition, they admit moments of order 1 and we derive from part 1. of Theorem 2.1 that m ii < 1, for all i ∈ Then this individual dies at the same time it gives birth. We emphasize that in this model, the probability for the population to become extinct does not depend on the rates λ i . This model is represented as a plane forest with edge lengths, see Figure 3. (In each sibling, we rank individuals of type 1 to the left, then individuals of type 2, and so on.) Such a forest will be called a multitype branching forest with edge lengths issued from x = (x 1 , . . . , x d ), with progeny distribution ν := (ν 1 , . . . , ν d ) and reproduction rates (λ 1 , . . . , λ d ). By construction, its discrete time skeleton is a multitype branching (plane) forest, as defined in the previous section, with progeny distribution ν, which is independent from the edge lengths. Edge lengths are independent between themselves and the length of an edge issued from a vertex of type i follows an exponential distribution with parameter λ i . We emphasize that the total number of individuals and the total number of mutations in a multitype branching forest with edge lengths are the same as in its discrete skeleton. Hence, the results of the previous section can be applied in the present setting.

Given a branching forest with edge lengths, as defined above, we denote by Z = (Z (1) , . . . , Z (d) ) the corresponding multitype branching process, that is for t ≥ 0 and i ∈

[d], Z (i)
t is the number of individuals of type i at time t in the population. (Since no confusion is possible, for the branching process we have kept the same notation as in discrete time.) The process Z is a Z d + -valued continuous time Markov process which satisfies the branching property, i.e., for λ ∈ R d + , t ≥ 0 and x, y ∈ Z d + ,

E x+y (e -λZt ) = E x (e -λZt )E y (e -λZt ) , where P x is the law under which the forest is issued from x. In particular, Z 0 = x, P xa.s. The process Z actually contains much less information than the original branching forest. In order to preserve the essential part of this information, we need to decompose Z as in the following definition. Definition 3.1. For i = j, we denote by Z i,j t the total number of individuals of type j whose parent has type i and who were born before time t. For i = j, the definition of Z i,i t is the same, except that to this number we add the number of individuals of type i at time 0 and we subtract the number of individuals of type i who died before time t.

The processes Z i,j whose definition should be clear from the example given in Figure 3 will play a crucial role in our continuous time model. A more formal definition can be found in Section 4.2 of [START_REF] Chaumont | Breadth first search coding of multitype forests with application to Lamperti representation[END_REF]. The interest of these processes is the following straightforward decomposition of the branching process Z = (Z (1) , . . . , Z (d) ):

(3.6) Z (j) t = d i=1 Z i,j t , j ∈ [d] .
Our model bears on a Lamperti type representation of these processes. According to Lamperti representation, any one dimensional branching process can be expressed as a Lévy process time changed by some integral functional. In this subsection, we will recall from [START_REF] Chaumont | Breadth first search coding of multitype forests with application to Lamperti representation[END_REF] the extension of this transformation to multitype, continuous time, discrete valued branching processes. The latter involves time changed multidimensional compound Poisson processes which we now introduce.

Since our models of evolution are only concerned with mutations, individuals of type i having exactly one child of type i do not present any interest. Hence we can assume without loss of generality that

ν i (e i ) = 0, for all i ∈ [d].
Then let X = (X (1) , . . . , X (d) ), where X (i) , i ∈ [d] are d independent Z d -valued compound Poisson processes. We assume that X (i) 0 = 0 and that X (i) has rate λ i and jump distribution νi which has been defined in (2.2). In particular, with the notation X (i) = (X i,1 , . . . , X i,d ), the process X i,i is a Z-valued, downward skip free, compound Poisson process, i.e. ∆X i,i t = X i,i t -X i,i t-≥ -1, t ≥ 0, with X 0-= 0 and for all i = j, the process X i,j is an increasing compound Poisson process. We emphasize that in this definition, some of the processes X i,j , i, j ∈ [d] can be identically equal to 0.

The following extension of the Lamperti representation to multitype branching processes can be found in [START_REF] Chaumont | Breadth first search coding of multitype forests with application to Lamperti representation[END_REF], see also [START_REF] Caballero | Affine processes on R n + × R n and multiparameter time changes[END_REF] for the case of continuous state multitype branching processes. Theorem 3.2. Let us consider a multitype branching forest with edge lengths issued from x = (x 1 , . . . , x d ) ∈ Z d + , with progeny distribution ν := (ν 1 , . . . , ν d ) and reproduction rates (λ 1 , . . . , λ d ). Then the processes Z i,j , i, j ∈ [d] introduced in Definition 3.1 admit the following representation:

(3.7) Z i,j t =      X i,j t 0 Z (i) s ds , t ≥ 0 , if i = j, x i + X i,i t 0 Z (i) s ds , t ≥ 0 , if i = j,
where the processes,

X (i) = (X i,1 , X i,2 , . . . , X i,d ) , i = 1, . . . , d ,
are independent Z d + valued compound Poisson processes, with jump distribution (ν 1 , . . . , νd ) and rates (λ 1 , . . . , λ d ). In particular from (3.6) and (3.7), the multitype branching process Z admits the following representation,

(3.8) (Z (1) 
t , . . . , Z

t ) = x + d i=1 X i,1 t 0 Z (d) 
, t ≥ 0 .

3.2.

Further results on asymptotics of mutations. For i ∈ [d] and t ≥ 0, we will denote by M i,t the total number of mutations of type i which occured up to time t. The definition of this quantity is illustrated on Figure 3. Let us also define a cluster of type i as the subtree corresponding to the descendence of type i of an individual of type i which is either a root or an individual whose parent as a type different from i. Then x i +M i,t corresponds to the number of clusters of type i in the forest truncated at time t.

In Proposition 3.4, we describe the asymptotic behaviour of M i,t , as t tends to ∞ in the case where the progeny distribution ν is primitive and supercritical. To this aim, we will need the joint representation of M i,t together with the number Z (i) t of individuals of type i at time t which is presented in Proposition 3.3.

Proposition 3.3. Recall from Section 3.1 the definition of the compound Poisson pro- cesses X i,j , i, j ∈ [d]. Then for any x = (x 1 , . . . , x d ) ∈ Z d + , under P x , the stochastic process Z (i) t , M i,t fulfills the following representation, Z (i) t , M i,t = x i + d k=1 X k,i t 0 Z (k) u du , d k=1,k =i X k,i t 0 Z (k) u du , t ≥ 0.
Proof. This result is a direct consequence of the representation which is recalled in Theorem 3.2. Indeed, recall from Section 3.1 the definition of Z i,j , then the number of mutations of type i up to time t is

M i,t = k =i Z k,i t .
The result follows from identity (3. 

= 6, Z (1) t 
= 3, Z 1,1 t = -2, Z 1,2 t = 5, Z 2,1 t = 8, Z 2,2 t = -2, and M 1,t = 8, M 2,t = 5. (2) t 
Let's us now turn to the limiting behavior of M i,t , as t tends to infinity. The next result is concerned with the case where ν is primitive and supercritical. It allows us to evaluate the number of mutations which occured up to time t (or equivalently the number of clusters in the forest truncated at time t), when t is large.

Let us define the matrix A = Λ(M -I), where Λ = diag(λ i ). If M is primitive, then so is A and it follows from Perron-Frobenius theory that the eigenvalues ρ i , i ∈ [d] of A can be arranged so that ρ 1 > Re(ρ 2 ) ≥ • • • ≥ Re(ρ d ). Moreover, ν is subcritical, critical or supercritical according as ρ 1 < 0, ρ 1 = 0 or ρ 1 > 0. Then a well known result due to [START_REF] Athreya | Some results on multitype continuous time Markov branching processes[END_REF], see also Theorem 2, p. 206 in [START_REF] Athreya | Branching Processes[END_REF] asserts that when ν is non singular and primitive, there exists a nonnegative random variable W such that for all i ∈

[d], lim t→∞ e -ρ 1 t Z (i) t = v i W , a.s., (3.9) 
where v i is the i-th coordinate of the normalized left eigenvector associated with ρ 1 . Proposition 3.4. Assume that ν is non singular, primitive and supercritical. Then

for all i ∈ [d], lim t→∞ e -ρ 1 t M i,t = K i W, a.s.,
where

K i = v i (1 + (1 -m ii )(λ i ρ 1 ) -1 ).
Proof. We derive from Proposition 3.3 that,

Z (i) t -M i,t = X i,i t 0 Z (i)
u du , a.s.

On the other hand, in the supercritical case, ρ 1 is strictly positive. Hence it follows from (3.9) that t 0

Z (i) u du ∼ ρ -1 1 W v i e ρ 1 t , a.s., as t → ∞.
Then the desired result is a consequence of the latter equivalence and the law of large numbers applied to the compound Poisson process X i,i . 2

Under conditions of Propositon 3.4, assume moreover that for some i ∈

[d], K i is positive, that is m ii < 1 + λ i ρ 1 ,
and that for some j, P e j (W > 0) = 1. Then using Proposition 3.4, we can compare the asymptotic behaviour of the number of mutations prior to t with this of Z (i) t , under P e j , that is

(3.10) M i,t ∼ K i Z (i)
t , P e j -a.s., as t → ∞. Regarding the condition P e j (W > 0) = 1, note that Theorem 2, p. 206 in [START_REF] Athreya | Branching Processes[END_REF] also asserts that P e k (W > 0) > 0, for some (hence for all) k ∈ [d], if and only if

(3.11) E(ξ ij log ξ ij ) < ∞, for all i, j ∈ [d],
where (ξ i1 , . . . , ξ id ) is a random vector with law ν i . Moreover, 1 -P e k (W > 0) corresponds to the probability of extinction, when the forest is issued from e k .

3.3. Emergence times of mutations. In this section, we shall assume that mutations are not reversible, that is for all i = 1, . . . , d -1, individuals of type i can only have children of type i or i+1. In particular ν is not irreducible. Moreover when giving birth, individuals of type i = 1, . . . , d -1 have at least one child of type i with probability one, and have children of type i + 1 with positive probability. These conditions can be explicited in terms of the progeny distribution ν i as follows (3.12)

   ν i (k) > 0 ⇒ k j = 0, for j / ∈ {i, i + 1}, k∈Z d + :k i =0 ν i (k) = 0 and k∈Z d + :k i+1 =0 ν i (k) < 1.
We are interested in the waiting time until an individual of type i first emerges in the population, that is

τ i := inf{t ≥ 0 : Z (i) t ≥ 1} .
The problem of determining a general expression for the law of τ i is quite challenging. As far as we know, there is no explicit expression for this law in terms of the progeny distribution and the reproduction rates. Various results in this direction can be found in [START_REF] Serra | On the Waiting Time to Escape[END_REF], [START_REF] Serra | Dynamics of escape mutants[END_REF], [START_REF] Durrett | Evolution of resistance and progression to disease during clonal expansion of cancer[END_REF] and [START_REF] Alexander | Conditional distributions and waiting times in Multitype branching processes[END_REF] for instance. Most of them provide approximations of this law, using martingale convergence theorems [START_REF] Durrett | Evolution of resistance and progression to disease during clonal expansion of cancer[END_REF] or through numerical methods for the inversion of the generating function [START_REF] Alexander | Conditional distributions and waiting times in Multitype branching processes[END_REF]. In Proposition 3.5 we first give a relationship between the successive emergence times τ 2 , τ 3 , . . . in terms of the underlying compound Poisson process in the Lamperti representation of Z. We also characterize the joint law under P e i-1 of the time τ i and the number of individuals of type i -1 at this time. In Theorem 3.7 we derive an approximation of the time τ i , under P e 1 , as the mutation rate of type k increases faster than that of type k -1, for all k = 3, . . . , i. Then in Corollary 3.8 we focus on a case where these law can be explicited.

In the following developments, we use the notation of Section 3.1 from which we recall the Lamperti representation of the multitype branching process Z = (Z (1) , . . . , Z (d) ) in terms of the compound Poisson processes X (i) . Let us also introduce a few more notation. For i, j ∈ [d], we denote by λ i,j the parameter of the compound Poisson process X i,j , that is λ i,j := λ i 1 -k∈Z d + :k j =0 νi (k) . Note that from our assumptions (3.12), for all i = 1, . . . , d -1, λ i,i+1 > 0 and for j / ∈ {i, i + 1}, λ i,j = 0, that is X i,j is identically equal to 0. In particular, λ i = λ i,i + λ i,i+1 , for i ≤ d -1 and λ d = λ d,d . The parameter λ i,i+1 will be call the mutation rate of type i + 1. For i ≥ 2, let γ i := inf{t : X i-1,i t ≥ 1} be the time of the first jump by the process X i-1,i and note that this time is exponentially distributed with parameter λ i-1,i . Proposition 3.5. Assume that (3.12) holds and define Z 0,1 as the process identically equal to 1 and set τ 1 = 0.

1. For i = 2, . . . , d, the emergence time τ i of type i admits the following representation under P e 1 , (3.13)

τ i = τ i-1 + γ i 0 1 X i-1,i-1 s + Z i-2,i-1 κ i-1 (s)
ds, P e 1 -a.s., where κ i-1 is the right continuous inverse of the functional t → t 0 Z (i-1) s ds, i.e. κ i-1 (t) = inf{s > 0 :

s 0 Z (i-1) u du > t}. 2.
Under P e i-1 , the joint law of the emergence time τ i of type i together with the number of individuals of type i -1 in the population at time τ i admits the following representation, θ k > t , for all t > 0 .

(3.14) (τ i , Z (i-1) τ i ) (d) = γ i 0 ds 1 + X i-1,i-1 s , 1 + X i-1,i-1 γ i . 3. Let us define θ k = γ k 0 1 X k-
Proof. Since X i,j is identically equal to 0 whenever j / ∈ {i, i + 1}, then under P e 1 , the representation (3.8) admits the simpler form (3.16)

(Z (1) t , . . . , Z (d) t ) = e 1 + X 1,1 t 0 Z (1) s ds , X 2,2 t 0 Z (2) s ds + X 1,2 t 0 Z (1) s ds , . . . , X d,d t 0 Z (d) s ds + X d-1,d t 0 Z (d-1) s ds .
In particular, for i = 2, . . . , d,

Z (i) t = X i,i t 0 Z (i) s ds + X i-1,i t 0 Z (i-1) s ds , t ≥ 0.
Since X i,i 0 = 0, for i ≥ 2, we see that the time τ i corresponds to the first hitting time of level 1 by the process t →

X i-1,i t 0 Z (i-1) s ds , that is (3.17) τ i = κ i-1 (γ i ),
where γ i has been defined as the time of the first jump of the process X i-1,i . For t such that κ i-1 (t) < ∞, we have t =

κ i-1 (t) 0 Z (i-1) s ds, so that dt = Z (i-1) κ i-1 (t) dκ i-1 (t), and 
since κ i-1 (0) = τ i-1 , we obtain κ i-1 (t) = τ i-1 + t 0 ds Z (i-1) κ i-1 (s) = τ i-1 + t 0 ds X i-1,i-1 s + X i-2,i-1 κ i-1 (s) 0 Z (i-2) u du . (3.18)
The latter identity together with (3.17) prove identity (3.13).

The second part of the proposition is easily derived from the same arguments. More specifically, it follows from (3.17) and the following identities

Z (i-1) t = 1 + X i-1,i-1 t 0 Z (i-1) s ds and κ i-1 (t) = t 0 ds 1 + X i-1,i-1 s , t ≥ 0 , which hold P e i-1 -a.s.
Independence between the variables θ k , k ≥ 2 is a direct consequence of the independence between the processes X (i) , i ∈ [d]. We derive from the representation of τ i in part 1. of this proposition that (3.19) Note that the law of θ k or equivalently, the law of τ k under P e k-1 can be made explicit in some instances through its Laplace transform, see Corollary 3.8 below.

τ i = i k=2 γ k 0 1 X k-1,k-1 s + X k-2,k-1 κ k-1 (s) 0 Z (k-2) u du ds, a.s. Note that since κ k-1 (0) = τ k-1 , then from (3.17), for all k ≥ 2, κ k-1 (0) 0 Z (k-2) u du = γ k-1 , so that by definition of γ k-1 , (3.20) X k-2,k-1 κ k-1 (0) 0 Z (k-2) u du = X k-2,k-1 γ k-1 ≥ 1, a.s. Besides, since s → X k-2,k-1 κ k-1 ( 
For the remainder of this section we will assume moreover that at each mutation, individuals of type i do not give birth to more than one child of type i + 1 in a same litter. More specifically, assumptions (3.12) are replaced by,

(3.21)    ν i (k) > 0 ⇒ k i+1 = 0 or 1 and k j = 0, for j / ∈ {i, i + 1}, k∈Z d + :k i =0 ν i (k) = 0 and k∈Z d + :k i+1 =0 ν i (k) < 1 .
In particular, under these assumptions, the process X i,i+1 is a standard Poisson process. Then we will need the next lemma in order to derive our main result on the estimation of the time τ i , as the mutation rates λ k-1,k , k = 2, . . . , d grow faster. Lemma 3.6. Assume that (3.21) holds, let k ≥ 3 and fix λ 1,2 > 0, then

P e 1 X k-2,k-1 κ k-1 (γ k ) 0 Z (k-2) u du = 1 -→ 1 , as λ n-2,n-1 /λ n-1,n → 0, for n = 3, . . . , k. (3.22)
increase very fast. It would interesting to study the asymptotic behavior of τ i , when λ k,k λ k+1,k+1 → 0, that is when the intrinsic reproduction rates increase very fast. This assumption also fits to the model of cancer, since mutations are always more sensitive to proliferate. 

λ k-2,k-1 λ k-1,k → 0, for k = 3, . . . , i.
Besides, the expectation of τ i fulfills the following approximation:

E e 1 (τ i ) ∼ i k=2 E(θ k ) , as λ k-2,k-1 λ k-1,k → 0, for k = 3, . . . , i. Proof. Since s → X k-2,k-1 κ k-1 (s) 0 Z (k-2) u du
are increasing processes, then from (3.20),

P e 1 -almost surely on the set {X k-2,k-1 κ k-1 (γ k ) 0 Z (k-2) u du = 1}, we have γ k 0 1 X k-1,k-1 s + X k-2,k-1 κ k-1 (s) 0 Z (k-2) u du ds = γ k 0 1 X k-1,k-1 s + 1 ds .
Hence it follows from Lemma 3.6 that for fixed λ 1,2 > 0, as λ n-2,n-1 /λ n-1,n → 0, for all n = 3, . . . , k,

γ k 0 1 X k-1,k-1 s + 1 ds -1 γ k 0 1 X k-1,k-1 s + X k-2,k-1 κ k-1 (s) 0 Z (k-2) u du ds P -→ 1 ,
and the first part of the theorem is easily derived from this convergence and (3.13) (or equivalently (3.19)).

In order to prove the second part, let us first set But for any p, q ≥ 1, such that p -1 + q -1 = 1, we have from Holder inequality E(θ k 1 A c k ) ≤ E(θ p k ) 1/p P (A c k ) 1/q . Moreover, we clearly have E(θ p k ) 1/p ∼ 1/λ k-1,k , as λ k-1,k → ∞. Hence, (3.27) is satisfied thanks to Lemma 3.6. 2

H k := γ k 0 1 X k-1,k-1 s + X k-2,k-1
We end this section with an example where the distribution of τ i can be estimated a bit more specifically. We consider the case of binary fission with mutations, where each individual of type i can give birth to either two individuals of type i or one individual of type i and one individual of type i + 1. In particular, all jumps of Z i,i have size 1 and X i,i is a Poisson process with parameter λ i,i . Corollary 3.8. With the above assumtions, the law of τ i can be specified as follows.

1.

Under P e i-1 , the Laplace transform of τ i is expressed as,

E e i-1 (e -ατ i ) = λ i-1,i n≥0 λ n i-1,i-1 n k=0 (α k + • • • + α n + ᾱn+1 )
, α ≥ 0 , where α 0 = 0, α k = α k(k+1) and ᾱk = λ i-1 + α k , for k ≥ 1. 2. The expectation of τ i is given by E e i-1 (τ i ) = 1 λ i-1,i λ i-1,i-1 ln λ i-1 λ i-1,i . In particular, for fixed λ 1,2 > 0, under P e 1 , the expectation of τ i fulfills the following approximation:

E e 1 (τ i ) ∼ i k=2 λ -2
k-1,k , as Under P e i-1 , X i-1,i-1 is a standard Poisson process with parameter λ i-1,i-1 starting at 0. So if we denote by (J n ) n≥1 the sequence of jump times of X i-1,i-1 and set J 0 = 0, then developing the expression E e Then coming back to expression (3.28), we obtain with the convention that 0 k=1 = 0,

E e i-1 (e -ατ i ) = λ i-1,i n≥0 λ n i-1,i-1 0≤x 1 ≤•••≤x n+1 e -( ᾱn+1 x n+1 + n k=1 α k x k ) dx 1 . . . dx n+1 ,
where α 1 , . . . , α n , ᾱn+1 are defined in the satement. (Here we used the fact that λ i-1 = λ i-1,i + λ i-1,i-1 .) The computation of the integral is easily done.

Then using again part 2. of Proposition 3.5, we obtain the expectation of τ i under P e i-1 , after easy computations, E e i-1 (τ i ) = +∞ 0 dxλ i-1,i e -λ i-1,i x x 0 e -λ i-1,i-1 s k≥0 (λ i-1,i-1 s) k (k + 1)! ds = 1 λ i-1,i λ i-1,i-1 ln λ i-1 λ i-1,i .

  k , . . . the sequence of clusters of type i in (f , c f ). The forest f (i) := {t

[d]. 2 3.

 2 When continuous time is involved 3.1. The Lamperti representation. Let us now consider a d type population which is composed at time t = 0, of x i individuals of type i ∈ [d] and whose dynamics in continuous time behave according to a branching model. More specifically, at any time, all individuals in the population live, give birth and die independently of each other. Once it is born, any individual of type i ∈ [d] gives birth after an exponential time with parameter λ i > 0 to n j individuals of type j ∈ [d] with probability ν i (n 1 , . . . , n d ).

  , then inequality (3.15) is a direct consequence of identities (3.19) and (3.20). 2
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 37 Assume that (3.21) holds. Recall the definition of θ k in Proposition 3.5 and let us fix λ 1,2 > 0, then under P e 1 ,

1 κ

 1 ds and A k := {X k-2,k-Then from(3.13), E e 1 (τ i ) = i k=2 E e 1 (H k ), so it suffices to prove that for all k = 2, . . . , i,(3.26) E e 1 (H k ) ∼ E(θ k ), as λ n-2,n-1 /λ n-1,n → 0, for n = 3, . . . , k. Observe that E e 1 (H k ) = E(θ k 1 A k ) + E e 1 (H k 1 A c k ). Moreover, E e 1 (H k 1 A c k ) ≤ E(θ k 1 A c k ). Then to obtain (3.26), it is enough to prove that (3.27) E(θ k 1 A c k ) E(θ k )→ 0, as λ n-2,n-1 /λ n-1,n → 0, for n = 3, . . . , k.

λ k- 2 ,k- 1 λ

 21 k-1,k → 0, for k = 3, . . . , i.Proof. From part 2. of Proposition 3.5, for all β ≥ 0,E e i-1 (e -ατ i ) = E e i-1,i x dx . (3.28)

=

  e -(α+λ i-1,i-1 )x + n≥1 e -λ i-1,i-1 x (λ i-1,i-1 x) ) ) n! x n dx 1 . . . dx n = e -(α+λ i-1,i-1 )x + n≥1 λ n i-1,i-1 e -(λ i-1,i-1 + α n+1 ) dx 1 . . . dx n .

  2.1. Let F be any multitype branching forest with progeny distribution ν = (ν 1 , . . . , ν d ) and denote by F the associated forest of mutations. Assume that for all i ∈ [d], one of the conditions (A i ) or (B i ) holds. Then F is a multitype branching forest with progeny distribution µ = (µ 1 , . . . , µ d ) on S i := {k ∈ Z d + :

  7) in Theorem 3.2. 2
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	t=0
	Figure 3. A two type forest with edge lengths issued from x = (2, 2).
	Vertices of type 1 (resp. 2) are represented in black (resp. grey). At time
	t,
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  +1 ds, for k ≥ 2.Then the random variables θ k , k ≥ 2 are independent and for i = 2, . . . , d,

		s	1,k-1
			i
	(3.15)	P e 1 (τ i > t) ≤ P
			k=2

We conclude from Theorem 3.7. 2

Proof. First set γ

(1)

= 2, P e 1 -a.s.) So from (3.17), we have showed that

k-1 } .

The event {τ k < τ

k-1 } means that before the first time when an individual of type k appears in the population, there has been only one birth of type k -1. From the Markov property applied at time τ k-1 , we have

The support in the integral of (3.24) is included in the set {z : z k-1 = 1}, so from (3.23), (3.24) and the Lebesgue theorem of dominated convergence, all we need to prove is

k-1 ) = 1, since in the first case Z k-2,k-1 is identically equal to 0, so that τ

k-1 = ∞, P z -a.s. and in the second case, τ k = 0, P z -a.s.) Let z be such that z k-1 = 1. Without loss of generality we can assume that z i ≥ 1, for i = 1, . . . k -2. For i = 1, . . . k -1, let us denote by U i the first time that the lineage of one of the z k-i initial individuals of type k -i gives birth to an individual of type k -i + 1. Then from the branching property, under P z , the r.v.'s U i are independent and from part 2. of Proposition 3.5, U i has the same law as

k-1 } , which imply the inequality,

k-1 ) . But when λ n-2,n-1 /λ n-1,n → 0, for n = 3, . . . , k, the parameter λ 1,2 > 0 being fixed, we necessarily have lim λ n-1,n = ∞, for n = 3, . . . , k. Hence γ k /γ k-1 converges in probability toward 0, 1/Y

(2)

), for n = 3, . . . , k -1 converge in probability toward +∞. Therefore, the left hand side of the above inequality tends to 1, which proves (3.25) and the lemma is proved. 2

In the following theorem, the assumption λ k-1,k λ k,k+1 → 0 is quite adapted to several biological models such as cancer growth, for instance. Indeed, cancer is often the result of a series of successive mutations, [START_REF] Iwasa | Population genetics of tumor suppressor genes[END_REF], [START_REF] Durrett | Evolution of resistance and progression to disease during clonal expansion of cancer[END_REF], [START_REF] Durrett | Population genetics of neutral mutations in exponentially growing cancer cell populations[END_REF]. Each new mutation is itself more unstable than the previous ones, and in particular, the successive mutation rates can