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Abstract—Simulations that require massive amounts of
computing power and generate tens of terabytes of data
are now part of the daily lives of scientists. Analyzing
and visualizing the results of these simulations as they are
computed can lead not only to early insights but also to
useful knowledge that can be provided as feedback to the
simulation, avoiding unnecessary use of computing power.
Our work is aimed at making advanced visualization tools
available to scientists in a user-friendly, web-based environ-
ment where they can be accessed anytime from anywhere.

In the context of turbulent combustion for example,
visualization is used to understand the coupling between
turbulence and the turbulent mixing of scalars. Although
isosurface generation is a useful technique in this scenario,
computing and rendering isosurfaces one at a time is ex-
pensive and not particularly well-suited for such a web-
based framework. In this paper we propose the use of a
summary structure, called contour tree, that captures the
topological structure of a scalar field and guides the user
in identifying useful isosurfaces. We have also designed
an interface which has been integrated with a web-based
simulation monitoring system, that allows users to interact
with and explore multiple isosurfaces.

I. INTRODUCTION

In many scientific disciplines, the use of simulations
is commonplace. As computing power and storage be-
come more abundant, these simulations become more
complex and data intensive. Simulations of turbulent lifted
flames [?] for example, can take millions of CPU-hours
and result in multiple terabytes of data. Running these
simulations on resources such as the TeraGrid is very
costly, and due to the high demand, cycles are scarce.
Thus it is important that scientists be given the ability to
analyze these results as they are computed, which can not
only lead to early insights, but also to useful knowledge
that can help them steer the simulation, to remedy potential
errors and avoid wasting cycles, or zoom into areas of
potential interest.

But doing so poses important challenges. First and
foremost, it is not feasible to move the simulation results
around since the I/O costs are prohibitive. It is thus
important to push as much of the analysis and visualization

as possible to the high-performance computing (HPC)
environment. This requires a tighter integration between
the simulations and analysis, and the creation of workflows
that support both tasks in an HPC environment. Another
challenge comes from the complexity of the required
analysis. Because complex simulations deal with large
numbers of parameters, a potentially infinite number of
summaries can be generated to help users explore different
aspects of the results. Because computing these summaries
is itself an expensive task, both due to the size of the raw
data and complexity of summarization techniques, there is
an increasing need for efficient techniques that help users
quickly identify useful regions of the data and specific
summaries to explore.

In this paper, we explore a web-based analysis and
visualization solution to this problem in the context of
turbulent combustion simulations. To understand the cou-
pling between turbulence and the turbulent mixing of
scalars, such as temperature and species concentrations,
it is important to generate isosurfaces that represent those
interactions. Isosurfaces are one of the most widely-used
visualization techniques and efficient to compute: the
complexity of standard marching cubes, the most popular
isosurface algorithm, is linear [?]. Although it is possible
to efficiently generate an isosurface for a given isovalue,
computing and rendering a large number of isosurfaces,
as required in this scenario, is expensive and incurs a
high network overhead for transferring the results to a
web browser. This makes such a solution impractical for
a web-based analysis tool. To address this problem, we
propose the use of a summary structure, called contour
tree, that captures the topological structure of a scalar
field and guides the user at identifying useful (important)
isosurfaces, see Section III. We have also designed a user
interface that allows users to interact with and effectively
explore multiple isosurfaces (see Section IV). By applying
the contour tree algorithm to find isosurface values in situ
with the computation (Section III), it is possible to selec-
tively browse through multiple visualizations and quickly
understand the complex data being generated during the



Figure 1. eSimMon system architecture.

simulation. The contour tree tool has been integrated with
the eSimMon dashboard system [?], which provides an
environment for scientists to monitor, manage and explore
simulation results (see Section II-A). In Section V, we
present a case study where we show that integrating the
dashboard with the interactive contour tree tool leads to
an effective and efficient means to explore the turbulent
combustion simulation results.

II. SYSTEM OVERVIEW

We have implemented and integrated our techniques
with the eSimMon system. As Figure 1 shows, the central
component of the eSimMon system is a Data store: a
database that stores all of the information and collects
all the provenance information about the simulations,
including the lineage of data products. The Workflow
Management System (WMS) orchestrates the jobs and
populates the data store with the job information. The
processes launched by the workflow management system
may use the Adaptable I/O System (ADIOS) [?], which
is a componentization of the I/O layer. The eSimMon
Portal allows scientists to access their simulations from
any location using the Web through a browser. We have
added the process to compute the contour tree and the
isosurface images so it could be launched by the WMS
and developed a graphical interface which was added to
the set of tools available through the eSimMon Portal.

A. The eSimMon Dashboard System

Monitoring petascale simulations typically requires that
a diverse group of scientists look at the same massive
amount of data from different angles. The eSimMon dash-
board provides an overview of the status of a simulation. It
is a common access point to the simulation data for many
different types of users, including simulation scientists,
theoretical scientists, experimentalists, performance ana-
lysts, and visualization experts. These researchers not only
have different expertise, but they also use different tools
to monitor, analyze and visualize their data. The purpose
of the eSimMon dashboard is to facilitate management,
analysis, sharing and visualization of simulation data. In
other words, the goal is to provide a single, easy-to-use
graphical user interface for several scientists to converge

and collaborate on. To tackle ease of use, the workflow-
dashboard system attempts to hide implementation details
from its users and allow them to focus on scientific
discovery. It does so using Web 2.0 technology [?] on the
front end and provenance tracking in the back end during
workflow execution.

The eSimMon is composed of two main sections: ma-
chine monitoring and simulation monitoring. The machine
monitoring (home) page displays job queues from avail-
able U.S. Department Of Energy and National Energy
Research Scientific Computing computers. In this view,
users can also grant others access to their simulations runs.
Thereafter, they can view the status of their runs (eligible,
running, or blocked) as well as of their collaborators. Users
also see a list of their past runs. From this first page,
scientists can access the simulation monitoring section,
shown in Figure 2, by clicking on a specific run or
shot. For a running job, they see images of variables
updating themselves as they are being generated by the
workflow. When a job is no longer running, images from
all time stamps are combined into a movie instead. In
this latter case, users have more options to visualize and
manipulate their data. They can annotate movies or make
electronics notes on simulations. Other capabilities include
visualization of the data as movies, or vector graphs,
provenance information (e.g., full path of the raw data),
downloading of the processed and/or raw data, and vi-
sualization of the source code or environment information
(system provenance). There are different types of analytics
tools currently integrated in the dashboard. These tools are
built-in or incorporated as hooks into back end analysis
software. 3D modules are also being integrated to provide
more complex visualizations and interactivity.

The provenance information is key to link processes,
output data and input data [?]. The recorded information
in our system includes the history about all data transfor-
mations (lineage of data), all operations executed (process
provenance), and environment information combined with
source code of executed simulations (system provenance)
and all actions of the users on the data (activity prove-
nance) [?].

Provenance allows users to analyze and visualize the
data by focusing on the scientific variables calculated in



Figure 2. eSimMon dashboard. Tree on the left shows the scientific
variables that can be dragged onto the canvas and shown as movies. The
right hand side window is a vector graphics of a 1D variable in Flash
that can be edited.

the simulation, not by filename(s). To accurately connect
user’s actions and requests on the front-end to simu-
lation data eSimMon uses the provenance recorded in
the dashboard database during the simulation monitoring
workflow [?] execution. The recorded information includes
the history about all data transformations (lineage of data),
all operations executed (process provenance), and environ-
ment information combined with source code of executed
simulations (system provenance) and all actions of the
users on the data (activity provenance) [?]. The workflow
records the metadata in a MySQL database which is
later queried by the dashboard to access files on disk.
Provenance tracking is key in taking the scientist’s focus
away from files to actual science. From the dashboard,
users see a tree view of scientific variables generated by
the simulation as shown on the left hand side of Figure 2.
By simply dragging and dropping variables from the tree
view to the main canvas, they can see that particular entity
evolving through time in form of a flash movie. Users do
not need to know or track which raw data file(s) was used
to generate that movie. The link is made automatically by
the dashboard.

III. THE CONTOUR TREE

The contour tree is an efficient data structure that
captures the topological structure of a scalar field. Thanks
to simple, robust and fast algorithms [?], it has a wide
spectrum of applications in scientific visualization, such
as seed-set computation for fast isosurface extraction [?],
topologically clean isosurface extraction [?] and auto-
mated transfer function design [?].

In this framework, we use the contour tree as an efficient
indexing key to quickly access isosurfaces and query
them in a flexible manner. This section details the formal
definition of the contour tree as well as the simplification
and isosurface query processes.

A. Definition

The contour tree is a special case of the more general
concept of a Reeb graph [?]. Let f : M → R be a scalar

field defined on a manifold M. One fundamental way to
study the scalar field f is to extract its level sets. For a
given scalar w, the level set L(w) is defined as the inverse
image of w onto M through f , L(w) = f−1(w). We call
each connected component of the level set L(w) a contour.

One aspect that is well understood in Morse theory [?]
is the evolution of the homology classes of the contours of
f while w changes continuously in R. The points at which
the topology of a contour changes are called critical points
and the corresponding function values are called critical
values. If all the critical points of f are non-degenerate
and have distinct values, then f is a Morse function.

The Reeb graph R(f) of f is the quotient space induced
by the equivalence relation “two points p1 and p2 are
equivalent if they belong to the same contour of f”
[?]. Adjacent contours are mapped in the Reeb graph
to adjacent nodes and distinct contours are mapped to
distinct nodes. Notice that branching in R(f) only occurs
at critical values of f and we call the corresponding nodes
critical nodes.

In other words, one can see the Reeb graph of a scalar
field f as a continuous contraction of f contours as w
changes continuously over R, as illustrated in Figure 3. A
Reeb graph is called a contour tree when it has no loops.
This is guaranteed in particular if M is simply connected.
In practice, our input data is given as a regular grid where
each vertex is associated with a scalar field value. As
regular grids are by definition simply-connected, the Reeb
graph will always be a contour tree. Then, the efficient
algorithm presented by Carr et al. [?], with O(nlog(n))
time complexity (where n is the number of vertices), can
be used.

As illustrated in Figure 3, the contour tree can provide
useful visual insights on the structure of the scalar field
and can help the users understand their data. However,
with real-life simulation data, the number of critical points
is usually very high and so is the number of arcs in
the contour tree. Consequently, to have a progressive
understanding of the scalar field, topological simplification
hierarchies are computed.

B. Simplification hierarchy

Persistent homology [?] provides a sound theoretical
framework for noise removal, progressive simplification
and multi-scale topology abstractions. In practice, very
simple algorithms have been used to compute multi-scale
representations of the contour tree. Given an input scale
threshold s, persistence based simplification consists of
iteratively removing, by increasing order of function span,
the arcs containing a leaf and whose function span (per-
sistence) is lower than s. Consequently, simplifying the
contour tree at several scale thresholds defines a progres-
sive hierarchy of contour trees, as illustrated in Figure 4,
where the small details are progressively removed and the
major features are progressively highlighted. Simplifica-
tion hierarchies then provide to the user a progressive
understanding of the field, allowing him/her to zoom-in
or zoom-out in the details of the topology abstractions.



Figure 3. Height function on a manifold volume. From left to right: the contours of f are continuously contracted to nodes in the contour tree as
w increases. Right: final contour tree.

Figure 4. Progressive persistence based simplification of a contour tree
(from top left to bottom right): the arcs corresponding to the fingers of
the hand are progressively removed according to their size (persistence).

Notice that sophisticated geometry-aware simplification
criteria have been proposed [?], in order to provide the user
full flexibility for noise definition (integrating, instead of
the persistence criterion, the actual size of the isosurfaces
for example).

C. Flexible isosurface queries

Since they capture in a concise manner the full structure
of the input scalar field, contour trees can be employed as
an efficient indexing key to access isosurfaces. Given an
isovalue w, an isosurface extraction consists in: (i) identify
all the arcs crossing w, (ii) for those arcs, extract the seed
vertex with the function value closest to w and finally
(iii) start standard isosurface traversal at the extracted
seed vertices. In particular, when queried from simplified
contour trees, isosurfaces benefit from the simplification
scheme, as illustrated in Figure 5, where the components
corresponding to small arcs are not extracted.

As a result, the user also benefits from a progres-
sive understanding of the isosurfaces, where noise can
be progressively removed and where the most important
features are progressively highlighted. Finally, the user can
also directly interact with the contour tree by explicitly

Figure 5. Flexible isosurface extraction. Top: Seed sets are extracted
from the contour tree and isosurfaces are computed by standard traversal
techniques. Bottom: Isosurface extraction on a simplified contour tree
leads to the removal of the small components of the isosurface.

highlighting arcs from where to extract an isosurface
component, providing him/her with fully interactive ex-
ploration of the data.

IV. CONTOUR TREE WIDGET

We developed a web interface called Contour Tree
Widget, whose purpose is to provide scientists with better
ways of exploring simulation results. In particular, it uses
contour trees to facilitate the interaction with isosurfaces
of these simulation results. The interface design of this
widget is illustrated in Figure 6. It consists of three
main interactive components: the 3D View on the left; the
Contour Tree View on the top right and the Complexity
Slider on the bottom right.

The Contour Tree View displays the contour tree of the
current dataset. Usually the displayed tree is a simplified
version of the complete contour tree where only the
“largest” features are represented. The contour tree is laid
out satisfying the following constraints: the y coordinate



Figure 6. Contour Tree Widget’s interactive components: 3D View, Contour Tree View and Complexity Slider. Some examples of the possible
interactions are also shown.

of every node corresponds to its value in the scalar field
and any horizontal line crosses every arc at most once.
The three horizontal lines colored in blue, green and
yellow in the Contour Tree View correspond to default
isovalues of the three isosurfaces displayed in the 3D
View in semi-transparent blue, green and yellow respec-
tively. Note that each of these isosurfaces might contain
multiple components. For example, in Figure 6, there are
six components in the blue isosurface, three components
in the green isosurface and thirteen components in the
yellow isosurface because these are exactly the number of
crossings of the blue, green, and yellow horizontal lines
with the contour tree in the Contour Tree View.

As illustrated in the interaction boxes of Figure 6,
by dragging the mouse on the 3D View, the user is
able to rotate the camera used by the 3D View and see
the isosurfaces from different angles. Another possible
interaction is to select arcs from the contour tree in the
Contour Tree View. At most one of these arcs can be
selected at a time, causing it to be highlighted in magenta
and the contour corresponding to the mean isovalue of
that arc to be displayed in semi-transparent magenta in
the 3D-View.

The Complexity Slider is used to switch the current
contour tree in the Contour Tree View to a simplified or

to a more detailed version. It has an important role of
giving the user a means to understand the dataset in a
progression. By starting with a simpler contour tree, only
the “largest” features from the dataset will be shown. This
results in simpler 3D visualizations with fewer contours
and less occlusion, which might lead to a better overall
understanding of the dataset. By gradually raising the
complexity of the contour tree using the Complexity Slider
the user can understand where the “smaller” features
appear and how do they relate to the “larger” features, as
the 3D visualization become more complex. The meaning
of a “larger” or “smaller” feature in our current imple-
mentation is related to the notion of persistence explained
in Section III, and, as it was also mentioned there, other
ways to characterize the “size” of the features (e.g., its
volume) can be used in the simplification of the contour
tree.

The Contour Tree Widget is designed to work with pre-
computed information. This design choice fits well the
fact that it runs on the web and into the general model
where we see its application: large simulations that are
both time and space consuming where there is a relative
small time and space overhead in computing useful extra
information during the simulation that can lead to an early
understanding of (partial) results. The required “extra



Figure 7. The Contour Tree Web Widget integrated with the eSimMon
dashboard.

information” necessary to be able to use the Contour Tree
Widget is obtained by computing the contour tree of a
dataset, selecting a set of simplified versions of it and
composing a set of associated isosurfaces visualizations.

Figure 7 shows the Contour Tree Widget integrated with
the web interface of the eSimMon dashboard. Note the
presence of other widgets exposing different aspects of
the dataset being used in combination with the Contour
Tree Widget.

V. CASE STUDY: VISUALIZING TURBULENT
COMBUSTION

Combustion scientists in collaboration with computer
scientists are interested in understanding the underly-
ing processes in internal combustion engines. Compared
to current engines, next-generation combustion engines
will function in non-conventional, mixed-mode, turbulent
combustion regimes and are likely to be characterized
by higher pressures, lower temperatures, higher levels
of dilution, and utilization of alternative fuels that ex-
hibit a wide range of chemical and physical properties.
Combustion processes in these environments result in
complicated interactions that are poorly understood at a
fundamental level, and are demanding for high-fidelity
direct numerical simulation (DNS) approaches that capture
these turbulence-chemistry interactions. These simulations
are costly, requiring several million CPU hours on a
terascale computer, up to several billion grid points, and
generating tens of terabytes of data [?].

To solve the complex equations governing these simula-
tions, the scientists use S3D [?], a massively parallel DNS
solver based on a high-order, non-dissipative numerical
scheme that was developed at Sandia National Labora-
tories. The tens of terabytes of raw data produced by
S3D need to be analyzed and visualized to obtain physical
insight and/or to validate models.

Figure 8. S3D Kepler Workflow.

Among the generated data are NetCDF/HDF5 analysis
files, containing both 2D slices and 1D slices from the
3D dataset. Each variable in the NetCDF file is either
processed using a plot library (for xy plots only) or
AVS/Express [?] (for generating the images of colormaps
and contours). The scientists use the Kepler workflow
system [?] to manage the S3D workflow (shown in
Figure 8), including movement and provenance of the
generated data, and the eSimMon dashboard system de-
scribed in Section II-A to monitor and visualize the results
during the execution of S3D. The types of visualization
currently available are displayed in Figure 2. Although
the dashboard provides useful tools for interacting with
plots, 3D visualization is not explored. The scientists are
limited to visualizing 2D slices of a 3D volume over
time. As the datasets are very large, the scientists are
not able to visualize all the space of isosurfaces and they
have to carefully select which isosurfaces they want to be
computed in high resolution. Our strategy is to use a low
resolution version of the dataset and apply the concept
of contour trees (see Section III) to not only display an
overview of the dataset but also to guide them in finding
interesting features in the visualization.

To achieve that, we extended the S3D workflow by
adding a process to compute contour trees, simplify
contour trees, extract isosurfaces, and generate multiple
images of 3D visualizations necessary to feed the Contour
Tree Widget explained in Section IV. This new process
on the S3D workflow is launched in batch mode after the
NetCDF processing pipeline displayed in Figure 8 is done.

A. Performance Analysis

The dataset used in this case study consisted of a regular
grid of dimensions 45 by 112 by 96. In this case, the
code written in C we used to compute the contour tree
took 4.99s to finish in a desktop computer with an Intel



Core2 2.83 Ghz architecture and 8 Gb RAM. It is worth
mentioning that this C code was optimized for tetrahedral
meshes and not for the regular grids we used as input, so
there is still margin for improvements. As mentioned in
Section III the contour tree algorithm runs in O(n log(n))
where n is the number of vertices of the mesh. In practice
this means that it is feasible to extract contour trees for
much larger datasets than the one from this case study,
depending on the desired application. The running time
to simplify the full contour tree into simpler versions is
usually just a small fraction of the time to compute the
full contour tree. In our dataset it took 0.06s to simplify
the full contour tree into the simpler versions we used,
this is less than 2% of the time it took to compute the
complete contour tree.

As explained in Section III, we can use the contour
tree to speed up the isosurface extraction. We used this
approach in the dataset of this case study. The time to
find the seeds for the isosurface extraction was always
less than 0.00001s and the time to propagate the seeds to
actually extract the largest isosurface in our dataset took
0.38s and resulted in an isosurface with 277098 triangles.

The total time to compute all the extra information
needed to run the Contour Tree Widget in this case study
took less two minutes. In the end, the dataset was ready to
be explored on the Web through four simplified versions
of the contour tree indexing visualizations for almost
one hundred potentially relevant isosurfaces and contours
available in 26 different angles each. The space required
for this extra data was 140Mb with images in a 1024 by
1024 resolution.

VI. CONCLUSIONS

The use of remote high-performance computing fa-
cilities is becoming ubiquitous. Using these resources,
scientists are able to generate unprecedented volumes of
data, most of which simply can not be moved back to their
sites. Advanced remote data analysis and visualization
tools are thus essential in this scenario. In this work, we
focus on describing a tool for exploring and identifying
useful regions of large datasets. We used a summarization
structure called contour tree, that captures the topological
structure of a scalar field and helps the user identify
useful (important) isosurfaces. We designed a specific user
interface that allows users to interact with and explore
multiple isosurfaces. In order to optimize interactivity,
we used caching of the results (in particular images and
movies) wherever possible. We implemented our work in
the eSimMon dashboard system, and applied it in the
context of simulation of combustion processes.

There is substantial future work to be pursued. First
of all, we need to further improve the usability of the
contour tree widget by doing expert studies. Also, we need
to explore alternative ways to optimize the computation
and rendering of the isosurfaces. Right now, everything is
cached and transferred as precomputed images or movies,
but as browsers support more flexible 3-D rendering func-
tionality, we might consider other rendering techniques.

We would also like to explore the use of state-of-the-art
level of detail and streaming techniques.
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