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Loop Surgery for Volumetric Meshes:
Reeb Graphs Reduced to Contour Trees

Julien Tierny, Attila Gyulassy, Eddie Simon, and Valerio Pascucci, Member, IEEE

Fig. 1. The Reeb graph of a pressure stress function on the volumetric mesh of a brake disk is shown at several scales of hypervolume-
based simplification. At the finest resolution of this data-set (3.5 million tetrahedra), our approach computes the Reeb graph in 7.8
seconds while the fastest previous techniques [19, 12] do not produce a result.

Abstract—This paper introduces an efficient algorithm for computing the Reeb graph of a scalar function f defined on a volumetric
mesh M in R3. We introduce a procedure called loop surgery that transforms M into a mesh M′ by a sequence of cuts and guarantees
the Reeb graph of f (M′) to be loop free. Therefore, loop surgery reduces Reeb graph computation to the simpler problem of
computing a contour tree, for which well-known algorithms exist that are theoretically efficient (O(n logn)) and fast in practice. Inverse
cuts reconstruct the loops removed at the beginning.

The time complexity of our algorithm is that of a contour tree computation plus a loop surgery overhead, which depends on the
number of handles of the mesh. Our systematic experiments confirm that for real-life volumetric data, this overhead is comparable
to the computation of the contour tree, demonstrating virtually linear scalability on meshes ranging from 70 thousand to 3.5 million
tetrahedra. Performance numbers show that our algorithm, although restricted to volumetric data, has an average speedup factor of
6,500 over the previous fastest techniques, handling larger and more complex data-sets.

We demonstrate the versatility of our approach by extending fast topologically clean isosurface extraction to non-simply connected
domains. We apply this technique in the context of pressure analysis for mechanical design. In this case, our technique produces
results in matter of seconds even for the largest models. For the same models, previous Reeb graph techniques do not produce a
result.

Index Terms—Reeb graph, scalar field topology, isosurfaces, topological simplification.

1 INTRODUCTION

As scientific data becomes larger and more complex, sophisticated
techniques are required for its effective analysis and visualization.
Topology-based methods are particularly useful in this context due to
their ability to capture features directly, and interact with them at mul-
tiple resolutions. Reeb graphs are an efficient solution that encodes the
behavior of level sets of scalar functions defined on manifold meshes
of arbitrary topology, and therefore their efficient computation is an
important challenge. In this paper, we present a new algorithm that
computes Reeb graphs in an efficient manner, to enable in-practice
use of the Reeb graph for various visualization and analysis tasks.

Topology-based techniques are becoming more common to solve
complex visualization and data analysis challenges. In particular, the
contour tree [10] is now commonly recognized as an efficient solution
to capture the structure of scalar fields. Thanks to simple, robust and
fast algorithms [23, 7], it has a wide spectrum of applications, includ-
ing seed-set computation for fast isosurface extraction [24], topolog-
ically clean isosurface extraction [8], feature-extraction [4], feature-
driven visualization metaphors [26], and automated transfer function
design [27]. Algorithms for computing the contour tree [23, 7] require
the scalar-valued data to be defined on a simply connected domain
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(a very restrictive topological constraint), but many scientific experi-
ments and computer-aided design simulations do not meet this require-
ment. Then, the more general notion of Reeb graph [21] is needed.
Only a few algorithms exist for computing Reeb graphs on volumet-
ric meshes, and they are computationally expensive and therefore not
practically applicable for use in interactive applications.

This paper presents an algorithm to compute Reeb graphs on vol-
umetric meshes in R3 (in particular tetrahedral meshes) that runs in
practice with the same efficiency as a contour-tree algorithm, enabling
the practical generalization of contour tree based visualization tech-
niques to meshes of arbitrary topology. Our approach is based on
the key concept of loop surgery, inspired from surgery theory [25].
In particular, we transform the input domain by a sequence of sym-
bolic cuts such that the Reeb graph of the input scalar field defined
on the transformed domain is guaranteed to be loop free, and hence
computable with efficient contour tree algorithms. Then, some inverse
symbolic cuts are performed in the topology domain to convert the
computed contour tree into the Reeb graph of the original scalar field.
We show that these symbolic cuts can be computed in an efficient man-
ner, with reasonable computation overhead with respect to contour tree
computation. Extensive experiments show that for volumetric meshes
our approach is orders of magnitude faster than state-of-the-art tech-
niques, while maintaining a smaller memory footprint, as shown by
the largest experiments. To demonstrate the potential of our approach,
we picked a contour tree based visualization technique and extended it
to volumetric meshes of arbitrary topology while still maintaining its
interactive appeal. In particular, we implement an algorithm for fast
topologically-clean isosurface extraction, and apply it in the context of
pressure analysis for mechanical design.



(a) M, f (M) (b) R( f∂ ) (c) Cutting surfaces (d) M′, f ′(M′) (e) R( f ′)
Fig. 2. Overview of Reeb graph computation based on loop surgery: The input defines a scalar function f (color gradient) on M (a). The Reeb
graph of the function restricted to the boundary R( f∂ ) (b) is used to identify loop saddles (blue squares). Cutting surfaces (c) of each loop saddle
are used to transform the domain (d) to M′. The Reeb graph R( f ′) is loop free (e). Inverse cuts are applied to circled critical point pairs to obtain
the Reeb graph R( f ) of the input function.

1.1 Related work
A preliminary contour tree algorithm was introduced by de Berg and
van Kreveld [10]. Extending the previous work by Tarasov and Vyalyi
[23], Carr et al. [7] presented a very elegant, simple, robust and fast
algorithm for contour tree computation on simply connected simpli-
cial complexes of arbitrary dimension, hereafter called the join-split
algorithm. This approach implicitly exploits the fact that, over simply
connected domains, the topological evolution of the connected com-
ponents of the sub- and sur-level sets of the input field captures all
the information about that of the connected components of level sets.
Consequently, level-set connectivity tracking is efficiently achieved
by only keeping track of the connectivity of the sub- and sur- level
sets with a computationally inexpensive Union-Find data structure.
The O(n logn+Nα(N)) complexity of the join-split algorithm can be
proven to be optimal for computing contour trees. The relationship
between the topology of the sub- and sur- level sets and that of level
sets no longer holds on domains of arbitrary topology. This remark
motivates research for efficient Reeb graph computation algorithms.

Approximation algorithms exist for computing Reeb graphs based
on image domain regular partitioning [5, 16, 28], but they can lead to
inaccurate results due to dependence on sampling rates or thresholds.
The first combinatorial algorithm for Reeb graph computation on PL
2-manifolds was introduced by Shinagawa and Kunii [22], with an
O(n2

t ) time complexity where nt stands for the number of triangles in
the mesh. Cole-McLaughlin et al. [9] introduced an optimal algorithm
for PL 2-manifolds, with O(ne log(ne)) time complexity (where ne is
the number of edges) by taking advantage of the mono-dimensionality
of level sets in the special case of PL 2-manifolds by maintaining them
dynamically in a sorted representation. Since it can be computed ef-
ficiently for PL 2-manifolds, the Reeb graph has been a very popular
shape abstraction for several computer graphics tasks, such as surface
parameterization [29], shape retrieval [16], character animation [3],
and others. We defer the reader to [6] for a comprehensive survey on
the applications of Reeb graphs in shape modeling.

Many properties of two-dimensional domains exploited by the
above algorithms do not hold for three-dimensional domains, mak-
ing the problem more challenging. There are only a few techniques
for the computation of Reeb graphs in higher dimensions and thus us-
able for volumetric meshes. Pascucci et al. [19], presented a streaming
approach taking as an input streamed meshes of arbitrary dimension.
Due to its intrinsic ability to handle non-manifold meshes, the algo-
rithm computes Reeb graphs by considering the restriction of the in-
put field to the 2-skeleton of the mesh, whose Reeb graph is proved
to equal that of the original field. However, isosurfaces have to be
maintained, and since no natural order is possible for two-dimensional
level sets (unlike the case of triangular meshes [9]), the algorithm
exhibits a quadratic worse case time complexity. Doraiswamy and
Natarajan [13] proposed an extension of Cole-McLaughlin et al.’s ap-
proach [9] to three-dimensions by dynamically maintaining isosur-
faces with a complex data structure based on a spanning tree, result-
ing in a time complexity of O(nt log2 nt), where nt is the number of
triangles in the mesh. They showed that an implementation with a
lighter data structure performed better in practice despite a complexity
of O(ng log2 n), where g is the maximum genus of an isosurface. The

same authors also introduced recently another algorithm [12] with im-
proved practical performance, which extends a previous approach [20]
from surface to tetrahedral meshes. In [12], the authors adapt im-
age domain regular partitioning techniques by partitioning the domain
precisely along critical level sets and deducing the Reeb graph from
the domain partition. With practical fields studied in scientific visu-
alization or computer-aided design simulations, the number of critical
points is often linear with the number of vertices in the mesh, and the
size of the partition boundaries can also be proportional to the num-
ber of tetrahedra, resulting rapidly in a quadratic run-time behavior in
practice.

1.2 Contributions
This paper makes the following new contributions:

1. We introduce a new procedure called loop surgery to reduce the
problem of computing a Reeb graph to that of a contour tree.
We believe this is an important result, since the join-split algo-
rithm [7] for computing contour trees is well known to have not
only optimal theoretical complexity, but also simple and practi-
cal implementation.

2. We describe a practical algorithm for computing Reeb graphs
with complexity O(n logn + gN). For practical examples, g,
which is equal to the number of handles of the domain, is a small
constant, and systematic experiments show a speedup over pre-
vious algorithms by several orders of magnitude on average.

3. We provide a proof showing necessary and sufficient conditions
for a loop free Reeb graph to be computed correctly by the join-
split contour tree algorithm.

4. We extend topologically-clean isosurface extraction to volumet-
ric meshes of arbitrary topology, and apply it in the context of
mechanical design, where it enables a direct visualization of the
major trends of physical simulations.

2 PRELIMINARY RESULTS

In this section, we briefly describe the formal setting of our approach
and present some preliminary results on the topology of Reeb graphs
on tetrahedral meshes. We defer the reader to [17] and [15] for refer-
ence books on Morse theory and homology.

2.1 Background and definitions
Consider a real-valued function f : M→ R defined on a manifold M.
One fundamental way to study the function f is to extract its level
sets. For a given scalar w the level set L(w) is defined as the inverse
image of w onto M through f , L(w) = f−1(w). We call each con-
nected component of the level set L(w) a contour. A sub-level set
is defined as the inverse image of the open interval (−∞,w) onto M
through f , L−(w) = {x ∈ M| f (x) < w}. Symmetrically, a sur-level
set is the inverse image of the open interval (w,∞) onto M through f ,
L+(w) = {x ∈M| f (x) > w}.

One aspect that is well understood in Morse theory [17] is the evo-
lution of the homology classes of the contours of f while w changes
continuously in R. The points at which the topology of a contour
changes are called critical points and the corresponding function val-
ues are called critical values. If all of the critical points of f are non-
degenerate and have distinct values, then f is a Morse function.



A retraction is defined [15] as a continuous map such that its im-
age is a subset of the domain and the restriction of the map to the
image is the identity. We define a contour retraction of a manifold M
under a function f to be a continuous map that retracts each contour
(connected component of level set) to a single point. Notice that, by
continuity, adjacent contours are retracted to adjacent points; distinct
contours are retracted to distinct points. This gives the definition:

The Reeb graph R( f ) is the contour retract of M under f .
The Reeb graph is represented as a graph consisting of nodes and

arcs. Branching in R( f ) occurs only at critical values of f . Fig-
ure 2(b) shows a simple scalar function with the associated Reeb
graph. A Reeb graph is called a contour tree when it has no loops.
For example, this is true when M is simply connected.

Note that f can be decomposed into f = ψ ◦φ , where φ : M→R( f )
is a contour retraction that maps points in the same contour of f to the
same point of R( f ), and ψ : R( f )→ R is a continuous function that
maps points of R( f ) to a scalar value in R.

Consider the case where the domain of f : M → R is a simpli-
cial complex with boundary, with n vertices and N simplices. Within
each simplex of M, the function f is the linear interpolation of its
values at the vertices, and we say that f is a piecewise-linear (PL)
function. The following operations on a simplicial complex M are
used to identify critical points. The star of a simplex u is the set of
simplices that contain u as a face: St(u) = {σ ∈ M|u ≤ σ}, where
u ≤ σ denotes that u is a face of σ . The link of the simplex u
is the set of simplices in the closure of the star of u that are not
also in its star, i.e., Lk(u) = St(u)− St(u), where St denotes the clo-
sure of the star. In PL functions, critical points can only occur at
vertices. The lower link of u is the subset of the link containing
only simplices with all their vertices lower in function value than u:
Lk−(u) = {σ ∈ Lk(u)| v≤ σ → f (v) < f (u)}. Symmetrically, the up-
per link is Lk+(u) = {σ ∈ Lk(u)| v ≤ σ → f (u) < f (v)}. Similarly,
the lower star of u is St−(u) = {σ ∈ St(u)| v ≤ σ → f (v) < f (u)}.
A vertex u in M is regular if and only if both Lk−(u) and Lk+(u) are
simply connected, otherwise u is a critical point of f (notice that both
must be simply connected since M has a boundary).

2.2 Loops in Reeb graphs on PL 3-manifolds in R3

Consider a scalar function f defined on a PL 3-manifold mesh M in
R3. The key idea of loop surgery is to define a sequence of operations
that transform M to M′ with f ′ : M′→ R valued by f such that R( f ′)
becomes loop-free, and then efficiently computable with contour tree
algorithms. Therefore, we carefully characterize the loops (indepen-
dent cycles) of R( f ) prior to introducing loop surgery.

Let ∂M be the boundary of M. Since M is compact and embeddable
in R3, ∂M is necessarily non-empty, orientable and closed [11] but
possibly disconnected.

Let f∂ be the restriction of f to ∂M. We will first assume that both
f and f∂ are PL Morse functions (degenerate cases will be discussed
later). Let R( f∂ ) be the Reeb graph of f∂ . Then, we have the follow-
ing relation [9]:

#loops(R( f∂ )) = g (1)

where g is the sum of the genera of the boundary components of M.
The key property that will allow us to implement loop surgery in an
efficient manner is the fact than the topology of M is closely related to
that of ∂M. In particular, the number of handles of M is the first Betti
number, β1(M), which is given by the following relation [11]:

β1(M) = g (2)

where β1(M) is the number of independent 1-cycles in M, formally
the rank of the first homology group of M. In simpler words, this rela-
tion expresses the fact that each handle of the volume M corresponds
to a tunnel of its boundary surface.

As discussed in [9] in any dimension the construction of the Reeb
graph can lead to the removal of 1-cycles, but not to the creation of
new ones. Therefore, the number of loops of R( f ) cannot be greater
than the first Betti number of M :

#loops(R( f ))≤ β1(M) (3)

(a) f (M) (b) R( f ) (c) R( f∂ ) (d) Si (e) M′ (f) R( f ′)

Fig. 3. Example where the domain (a) is not simply connected and
R( f ) is loop free (b). The Reeb graph of the boundary, R( f∂ ), has a
loop (c), therefore loop surgery is performed (d), (e). Even after loop
surgery, each component of M′ is not necessarily simply connected, but
the Reeb graph of each component is loop free (f).

In conclusion, the number of loops of R( f ) cannot be greater than
the number of loops of R( f∂ ) :

#loops(R( f ))≤ β1(M) = g = #loops(R( f∂ )) (4)

A direct extension of the equation 4 is the following lemma:
Lemma 1. The existence of loops in R( f ) implies the existence of
corresponding tunnels in both M and ∂M, and thus of corresponding
loops in R( f∂ ). The inverse is not necessarily true.

A result of this lemma is that one can deduce information about the
loops of R( f ) by just studying R( f∂ ).

2.3 Loop surgery
When f∂ is PL Morse, there exists a unique pair of saddle points for
each loop, consisting of an “opening” split saddle and a “closing” join
saddle. The existence of such pairs is guaranteed by extended persis-
tence [2]. We uniquely associate each loop with the closing saddle of
this pair, and call that saddle a loop saddle. Moreover, by lemma 1,
each loop in R( f ) can also be associated with the same loop saddle
as the corresponding loop in R( f∂ ). Notice that some loop saddles of
R( f∂ ) may not be associated with any loop of R( f ).

Loop surgery consists of transforming the domain M such that
R( f ) becomes loop-free. In other words, loop surgery breaks the
loops of R( f ) and reflects that transformation on M. Since we have
an injection from the loops of R( f ) to the set of loop saddles, it is
sufficient to reason only with the loop saddles to achieve these trans-
formations. In particular, for each loop saddle si with value f (si), we
define its cutting surface Si as a contour of f (a connected component
of isosurface inside the volume) at value f (si)− ε such that f (si)− ε

is a regular value of f , there is no critical value in [ f (si)− ε, f (si))
and Si intersects one of the connected components of the lower star
St−(si) in the volume. The symbolic cuts transforming M into M′ con-
sist of cutting M along each defined cutting surface, as illustrated in
figures 2(c) and 2(d).

On the topology domain, cutting along a cutting surface at a regular
value is equivalent to cutting an arc of R( f ) and creating a new pair
of critical nodes (a minimum and a maximum, as illustrated in fig-
ure 2(e)). Since we have an injection from the set of loops of R( f ) to
the set of cutting surfaces, the Reeb graph of the function f ′ : M′→R,
f ′ being the function valued by f after symbolic cuts, is guaranteed to
be loop free: all the possible loops have indeed been broken, as shown
in figure 2(e).

Once the loop-free Reeb graph R( f ′) is computed, inverse cuts can
be applied in a straightforward manner by removing pairs of minimum
and maximum nodes generated by the same cutting surface, and gluing
together the corresponding arcs.

2.4 Loop free Reeb graph computation
The algorithm presented by Carr et al. [7] computes the contour tree
by tracking the joining of sub- and sur-level set components. Tradi-
tionally, simply-connectedness of M has been used as a condition to
ensure correctness of this algorithm. However, a Reeb graph can be
loop free even when the domain is not simply connected, as shown
in figure 3(b). This is especially important, since our loop surgery
procedure does not guarantee that the domain is divided into simply
connected regions. Therefore, we prove necessary and sufficient con-
ditions for this contour tree algorithm to work. The following lemma
shows when a saddle creates a loop in the Reeb graph.



Lemma 2. Let f : M→ R be a Morse function and n be a degree-3
node of R( f ) corresponding to a join saddle s (see figure 4). If the
contours joined by the saddle are on the boundary of the same sub-
level set component, then there exists a loop in R( f ) for which n is the
highest saddle.
Proof. Refer to figure 4 in the following. Given n, s, f , and R( f ),
let ε be a small number such that there is no critical value in the
range [ f (s)− ε, f (s)). The existence of such an epsilon is guaran-
teed because the critical values of a Morse function are distinct. Let
w = f (s)− ε , and a and b be the points on the two downward arcs
from n such that the value of their corresponding contours ca and cb is
w, i.e., f (ca) = f (cb) = w. By construction, n is a join saddle, there-
fore there exists a path p+ in M connecting a point in ca with a point
in cb such that all its interior is in the sur-level set L+(w). The map
φ : M→R( f ), mapping points in the same contour in M to the same
point in R( f ), is a continuous surjection (by definition of a contour
retraction), therefore a connected component p+ in M is mapped to
a connected component φ(p+) in R( f ), such that a and b are con-
nected in R( f ) by a path q+ ⊆ φ(p+) whose interior is strictly above
w. Since by hypothesis ca and cb are on the boundary of the same
sub-level set component, there exists also a path p− in M connecting a
point in ca with a point in cb such that all its interior is in the sub-level
set L−(w). Therefore a and b are also connected in R( f ) by a path
q− ⊆ φ(p−) whose interior is strictly below w. The two paths q+ +q−
form a loop.

By applying lemma 2, we prove necessary and sufficient conditions
for computing correct loop free Reeb graphs using tracking of sub-
and sur-level sets.
Lemma 3. Let f : M→ R be a Morse function. Its Reeb graph R( f )
is loop free if and only if every degree-3 node in R( f ) corresponds to
a saddle of f where distinct components of sub- or sur-level sets join.
Proof. First we prove that if a Reeb graph R( f ) is loop free, every
degree-3 node n corresponds to a saddle s of f that joins distinct com-
ponents of sub- or sur-level sets. Assume that there exists a degree-3
node that joins contours that are on the boundary of the same sub- or
sur-level set component. By lemma 2, there must be a loop in R( f ).
This contradicts the hypothesis statement that R( f ) is loop free.

Next, we prove that if every degree-3 node corresponding to a sad-
dle in R( f ) joins distinct sub- or sur-level set components, then R( f )
is loop free. Assume for contradiction that R( f ) has a loop, s is the
highest join saddle in the loop, and n the corresponding degree-3 node.
Pick ε , w, a, b, ca, and cb as before. The paths q+ and q− exist in
R( f ) connecting a and b in a loop. Since φ is a contour retraction,
any connected component of R( f ) is a connected subset of M. There-
fore φ−1(q−) is a connected component in M, connecting ca to cb in
L−(w). Therefore, ca and cb are on the boundary of the same con-
nected component of L−(w), which contradicts the hypothesis. The
same argument holds for split saddles.

Lemma 3 shows that we can use the contour tree algorithm pre-
sented by Carr et al. [7] to compute loop free Reeb graphs, by tracking
the connectivity evolution of sub- and sur- level sets. Performing loop
surgery guarantees that R( f ′) is loop free, and then computable with
the contour tree algorithm.

3 ALGORITHM

Our algorithm for Reeb graph computation is summarized by the fol-
lowing pseudocode:
Algorithm 1. Reeb Graph Overview
INPUT: f, M
(0) M’ = M, GL = {}
(1) if genus_diagnostic(∂M) > 0 then
(2) S∂ = find_loop_saddles(M, ∂M, f)
(3) for each s in S∂

(4) M’ = cut(M’, cutting_surface(s))
(5) GL = GL ∪ node_pairs(s)
(6) RG = contour_tree(M’)
(7) for each p in GL
(8) RG = glue(RG, p)
(9) return RG

Fig. 4. Reference figure for lemma 2. Paths forming a loop in M map to
connected components forming a loop in R( f ).

The input is a PL function f, and a simplicial mesh M. In lines (1-5),
the domain is symbolically cut to ensure that its Reeb graph is loop
free. If a diagnostic (line 1) shows that the domain has no handles
(section 3.1.1), then no loop surgery needs to be done. Otherwise,
loop saddles (section 3.1.2) are detected (line 2), and the domain is
symbolically cut (line 4) along cutting surfaces (section 3.1.3). We
keep track of the extra pairs of nodes created in the Reeb graph by each
cut (line 5). Since the Reeb graph is guaranteed to be loop free, we
compute it (line 6) using a modified version of the join-split algorithm
(section 3.2). Finally, the loop free Reeb graph is transformed into
the correct Reeb graph of the input function by inverse cuts (lines 7-8)
(section 3.3).

3.1 Loop surgery

The purpose of loop surgery is to symbolically cut the domain such
that R( f ′) is guaranteed to be loop free. This procedure corresponds
to lines 1-5 of algorithm 1.

3.1.1 Genus diagnostic

We first check if any loop surgery is needed by checking the
presence of tunnels on the boundary ∂M. This implements the
genus diagnostic function in line 1 of algorithm 1. In partic-
ular, we use the Euler formula on each connected component of ∂M:

χ = 2−2g = n∂
v −n∂

e +n∂
f (5)

where n∂
v , n∂

e and n∂
f stand for the numbers of vertices, edges and

triangles of the considered component of ∂M. The sum of the genera g
of the connected components of ∂M then gives the number of tunnels
in ∂M and hence the number of cuts needed to ensure that R( f ′) is
loop free. Loop surgery is needed only if the sum of the genera is
non-zero.

3.1.2 Loop saddles

If the domain is cut at every loop saddle (defined in sec-
tion 2.3) then R( f ′) is loop free. In this section, we implement
find loop saddles in line 2 of algorithm 1. One technique for
finding loop saddles is computing the Reeb graph of the boundary (us-
ing an existing technique such as [19]), and then identifying the loop
saddles using extended persistence [2]. However, the benefits of us-
ing a simpler technique for finding a small superset of loop saddles
outweigh the cost of performing additional cuts.

By lemma 1, we know that loop saddles must exist as a subset of
the saddles on the boundary, therefore, we carefully select these from
the set of all saddles of f∂ in a three-step process: (i) all saddles of f∂
are identified; (ii) we apply lemma 3 and remove from these the ones
that join distinct sub- or sur-level set components; and (iii), we further
remove those that do not join the same sub-level set component in the
volume. The rules we employ resolve degenerate saddles implicitly.
These steps are explained in detail below.
(i) Saddles of f∂ occur at vertices of ∂M. A vertex x ∈ ∂M is a saddle
if and only if the number of connected components of its lower link
is greater than one. This number can be computed by a simple link
traversal technique [9]. The set of all the saddles on the boundary is
denoted S∂ .



(a) ∂M, f∂ (∂M) (b) Sublevel sets of f∂ (c) Join tree of f∂ (d) Split tree of f∂ (e) Lk−(s) (f) Loop saddles

Fig. 5. Identifying loop saddles: f∂ and its saddle points (a). Loops are “absorbed” by sub-level sets of f∂ (b). Join tree (c) and split tree (d) of f∂

identify non-loop saddles. Configurations of the lower link (e) in the volume distinguish between opening and closing of loops. Loop saddles (blue
squares) are returned (f).

(ii) We remove saddles of S∂ that do not open or close a loop. To use
the result of lemma 2 in determining whether or not the saddle can be
part of a loop, we identify the sub- and sur-level set associated with
each connected component of the lower and upper link of a saddle of
S∂ . The classification of sub- and sur- level set components is com-
puted by constructing the join tree and the split tree in the join-split
contour tree algorithm [7]. The join sweep that builds the join tree
processes vertices of ∂M in order of increasing function value, main-
taining sub-level sets via a Union-Find data structure. In the computed
join tree of f∂ , the number of downward arcs of each node is equal to
the number of distinct sub-level set components of f∂ that are joined
at the corresponding vertex. Similarly, a split sweep builds the split
tree by processing vertices of ∂M from highest to lowest. The result-
ing split tree provides the information about the evolution of sur-level
set components. When the number of downward arcs in the join tree
equals the number of connected components of the lower link or the
number of upward arcs in the split tree equals the number of connected
components of the upper link, the saddle does not open or close a loop
in R( f∂ ). These saddles are removed from S∂ . In practice, this step
removes 87% of the saddles of S∂ on average.
(iii) The set S∂ now contains exactly those saddles that correspond
to the opening or closing of a loop on the boundary. Furthermore,
the sub- and sur-level set component associated with each connected
component of the lower and upper link of every saddle is also known
from step (ii). Let s be a saddle of S∂ . If two or more connected
components of Lk−

∂
(s) are part of the same sub-level set component,

then by lemma 2, s forms a loop in R( f∂ ). However, if they also
belong to the same contour of f in the volume, then s does not create a
loop in R( f ). Therefore, we keep only saddles s in S∂ where distinct
connected components in Lk−

∂
(s) are the boundary components of the

same sub-level set component, and are also disconnected in the link of
s in the volume, Lk−(s). All other saddles are removed from S∂ . In
practice, this step removes 50% of the remaining saddles of S∂ .

3.1.3 Cutting surfaces

We symbolically cut M through a sequence of symbolic cuts, imple-
menting lines (3-5) of the algorithm. According to lemma 3, to ensure
that R( f ) be loop free, every saddle must join distinct sub-level set
components. A saddle s in S∂ does not have this property, therefore
we perform symbolic cuts on M such that each connected component
of the lower link of s has a unique sub-level set component.

A symbolic cut is an isosurface traversal that updates pointers in
the tetrahera that are crossed. A cutting surface S is a simple data
structure with a unique identifier that is the record of the symbolic
cut. Let s be a saddle of S∂ with value f (s), and let Ci and C j be
connected components in Lk−(s). We perform a cut with value f (s)−
ε for every pair Ci and C j that are on the boundary of the same sub-
level set component. We start the traversal at a tetrahedron in the star
of s that has a vertex in Ci, formally, σ ∈ St(s)|σ ∩Ci 6= /0. The sub-
level set information necessary to compare Ci and C j is found in step
(ii) of loop saddle identification (section 3.1.2). We skip components
of Lk−(s) that do not touch the boundary. Each symbolic cut produces
a new sub-level set component, which is recorded in the cutting surface
data structure. For example, if n components of Lk−(s) initially are on
the boundary of the same sub-level set component, n−1 symbolic cuts
will be performed.

To keep track of the symbolic cuts in the rest of the algorithm, each
tetrahedron crossed by any cutting surface stores a pointer for each of
its vertices to the highest cutting surface passing below and the lowest
cutting surface passing above the vertex. Additionally, each vertex is
marked with a top flag if it lies above a cutting surface crossing the
tetrahedron, and also a bottom flag if it lies below a cutting surface
crossing the tetrahedron. Finally, each saddle that generates symbolic
cuts stores pointers to the corresponding cutting surfaces.

3.2 Loop free Reeb graph computation
By lemma 3, a loop free Reeb graph can be computed using a contour
tree algorithm. Since we cut M only symbolically, we use a modified
version of the join-split algorithm [7] that behaves “as if” M were
actually transformed into M′. Building the loop free Reeb graph using
the modified join-split algorithm implements line (8) in algorithm 1.

The following pseudo-code for computing the join tree simulates
the cuts and uses a Union-Find data structure (using path compression
and union by rank) implemented to return the highest element of a set.

Algorithm 2. Modified Join Tree
INPUT: f, M
(0) P = sort_vertices(M), UF={}, JT={}
(1) for i in [0,...,|P|-1], v = P[i]
(2) a = JT.add_node(v)
(3) UF.make_set(a)
(4) if v ∈ S∂ then
(5) for each S in cutting_surfaces(v)
(6) b = JT.add_node(S )
(7) UF.make_set(b)
(8) for each tet σ ∈St(v) with σ∩Lk−(v) 6= /0
(9) if has_cut(σ) then
(10) S = highest_cut_below(σ, v)
(11) c = UF.find(S )
(12) if c 6= a then
(13) UF.union(c, a)
(14) JT.add_edge(c, a)
(15) for each vertex u in σ ∩ Lk−(v)
(16) if f(u) > f(S ) then
(17) d = UF.find(u)
(18) if d 6= a then
(19) UF.union(d, a)
(20) JT.add_edge(d, a)
(21) else
(22) for each vertex u in σ ∩ Lk−(v)
(23) c = UF.find(u)
(24) if c 6= a then
(25) UF.union(c, a)
(26) JT.add_edge(c, a)
(27) return JT

Vertices are processed in order of increasing function value (lines
0,1), and we add the vertex v to the join tree and to a new set in the
Union-Find (lines 2,3). If v is a saddle that generated a symbolic cut
(line 4), we simulate M being cut. We also simulate the existence of a
new sub-level set and a new minimum by adding each cutting surface
S to the join tree and the Union-Find (lines 6,7). The tetrahedra in
the star of v that have a vertex in the lower link of v are iterated upon
(line 8). For each such tetrahedron σ , if there is a cut S crossing σ

(line 9), we pick the highest S that is below v (line 10). This is a
constant time operation due to having stored pointers in each tetrahe-
dron in the cutting surface computation (section 3.1.3). We perform a



Fig. 6. Examples of cutting surfaces of 3D scalar fields defined on non-simply connected domains: skull (2 handles), brake caliper (3 handles),
cylinder head (82 handles).

Fig. 7. Examples of Reeb graphs computed from height functions de-
fined on the experiment data-sets. Persistence-based simplification and
arc smooth embedding can optionally be computed in a post-process.

find and then merge the sets, also adding an arc to the join tree (lines
12-14). This simulates having cut M by S , since it disconnects part
of the lower link, and instead connects v to an “artificial” minimum,
which is the node returned by the Union-Find. Next, the vertices in
the lower link of v that were not disconnected by any cutting surface
are processed (lines 15-20). If no tetrahedra in the lower star of v are
crossed by a cutting surface (i.e., v did not get marked as top in sec-
tion 3.1.3 (line 21)) then the lower link of v can be processed (lines
22-26) with no changes to the algorithm in [7]. The join tree of f ′ is
returned. The split tree is computed symmetrically, and merging the
two trees occurs exactly as in the join-split algorithm. This computes
the loop free Reeb graph R( f ′).

3.3 Inverse cuts
Transforming the loop-free Reeb graph R( f ′) into R( f ) requires glu-
ing minimum-maximum pairs of each cutting surface. This imple-
ments lines 7-8 of algorithm 1. For each cutting surface, pointers in
the data structure identify the minimum it generated in the join tree
and the maximum it generated in the split tree. The two nodes are
found in R( f ′), and are glued together by concatenating the up-arc
of the minimum, and the down-arc of the maximum. This inverts the
changes made to R( f ′) by loop surgery.

4 RESULTS
We implemented Reeb graph computation based on loop surgery in
standard C under GNU/Linux. All the experiments presented below
were run on a standard desktop computer with a 64-bit 2.83 GHz CPU
and 8 GB of memory. Data-sets are courtesy of the AIM@SHAPE
shape repository [1] and collaborating mechanical design experts.

In our experiments, we compare running times with recent Reeb
graph computation techniques for tetrahedral meshes [19, 12]. We
used the original implementations of these approaches, kindly pro-
vided by their respective authors. Furthermore, we compared the out-
put of our approach to that presented in [19] using the exact same
simulation of simplicity [14], and found the two algorithms output
identical Reeb graphs for all the available data-sets.

4.1 Time complexity
Let n and N be the number of vertices and simplices of M. Let n∂ , N∂

and NS be the numbers of vertices of ∂M, the number of simplices
of ∂M, and the number of simplices of M crossed by cutting surfaces.
We present a complexity analysis for each step in our algorithm:
Loop saddle extraction: Saddle identification by link traversal re-
quires O(n∂ ) steps. Join tree and split tree computation both require
O(n∂ log(n∂ ) + N∂ α(N∂ )) where α() is an exponentially decreasing
function (inverse of the Ackermann function). Loop saddle distinction
is performed in O(g) steps, where g is the genus of ∂M.
Symbolic cuts computation: O(g×NS ) steps: there are at most O(g)
cuts, and each may cross at most O(NS ) tetrahedra.

Fig. 8. Trunk data-set: due to the thinness of the mesh, the pressure
simulation failed, resulting in a noisy field (left), where 20% of the ver-
tices of the mesh generate branching in the Reeb graph (right).

Loop-free Reeb graph computation: the contour tree algorithm vari-
ant requires O(nlog(n)+Nα(N)) steps [7].
Inverse cuts: O(g) steps: there is an explicit list of cutting surfaces,
and gluing the min-max pairs of each takes constant time.
Overall bound: O(nlog(n)+Nα(N)+g×NS ).

The worst case scenario is reached when both g and NS (loop
surgery process) are linear with the size of the mesh, in which case our
algorithm has a quadratic complexity. However, with real-life data, g
is a small constant, resulting in virtually linear scalability in practice.

4.2 Performance Comparison
We compare the running times of our approach with those of the two
fastest previous techniques, presented in [19] and [12]. Notice how-
ever that these techniques provide a more general solution since they
handle meshes of arbitrary dimension. Our approach, instead, has been
specifically designed for volumetric meshes embedded in R3, given
their importance in visualization applications.

The scalar data used in our experiments represents a variety of
physical phenomena: air turbulence, pressure, liquid oxygen diffusion,
rock density, etc. Table 1 reports the running times of the three meth-
ods on these data. Our approach achieves significant improvement in
terms of running time for each data-set, including those with the high-
est number of handles, resulting in an average speedup factor of 6,500.

The approaches presented in [19] and [12] exhibit a quadratic be-
havior on real-life volumetric data. The streaming approach [19] be-
comes very memory intensive because it has to maintain the bound-
aries of incomplete level sets, which are represented efficiently only
for surface meshes. The memory footprint of the output sensitive ap-
proach [12] is dependent on the number of critical points and the size
of their contours, which in real-life data-sets can be prohibitively large.
In our loop surgery, instead, it is difficult to reach with real-life data
the worst case scenario of the theoretical quadratic complexity.

4.3 Loop surgery overhead
We analyze the internal behavior of our approach and compute the
running time overhead due to loop surgery. Table 2 reports the average
running times of the individual steps of our approach. The running
times agree with our complexity analysis, as the loop surgery overhead
increases when the number of handles increases. The pressure field on
the trunk data-set (fig. 8) is a special case: it is an extremely noisy
field that illustrates that we are performing more symbolic cuts than
necessary, due to ambiguities in resolving degenerate critical points.
Overall, we observe that the loop surgery overhead is proportional to
the cost of computing the contour tree with real-life data.

4.4 Asymptotic stress tests
Finally, we provide a stress test to show the performance of the algo-
rithm in a worst-case scenario. We generate meshes by tetrahedral-
izing a rectilinear grid on from which rows and columns have been



Table 1. Comparison of the Reeb graph computation times. In the table
#H indicates the number of handles in a mesh, LS, SA, and OS indicate
the loop surgery, the streaming [19] and the output sensitive [12] ap-
proaches respectively. On average, the loop surgery processes 428k
tets per second, providing a speedup factor of 6,510. The symbol me
indicates that the process finished because of a memory exception.

Data Tets #H LS SA [19] OS [12]
Time (s.) Time (s.) Speedup Time (s.) Speedup

Langley Fighter 70,125 0 0.35 43.70 126 650.10 1,879
Cylinder Head (low res.) 116,274 82 0.66 10.20 15 257.19 390

Hood (low res.) 120,501 31 0.34 45.77 135 52.60 158
Trunk (low res.) 143,366 1 1.87 27.97 15 406.67 218

Liquid Oxygen Post 616,050 1 0.69 435.20 634 15.54 23
Brake Caliper (med res.) 1,155,317 3 2.24 me: 167,382.52 - 180,637.74 80,570
Buckminster Fullerene 1,250,235 0 2.51 9,887.00 3,942 781.00 311

Plasma 1,310,720 0 2.20 11,983.21 5,442 me: 406.83 -
S. Fernando Earthquake 2,067,739 0 4.07 15,949.10 3,921 me: 327.33 -
Brake Disk (high res.) 3,554,828 54 7.80 me: 56,929.80 - me: 762.14 -

Table 2. Running times of the different stages of the algorithm for real-
life fields on non-simply connected domains. Loop surgery overhead
represents 43% of the computation in average.

Data Tets #H Loop surgery contour tree
(s. / %) (s. / %)

Cylinder Head (low res.) 116,274 82 0.45 68.18 0.21 31.82
Hood (low res.) 120,501 31 0.13 38.24 0.21 61.76
Trunk (low res.) 143,366 1 1.42 75.94 0.45 24.06

Liquid Oxygen Post 616,050 1 0.09 13.43 0.58 86.57
Brake Caliper (medium res.) 1,155,317 3 0.52 23.11 1.73 76.89

Brake Disk (high res.) 3,554,828 54 3.01 38.89 4.79 61.41

removed, allowing us to increase the number of tets and the number of
handles independently. The function value of each vertex is its y coor-
dinate. Figure 9 illustrates these meshes. Figure 10 shows the memory
footprint and the running time as a function of the number of handles
and the size of the mesh (in logarithmic scale). This experiment shows
that for a constant number of handles, our algorithm scales linearly
with the size of the mesh (slopes of one on the log-log scale). The
memory footprint follows the same linear behavior as the execution
time, due to non-optimized data structures for storing cutting surfaces.

4.5 Limitations
A limitation of the algorithm is that it requires the mesh to be man-
ifold with boundary to ensure that the boundary of the mesh is a 2-
manifold without boundary. Another is that it is often not possible to
disambiguate the behavior of contours by inspecting only the link and
sub-level sets of a saddle, therefore we perform extra cuts.

5 APPLICATION: FAST TOPOLOGICALLY CLEAN ISOSURFACE
EXTRACTION ON NON-SIMPLY CONNECTED DOMAINS

To demonstrate the potential and the versatility of our approach, we
generalize fast topologically clean isosurface extraction to non-simply
connected domains. In particular, we focus on the analysis of pres-
sure fields in mechanical design (where the majority of meshes have
handles), a case study where contour-tree based techniques could not
previously apply. One experiment in the process of mechanical design
involves the analysis of the resistance of mechanical pieces made of
different materials to pressure stress. In such experiments, mechanical
experts first consider simulation previews computed on low resolution
meshes. This step illustrates the approximate behavior of the material.
Its understanding is crucial to define correct parameters for the actual
simulation at high resolution. However, as shown in figure 11, this
preview can be noisy, making its interpretation difficult.

We overcome this problem with a fast topologically clean isosur-
face extraction system. First, the Reeb graph of the low-resolution
pressure stress function is computed in a pre-process. Then, local ge-
ometric measures [8] (extended to tetrahedral meshes) are computed
for each arc of the Reeb graph. Then, users may select thresholds for
geometric measures to simplify the Reeb graph, as described in [19].
This filtering of the arcs in our examples took at most 0.03 seconds.
Our approach maintains degree two nodes in the Reeb graph, repre-
senting regular vertices of the function. Consequently, the Reeb graph
provides a seed vertex for each contour the user wants to display. We
store the non-simplified arcs of the Reeb graph in a balanced interval
tree. An isosurface extraction query consists of searching in this tree
for a valid seed set. In our examples, this is performed in less than

Fig. 9. Handle stress tests: examples of generated meshes with in-
creasing number of handles and the Reeb graph of their height function.
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Fig. 10. Memory footprint (dashed) and running time (solid) when in-
creasing the number of tets for a mesh with constant number of handles.

nanoseconds, starting standard isosurface traversal techniques at these
seeds in interactive times.

Figure 11 illustrates this process on pressure stress functions com-
puted on a brake disk and a cylinder head, where the user progres-
sively increases a simplification threshold with the hyper-volume mea-
sure [8]. The Reeb graphs are simplified, and as a result, the small
connected components (noise) of the queried isosurface are progres-
sively removed and the most important features are highlighted. This
enables a direct visualization of the major trends of the simulation.
In the future, we would like to introduce metrics between the Reeb
graphs at low and high mesh resolutions, in order to provide quality
scores for the low-resolution previews, to accelerate the validation of
the final simulation.

6 CONCLUSION

In this paper, we present a novel algorithm for fast Reeb graph compu-
tation on tetrahedral meshes in R3. By providing theoretical results on
the topology of such Reeb graphs, we show their computation could
be reduced to a contour tree computation through a technique called
loop surgery. Experiments demonstrate in practice the scalability of
the algorithm. Moreover, we show that our approach improves in term
of running time, for the special case of volumetric meshes, the fastest
previous techniques on real-life data by several orders of magnitude.
We extend fast topologically clean isosurface extraction to non-simply
connected domains in the context of mechanical design.

Reducing the computational requirements of Reeb graphs to that of
contour trees enables the generalization of the contour-tree based vi-
sualization techniques to volumetric meshes of arbitrary topology and
thus opens several avenues for future visualization research. Further-
more, as contour tree computation has been shown to be paralleliz-
able [18], we plan to investigate a parallel version of the algorithm for
large-scale data analysis. An extension of our approach to volumetric
meshes not embeddable in R3 and of higher dimensions would address
a larger class of problems. However, as it is no longer true that such
meshes necessarily admit boundary, the loop surgery concept would
need to be extended and generalized.



Fig. 11. Topologically clean isosurface extraction on a pressure stress simulation. The Reeb graph is progressively simplified (from top to bottom)
with increasing hyper-volume scale. As a result, small components (noise) of the considered isosurface are progressively removed and the most
important features are progressively highlighted. Brake disk, from top to bottom: 92, 8 and 2 connected components. Cylinder head, from top to
bottom: 215, 58 and 9 connected components.
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