Julien Tierny
email: tierny@telecom-paristech.fr.

Joel Daniels
email: daniels@sci.utah.edu

Gustavo Nonato
email: gnonato@icmc.usp.br.

Valerio Pascucci
email: pascucci@sci.utah.edu

Claudio Silva
email: silva@sci.utah.edu

Gustavo Luis

Valerio Nonato

Member IEEE Cláudio T Pascucci

Senior Member IEEE Silva

T Áudio

• Tierny

Pascucci • Daniels

Interactive Quadrangulation with Reeb Atlases and Connectivity Textures Interactive Quadrangulation with Reeb Atlases and Connectivity Textures

Keywords: Quadrangulation, Reeb graph, Connectivity operators. !

HAL is

INTRODUCTION

The generation of quad meshes from triangle meshes is a challenging task that requires the simultaneous management of many objective and subjective quality criteria, such as feature alignment, orthogonality, regularity, and adaptive sampling. Automatic optimization of multiple criteria is difficult, where global and local constraints may contradict each other. For instance, enforcing local feature alignment may induce many vertices with non-ideal valences (not equal to 4), called extraordinary vertices, which affects the regularity of the mesh in a global way. Thus, the notion of an ideal quad mesh is application dependent but also subjective.

User assisted schemes overcome the difficulties of automated decisions by providing the user with the ability to influence the importance of the quality criteria and related constraints. Starting with the pioneering work of Krishnamurthy and Levoy [START_REF] Krishnamurthy | Fitting smooth surfaces to dense polygon meshes[END_REF], there has been substantial work in this area, for instance by Tarini et al. [START_REF] Tarini | Polycube-maps[END_REF] and Tong et al. [START_REF] Tong | Designing quadrangulations with discrete harmonic forms[END_REF]. We design a user-centric approach that offers exhaustive capabilities and comprehensive control during quadrangulation design. This work targets knowledgable users from the diverse application domains of quadrilateral meshes, otherwise frustrated by inappropriate design decisions made by automated techniques.

However, most of the existing semi-automatic techniques try to approximate the user's constraints through an optimization process [START_REF] Huang | Spectral quadrangulation with orientation and alignment control[END_REF], [START_REF] Bommes | Mixed-integer quadrangulation[END_REF], [START_REF] Ray | Geometry aware direction field design[END_REF], which may fail in precisely reproducing the exact configuration the user had in mind (inaccurate approximation of feature corners or misalignment of the extraordinary vertices). Moreover, they do not enable tools dealing with global and local constraints simultaneously. Also they often delegate tasks to the user not directly related to quad mesh design, such as the specification of paramaterization conditions or the selection of eigenfunctions. Finally, previous work has not been specifically designed to develop editing operations at interactive rates, a necessary feature for iterative artistic design.

We address these challenges, proposing a new quadrangulation framework that supports an explicit global and local control during the meshing process. In addition to design and editing at interactive rates, our framework provides flexibility by enabling the user to relocate extraordinary vertices as well as to modify mesh alignment, orientation and connectivity. These tasks are achieved through the new concepts of the Reeb atlas and Connectivity textures.

Contributions We reduce the challenges of quad mesh construction to that of topology aware scalar field design, while maintaining flexible control of the output mesh, at interactive rates. An itemized list of our main contributions:

• Flexible and interactive quadrangulation with explicit and robust control of extraordinary vertices and mesh alignment, experiencing response times of editing operations under half a second for models with up to 400,000 triangles. • Local and global design flexibility, control of the Fig. 1. For an input polygonal model (a), our interactive quadrangulation framework is driven by a user-defined scalar field (b), that guides a Reeb atlas segmentation of the model into a coarse quadrangulation capturing the dominant features of the shape (c) and allows control of the extraordinary vertices. Since the charts of the Reeb atlas have a guaranteed generic topology, they can be efficiently parameterized to the unit square (d). Designing connectivity textures of the unit square (e) enables an easy yet flexible quad-only meshing of the charts, providing a fine-grain control for the explicit capture of the high-frequency geometric details, while maintaining interactive rates of editing operations. location, valence, alignment of extraordinary vertices and of the orientation of the quads, at both a global and local level.

• Topology aware scalar field design, a novel technique that allows the explicit control of each contour of the field, to better capture the model's geometry and to design fractional critical contours, while maintaing a consistent field topology. • Reeb atlas parameterization, by exploiting the topological guarantees of a Reeb graph segmentation coupled with our topology aware scalar field design, we derive a robust technique for parameterization, topological and geometrical editing on surfaces of arbitrary topology. • Connectivity texturing, interactive local modifications to the output mesh with interaction tools similar to on-surface texture painting.

RELATED WORK

The literature on quad mesh generation has experienced considerable growth in the last few years. To better contextualize our work, this discussion organizes existing techniques as to the level of user control allowed within the varying approaches. For a more comprehensive discussion on the subject, we direct the reader to the surveys of Alliez et al. [START_REF] Alliez | Recent advances in remeshing of surfaces[END_REF] and Hormann et al. [START_REF] Hormann | Mesh parameterization: theory and practice[END_REF].

Automated techniques. Automated techniques aim at building a quadrangulation avoiding user intervention altogether. For example, connectivity-based approaches convert polygons into quad elements with local operators that are driven by advancing fronts [START_REF] Owen | Q-morph: An indirect approach to advancing front quad meshing[END_REF], simplification to base domains and regular refinement [START_REF] Daniels | Semi-regular quadrilateralonly mesh generation from simplified base domains[END_REF], merging adjacent triangles [START_REF] Lai | An incremental approach to feature aligned quad dominant remeshing[END_REF], and the projections of voxel vertices [START_REF] Jankovich | The graft tool: An all-hexahedral transition algorithm for creating a multidirectional swept volume mesh[END_REF], [START_REF] Bremer | Automatic semiregular mesh construction from adaptive distance fields[END_REF].

The global distribution of rectangular cells facilitates the construction of quad-dominant connectivity [START_REF] Viswanath | Quadrilateral meshing with anisotropy and directionality control via close packing of rectangular cells[END_REF]. Additionally, numerical integration of orthogonal vector fields [START_REF] Kalberer | Quadcover: Surface parameterization using branched coverings[END_REF] and principal curvature directions [START_REF] Alliez | Anisotropic polygonal remeshing[END_REF], [START_REF] Marinov | Direct anisotropic quad-dominant remeshing[END_REF] is successful in automatically constructing well shaped and aligned quad elements. Global parameterization schemes [START_REF] Ray | Periodic global parameterization[END_REF], [START_REF] Ben-Chen | Conformal flattening by curvature prescription and metric scaling[END_REF] and individual parameterization of localized charts [START_REF] Boier-Martin | Parameterization of triangle meshes over quadrilateral domains[END_REF] generate quality meshes dominated by regular vertices (valence 4). While these techniques have varying success concerning feature alignment, adaptive sampling, and element quality, automated methods do not provide flexible mechanisms to handle extraordinary vertices (valence other than 4) and mesh alignment that may lead to undesirable artifacts in the final mesh. As the concept of the ideal quad-mesh is versatile, application dependent and subjective, flexibility and control are of paramount importance.

User-driven techniques. We discuss user-driven techniques as those methods that provide mechanisms to allow additional user annotations of the model offering some relative control over extraordinary vertices and mesh alignment. For example, quadrangulations from scalar fields allow inputs including the specification of extrema vertices [START_REF] Dong | Harmonic functions for quadrilateral remeshing of arbitrary manifolds[END_REF] to control the placement of integer polar singularities that correspond to extraordinary vertices in the final mesh, as well as conductance terms to control mesh alignment [START_REF] Schall | Controlled field generation for quad-remeshing[END_REF]. Spectral quadrangulation requires the user to select the appropriate eigenfunction [START_REF] Dong | Spectral surface quadrangulation[END_REF], offering partial control over the extraordinary vertices (where each extremum of the eigenfunction has an unconstrained valence), and extended user inputs to influence alignment and importance sampling [START_REF] Huang | Spectral quadrangulation with orientation and alignment control[END_REF]. Direction field painting [START_REF] Bommes | Mixed-integer quadrangulation[END_REF], [START_REF] Ray | Geometry aware direction field design[END_REF] by the user influences mesh alignment while trying to determine automatically natural locations for extraordinary vertices. User-defined coarse quad meshes drive the global structure of a final quad representation, locally sampling each region with regular grids [START_REF] Krishnamurthy | Fitting smooth surfaces to dense polygon meshes[END_REF], or setting up linear system constraints for a global parameterization [START_REF] Tong | Designing quadrangulations with discrete harmonic forms[END_REF], or by adhering to specific connectivity rules to develop highly regular polycube representations [START_REF] Tarini | Polycube-maps[END_REF], [START_REF] Wang | Polycube splines[END_REF], [START_REF] Lin | Automatic polycube maps[END_REF].

Existing user-driven techniques permit increased control in the quad meshing process by allowing specification of alignment and/or handling of extraordinary vertices. However, the interactions may not be straightforward (with additional inputs dictated by the nature of the algorithm and not by that of the quad design process itself) nor offer a full exact control over the final mesh structure at interactive rates. In this work, we propose a framework that encorporates multi-level control, local and global, of the mesh structure and alignment, with interactive response to editing operations. and design flexibility. These goals are intended to support the user's artistic process by providing important functionalities, allowing constant modification of the design with interactive response times for any editing operation. Our local and global controls encourage a multilevel design philosophy: first, modifying the overall structure affecting the configuration of the extraordinary vertices, as well as coarse mesh alignment; then providing small-scale handling to capture the high-frequency geometrical details of the surface. The remainder of this section presents a framework overview, illustrated to the right and in Fig. 1.

FRAMEWORK OVERVIEW

We reduce the challenging problem of quad mesh construction to that of topology aware scalar field design to take advantage of the efficient nature of scalar field computation. The global geometry and structure of the quad mesh is inferred from a user-defined scalar field constructed over the input triangular mesh (Fig. 1b). This first stage of our framework uses an efficient linear system solver based on fast Cholesky fatorization of the Laplace operator. We build on this in a novel way with topological constraints for explicit control of all critical level sets within the scalar field (Sec. 6).

Despite its advantages of simplicity and speed, scalar field based quadrangulation [START_REF] Dong | Harmonic functions for quadrilateral remeshing of arbitrary manifolds[END_REF] can only model integer singularities, corresponding to the critical points of the scalar field and generating high-valence extraordinary vertices. In order to overcome this issue, while exploiting the speed and flexibility of scalar field design, we introduce the new notion of Reeb atlases (Sec. 5). Given a scalar field defined on the input mesh, we build the Reeb graph (Fig. 1c) to guide a chart segmentation with local parameterizations of the surface (Fig. 1d). Global editing operators of the Reeb atlas modify the scalar field by manipulating the geometry of structures derived from the Reeb graph.

After establishing a segmentation and local parameterizations that define a coarse quad mesh, we introduce the notion of connectivity textures (Sec. 7) that provide the user an easy and flexible localized control of the quad mesh construction. In this stage, the user defines the local connectivity as a texture living on top of the parameterization of the chart of interest. This connectivity texture abstraction increases the design flexibility by enabling any meshing strategy, not only restricted to parameterization contouring. A stitching procedure (Sec. 7.2) composes the connectivity textures to construct the quad-only mesh (Fig. 1e).

A typical usage scenario of our interactive approach is presented in Sec. 8 along with its performance evaluation.

INTERACTIVE SCALAR FIELD DESIGN

In our framework, the global control of the quad mesh is dependent on the design of a piecewise linear (PL) scalar field defined on the vertices of the input triangular surface and linearly interpolated over the triangles. The construction of this field drives global control mechanisms over the extraordinary vertices and high-level orientation of the mesh. To best fit our application, it is important for the scalar field to be smooth, to contain a controlled number of critical points, and to be computed and updated within interactive rates. Harmonic fields become a natural choice because their properties closely parallel these requirements. A harmonic field defined on a manifold surface is a scalar field f : S → R satisfying the differential equation,

∇ 2 f = 0, (1)
subject to boundary conditions (Dirichlet in our context).

In the discrete case, where the surface is given by a triangular mesh S, the Laplace-Beltrami operator ∇ 2 is usually discretized using cotangent weights [START_REF] Pinkall | Computing discrete minimal surfaces and their conjugates[END_REF], which leads to a symmetric and positive-definite sparse matrix L = W -D whose elements w ij of W are defined,

w ij = -1 2 (cot α ij + cot β ij) if edge [i, j] ∈ S 0 otherwise (2)
where α ij and β ij are opposite angles to edge e ij and D is a diagonal matrix with elements d ii given by row sums of W .

We make use of the penalty method to impose constraints to the linear system derived from equation [START_REF] Alliez | Anisotropic polygonal remeshing[END_REF]. Consider C, the set of indices of constrained vertices, then the harmonic scalar field is obtained by solving the linear system,

(L + P)f = P b, (3)
where P is a diagonal matrix with non-zero entries p ii = α only if i ∈ C and α is the penalty weight (in practice α = 10 8 [START_REF] Xu | Dynamic harmonic fields for surface processing[END_REF]). Constrained values are set within the vector b,

b i = s i , i ∈ C 0, otherwise (4)
where s i is the desired scalar value assigned to vertex i.

The main advantage of using penalty method to impose constraints is that supernodal schemes [START_REF] Davis | Dynamic supernodes in sparse cholesky update/downdate and triangular solves[END_REF] can be used to update (and downdate) the Cholesky fatorization, making it possible to include and remove constraints efficiently [START_REF] Xu | Dynamic harmonic fields for surface processing[END_REF].

The initial user input to our framework is the specification of the extrema of an harmonic function. It has been observed that in general the extrema are best placed at extremities of prominant features of the shape (Fig 2). From a meshing perspective, these extrema will correspond to polar extraordinary vertices (valence editing operations will be discussed in Sec. 6). We provide the user with an automatic initial suggestion aiming at detecting prominent features by computing the integral of the geodesic distance function [START_REF] Hilaga | Topology matching for fully automatic similarity estimation of 3D shapes[END_REF]. The maxima of this function become the set C of constrained vertices, where

C = {(v i , h i)} N i=0
is split into two subsets C 0 and C 1 in accordance with the height function h, where h min and h max are the respective minimum and maximum values of h, then

C 0 = {v i | v i ∈ C and h i < 1 2 (h min + h max)} and C 1 = C -C 0 .
We assign initial constraint values 0 and 1 to the vertices in C 0 and C 1 respectively (Eq. 4).

REEB ATLAS

Given a scalar field f over a manifold surface S, a straightforward quadrangulation strategy consists in computing a parameterization of S, with U : S → [0, 1], a normalization of f , and V : S → [0, 1], whose level sets align with the gradient of f . On the sphere with two antipodal extrema, U and V respectively map to the latitude and longitude coordinate systems, and contouring regularly along both U and V constructs a quad dominant mesh with nearly orthogonal edges. While this technique has been shown to be simple and efficient [START_REF] Dong | Harmonic functions for quadrilateral remeshing of arbitrary manifolds[END_REF], it is limited by the fact it can only model integer singularities, generating extraordinary vertices with high valence that correspond to the critical points of f (points where the gradient of f vanishes, see [START_REF] Edelsbrunner | Hierarchical Morse complexes for piecewise linear 2-manifolds[END_REF] for a description in the PL setting). To benefit from the simplicity and interactive nature of scalar field based quadrangulation, we extend this methodology with added structural control by leveraging topological structures inferred from the scalar field.

Reeb Graph

Reeb Graphs are traditionally defined through an equivalence relation [START_REF] Reeb | Sur les points singuliers d'une forme de Pfaff complètementintégrable ou d'une fonction numérique[END_REF]. In this discussion, we will use an alternate, but equivalent, formalism [START_REF] Tierny | Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees[END_REF]. Given a smooth manifold M, a retraction is defined as a continuous map such that the image is a subset of its domain M and the restriction of the map to the image is the identity [START_REF] Hatcher | Algebraic Topology[END_REF]. A contour retraction of M under a Morse function f is defined as a continuous map that retracts each contour (connected component of a level set) of f to a single point. By continuity, adjacent contours are retracted to adjacent points and distinct contours are retracted to distinct points. Then the Reeb graph R(f) is the contour retract of M under f . It consists of arcs and nodes, where branching only occurs at critical points of f . The field f can be decomposed into f = ψ • φ, where φ : M → R(f) is a contour retraction and ψ : R(f) → R is a continuous function that maps points in R(f) to the real line R.

Several algorithms have been proposed to compute a Reeb graph from a piecewise-linear scalar field defined on a triangular surface S [START_REF] Cole-Mclaughlin | Loops in Reeb graphs of 2-manifolds[END_REF], [START_REF] Pascucci | Robust on-line computation of Reeb graphs: simplicity and speed[END_REF]. Our experiments showed that the saddle contouring algorithm [START_REF] Patanè | A minimal contouring approach to the computation of the reeb graph[END_REF] presented the best performances in our context. Its complexity depends on the number of simplices in S and the number of saddles of f . Typically the user designed scalar fields generate few saddles, leading to virtually linear computation. Moreover, our implementation explicitly stores the regular vertices of f along the arcs of the Reeb graph. Although the Reeb graph is defined for manifolds of arbitrary dimension, we restrict the remaining discussion to closed 2-manifolds of arbitrary genus, denoted S (surfaces with boundaries are discussed in Sec. 8.1).

Reeb chart. Given the contour retraction φ : M → R(f), a Reeb chart S i is the preimage by φ of the interior of an arc A i of R(f) [START_REF] Tierny | Partial 3D shape retrieval by reeb pattern unfolding[END_REF]. By construction, Reeb charts are continuous pilings of closed 1-dimensional contours. Since they are the preimage of the interior of arcs, Reeb charts do not include critical contours and are thus open sets with the topology of an open annulus (a connected genus zero surface, with two boundary components excluded). Note that a boundary component collapses to a point if an arc is linked to an extremum. Because Reeb charts are constructed from the regular contours of f , their definition does not require f to be strictly Morse (i.e. degenerate saddles).

Given the segmentation of the surface into multiple Reeb charts, the Reeb atlas is defined as the union of these charts with respective local parameterizations. Because Reeb charts have a controlled topology, they are robustly, easily and efficiently parameterized with a generic strategy. The remainder of this section discusses the parameterization of a Reeb chart.

Reeb Chart Parameterization

Each Reeb chart S i of S is built by duplicating the triangles of S that fully map to the interior of the arc A i via φ. Boundary triangles, intersected by the critical contours adjacent to A i , are also inserted into S i , illustrated as grey triangles in Fig. 2. The boundary vertices of S i are projected onto the nearby critical contour curves.

A parameterization maps the open annulus S i to the unit square by solving two harmonic functions with Dirichlet boundary conditions (Fig. 3) using the solver presented in Sec. 4. The field U : S i → [0, 1] is computed to align with the level lines of f by constraining the boundary vertices of S i , projected to the two critical contours, to either U = 0 or U = 1 (Fig. 3). The orthogonal field V : S i → [0, 1] is computed by tracing a cutting streamline along the mesh edges of S i guided by the gradient of U , turning the annulus into a disc. The vertices of the cutting edges are duplicated and assigned values, V = 0 and V = 1, to map the boundary of S i to the unit square.

Each Reeb chart S i mapping through φ to an arc of R(f) adjacent to an extremum of f are parameterized differently (Fig. 3). The boundary triangles that neighbor the extremum are included within S i so that S i has a single boundary component and is homeomorphic to a disc. The boundary vertices are segmented into four contiguous polylines and assigned values mapping the boundary to the unit square. This parameterization scheme splits polar singularities into four fractional components, discussed in Sec. 6.2.

At this stage, the Reeb atlas represents a coarse quadrangulation of the surface. Each Reeb chart is equipped with its own local parameterization to the unit square and may be represented by a single quad in the coarse mesh. Note that saddles of f correspond to extraordinary vertices.

GLOBAL EDITING OF THE REEB ATLAS

We propose a set of editing operations to allow the user to control both the geometry and the topology of the Reeb atlas. To ensure interactive times in the design process, the Reeb atlas editing operations are based on modifications of the underlying scalar field f through fast updates provided by the supernodal schemes of the penalization solver (Sec. 4). These functionalities provide the user global control on the orientation of the final mesh by editing the geometry of Reeb chart boundaries as well as global control on the valence, location and alignment of extraordinary vertices.

The Reeb chart boundaries are defined by critical contours of f . While the relocation of minima and maxima is well understood, consisting of removing the original constraint and replacing it with a new one at a different location, moving saddle contours requires a bit more machinery. This section discusses the constraints we associate with the saddle contours (Sec. 6.1) and, consequently, our ability to control them (Sec. 6.2).

Enforcing the Geometry of Critical Contours

Given a specified critical contour, additional constraints are added to the Laplace system at the vertices of saddle triangles (triangles intersected by the critical contour) to ensure that the scalar field levelsets respect the user designed geometry. Assume that the user modified the geometry of a saddle contour with a scalar value s c (Sec. 6.2) so as to intersect the triangle t = {p 0 , p 1 , p 2 } on edges e 0 = p 0 p 1 and e 2 = p 2 p 0 (Fig. 4). The intersection points p in = p 0 + α 0 (p 1 -p 0) and p out = p 2 + α 1 (p 0 -p 2) and scalar values s in = s 0 + α 0 (s 1 -s 0) and where s 0 , s 1 , s 2 are associated with the vertices of t, assist in the definition of vertex constraints. The vertex p i of t is projected onto the segment p in p out yielding the point p i with a scalar value s i . The scalar constraint assigned to p i for t is si = s c + (s i -s i). The final constraint of each vertex is averaged with values of adjacent saddle triangles. This novel constraint computation enables strict control of the contour of f , aligning to the user's designed polyline.

s out = s 2 + α 1 (s 0 -s 2),
Introducing Dirichlet boundary conditions in this way might generate unintended critical points in highly constrained configurations. To remove this potential noise in f , we use a combinatorial cleanup procedure. The extra critical points are identified without ambiguity (not belonging to any constraints) and removed from the Reeb graph [START_REF] Edelsbrunner | Topological persistence and simplification[END_REF]. To reflect the changes induced by the simplification within the scalar field, we use a breadth-first traversal and simulation of simplicity ([START_REF] Gyulassy | Topologically Clean Distance Fields[END_REF], Sec. 3). This procedure guarantees the topological correctness of the designed scalar field.

Manipulating the Critical Contours

The modification of saddle curves is achieved via a 3dimensional critical contour widget (Fig. 4). This widget consists of rotational handles that allow the user to orient a cutting plane whose intersection with the surface defines the new saddle curve geometry. Anchors can be defined on the saddle curves to behave as endpoints for the widget, localizing the effects of the manipulation. This widget and its design interactions are further demonstrated in the accompanying video. We further describe the use of this widget for multiple important and novel controls in scalar field design.

Aligning Multiple Saddles. When the scalar field f admits a succession of nearby saddles (Fig. 5), it may be desireable to align the associated critical contours. In effect, this Aligning multiple saddles (Fig. 5) is achieved by first deleting the critical contours to align. Next, the user clicks on pairs of saddles to be connected with automated mesh traversals (shortest paths) providing initial curve segments. Then, the user can further re-orient them with the critical contour widget (the aligned curves are then constrained as discussed in Sec. 6.1). Subdividing Reeb Charts. In addition to merging Reeb charts, we support their splitting as well. Because the Reeb chart is defined as a collection of contours, splitting a chart into two can be achieved by flagging a particular contour (i.e. clicking on a vertex) and by construction each child chart maintains the topological guarantees of the Reeb atlas segmentation. Reeb chart splitting facilitates alignment of the scalar field, the charts' parameterizations and consequently the final quad mesh, to surface features. This functionality is demonstrated with the L-shape (Fig. 11) and Moai (Fig. 12) models.

Fractional Singularities

In the following, we assume that the final quad mesh is extracted by contouring the local chart parameterizations. As such, we are able to offer a formalization linking scalar field critical points and the extraordinary vertices of the related quadrilateral mesh. We introduce a novel mechanism for controlling the extraordinary vertices, managed at a global level during the scalar field design, through the new notion of fractional critical points (an extension of concepts from direction field design [START_REF] Ray | Geometry aware direction field design[END_REF] and surface parameterization [START_REF] Ray | Periodic global parameterization[END_REF], [START_REF] Tong | Designing quadrangulations with discrete harmonic forms[END_REF] to scalar fields).

Fractional Polar Singularities. When a boundary component of a Reeb chart is an extremum vertex, parameterizing the chart with a cutting streamline (as an open annulus) generates a polar singularity that leads to triangular elements around a high valence extraordinary vertex (Fig. 6, left). To guarantee the generation of a quad-only output mesh, we use the notion of fractional singularity. In particular, our default parameterization strategy for disc charts (Sec. 5.2) splits a polar singularity into quarter poles, where the resulting quad mesh containts 4 valence 3 vertices (Fig. 6,right).

An alternative proposed to the user is to split the polar singularity into 2 half-poles, constraining a sequence of mesh edges with constant min/max f values (0 or 1); then, the chart is parameterized with a cutting streamline (Fig. 6, middle). This configuration corresponds to the concept of non-isolated critical points in the smooth setting. We use Simulation of Simplicity (SoS) [START_REF] Edelsbrunner | Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms[END_REF] in the PL setting to maintain a consistent combinatorial representation of f . The resulting quad mesh has 2 valence-2 extraordinary vertices at the endpoints of the extremum segment.

Fractional Saddle Singularities. In the spirit of handling fractional polar singularities, we design fractional saddle singularities within the scalar field design. Saddle vertices correspond to extraordinary vertices within the final quad mesh (Fig. 7, left). We provide a set of atomic editing operations that enable the user to redistribute easily the high valency of saddles with the new notions of halfand quarter-saddles. While there exists multiple possible combinations of adjacent Reeb chart parameterization configurations, we abrieviate this discussion to the example shown in Fig. 7.

A non-degenerate saddle contour is a set of two closed curves admitting exactly one common point. Half-saddle splitting is supported by modifying the geometry of the saddle contour to be described, for example, with two closed curves linked by a middle segment that is aligned to the edges of the mesh. The half-saddles are defined at the intersection of the middle segment and the two closed curves (Fig. 7, middle). Due to our default parameterization method for discs, splitting polar vertices into quarter-poles, the construction of half-saddles can lead to the removal of pairs of extraordinary vertices in the quad mesh. In particular, the singularities of min/split-saddle and merge-saddle/max Reeb charts are removed. On the torus model, all singularities can be classified as these types, resulting in a completely regular quadrangulation (Fig. 8).

To design half-saddle configurations (Fig. 7, middle), the user deletes the original saddle contours and vertex, then initiates the tracing of two contours from manually chosen vertices. The middle segment is automatically computed as the shortest path defined along mesh edges between the two points. User-defined half-saddle contours can be geometrically edited via the critical contour widget to align to surface features. The network of critical contours defining the half-saddle is assigned a single constraint isovalue. Note, the middle segment relates to the notion of non-isolated critical point in the smooth setting, handled in the PL setting with SoS.

Splitting a saddle reduces the valence of the related vertex by redistributing it among the multiple, created extraordinary vertices. The quarter-saddle configuration (Fig. 7, right) further supports this observation, later exemplified on the Blade model (Fig. 12). Quarter saddles are designed by first deleting the original saddle contour and vertex. Then the user clicks on a reference vertex to extract its isocontour. Three other reference vertices are selected along this isocontour and pairs of reference vertices are connected through shortest path computations (Fig. 7, right). Finally, an extremum is inserted at the location of the original saddle to maintain a valid field topology. The user can use the critical contour widget to further align the contour (constrained as discussed in Sec. 6.1). In contrast, connectivity texturing maps user designed quadrangulations of the unit square to the parameterized chart (bottom) for improved flexibility and control. Above, we illustrate snapshots of the design process over time (bottom): in this example, the user triggered a few polychord insertions, followed by cube subdivisions to capture the feature corners at the top of the shape, and finally subdivided the texture to obtain the desired sampling density.

LOCAL EDITING OF THE CONNECTIVITY TEX-TURE

To this point the user-defined scalar field guides a Reeb atlas segmentation of the model, resulting in multiple individually parameterized mesh regions. In practice, quadrangulation techniques based on parameterizations derive a final quad mesh by uniformly contouring each parameter. This gridded sampling approach generates all ideal valence vertices internal to each segmented region; however, it lacks flexibility in the local design of mesh connectivity. We introduce connectivity textures that decouple the alignment of the final mesh elements from the underlying parameterizations to improve flexibility in the mesh design (Fig. 9). Connectivity textures. Similar to texture images, a connectivity texture is a user designed quadrangulation of the unit square that is mapped to a Reeb chart region based on its parameterization. This abstraction improves flexibility within the design process by allowing the user to explicitly insert additional extraordinary vertices and modify the orientation of the quads. Additionally, internally representing the quadrangulations within the plane, then projecting the points onto the Reeb chart improves robustness and speed, discussed throughout the remainder of this section.

Planar-based Projections. The vertices of a connectivity texture are efficiently projected to the Reeb chart mesh S i . To do so, we maintain a planar representation S i based on the parameterization (Sec. 5.2) stored within a binary space partitioning (BSP) tree. The BSP tree allows efficient lookups while the one-to-one and onto mapping of S i to the unit square ensures robustness. Given a quadrangulation Q of the unit square, the connectivity texture is projected onto S i in O(mlog(n)) time, where m is the number of quad vertices and n is the number of triangles in S i . The triangle

t ∈ S i containing a vertex v ∈ Q is found in O(log(n))
time by virtue of the BSP tree. The projection of v to S i is obtained based on its barycentric coordinates within t , computed on t.

While interactions described in the following section are performed in 3D-space, where the texture is mapped to S i , the underlying computations are performed on the unit square. The connectivity and vertex locations of the final quad mesh are stored as a texture. With the described projection methods, we are able to maintain interactive rates and guarantee smoothly interpolating projections during vertex movement and mesh subdivision operations.

Local User Interface

We support a collection of connectivity-based operators to interactively design and edit the quad elements as desired by the user's meshing paradigm. Initially the connectivity texture assigned to each Reeb chart region is the unit square (Fig. 9). The user designs a quadrangulation for each region by applying refinement, coarsening and improvement operations [START_REF] Kinney | Cleanup: Improving quadrilateral finite element meshes[END_REF], [START_REF] Staten | Post refinement element shape improvement for quadrilateral meshes[END_REF], [START_REF] Daniels | Quadrilateral mesh simplification[END_REF] to the quad elements.

Connectivity Operators. The user interacts with the connectivity texture design by simply selecting an element (or pairs of elements) for refinement and coarsening, illustrated by the time lapse in Fig. 9 and showcased in the accompanying video. We support global subdivision of the texture, user selected edge subdivision that initiates a polychord insertion, polychord deletion, cube-based subdivision for polycube-like meshing [START_REF] Tarini | Polycube-maps[END_REF], [START_REF] Wang | Polycube splines[END_REF], [START_REF] Lin | Automatic polycube maps[END_REF], quad-open andclose operators, as well as quad-edge and vertex-edge flipping. Meanwhile, we maintain a history stack to undo/redo the specified operations. By inserting additional extraordinary vertices, the mesh can be designed to precisely adapt sample densities to complex geometry and better align with mesh features as compared to isocontouring (Fig. 9).

Vertex Movement. Via connectivity textures, the ability to locally modify the location of vertices of the final quad mesh is straightforward and robust. The mouse movement is used to perturb the uv-mapping of selected vertices. The vertex re-projection onto the Reeb chart S i is efficiently computed, and the small processing required to ensure that the reprojected point moves in the same screen space direction as the mouse is negligible, maintaining interactive rates. It is important to note that vertex movement simultaneously executes local relaxation to allow easy displacements of groups of vertices in a single mouse move, while ensuring orthogonality of the quads, where identifying flags differentiate anchor vertices that remain unaffected by the smoothing, as shown in the video. T-junctions may be present after the greedy stitching algorithm exhausts the possible vertex mergers. Similarly addressed in geometry clipmaps [START_REF] Losasso | Geometry Clipmaps: Terrain rendering using nested regular grids[END_REF] and rectangular multichart geometry images [START_REF] Carr | Rectangular multi-chart geometry images[END_REF], we resolve such regions to develop a watertight mesh. Where clipmaps insert zeroarea triangles and multi-chart geometry images use local remeshing of boundary triangles, we must couple Tjunctions to ensure quad-only connectivity. Edge flips have been applied to merge nearby zero-area triangles [START_REF] Tarini | Practical Quad Mesh Simplification[END_REF], but this causes a twist in the mesh elements that negatively affects the alignment of mesh edges. Instead, we implement a greedy algorithm to resolve pairs of nearby zero-area triangles by inserting new quads between them. First, multiple T-junctions on a shared mesh edge are resolved by recursively applying the illustrated template (Fig. 10), such that any mesh edge contains at most one T-junction. Then breadth-first traversals compute the set of shortest paths of mesh edges between mesh vertices belonging to two different triangles for all triangles in the model. The mesh is cut along the shortest of these candidate paths, and new edges inserted between the duplicated vertices to form quad-only connectivity (Fig. 10). The breadth-first traversals and subsequent mesh surgery is repeated until all pairs of triangles are removed from the model.

DISCUSSION

Typical usage scenario. As described in the accompanying video, user interaction is required at two levels.

First, in the global view, the user places sparse segmentation inputs (corresponding to extrema of f) typically at the extremity of prominent features if he/she is unsatisfied with the automatic suggestion. The Reeb atlas is then automatically completed while guaranteeing the generation of an atlas made of charts with controlled topology. The user may decompose further the atlas by the addition or the subdivision of charts with click interactions. Also, a 3D widget is provided to edit the alignment of the boundaries of the chart, and consequently of their parameterization. Finally, the intersection points of the chart boundaries Fig. 12. Various examples of user designed quad meshes generated with our framework accompanied by quality statistics related to the vertices (vertex count, extraordinary vertex count and the max difference from the ideal valence), the average mesh angle and scaled Jacobian.

(corresponding to critical points of f) will correspond to extraordinary vertices in the final mesh. The user can edit the valence and location of those extraordinary vertices with a set of curve editing operations applied on the chart boundaries as demonstrated in the accompanying video.

Second, when the user is satisfied with the Reeb atlas segmentation, local views of each Reeb chart are opened to design connectivity textures via subdivisions, deletions and element movements. Typically, our experiments showed that connectivity texturing was often achieved through a sequence of global subdivisions, possibly with intermediate cube subdivisions (Fig. 9). Finally, an automated stitching algorithm generates the final output mesh by composing the connectivity textures.

Notice that although topology aware scalar field design is a central technique in our approach, this aspect is totally hidden to the user who does not have to be knowledgeable about topology or scalar field design. The system inputs are solely focused on the users' quality criteria, determining the exact placement and valence of extraordinary vertices as well as localized edge alignment. These controls are specific and exact as the user does not abstractly affect the mesh through the modification of algorithmic parameters, i.e. eigenfunction selection nor boundary parameterization specifications. Because the Reeb graph can be a close approximation of the medial axis of the shape [START_REF] Lin | Automatic polycube maps[END_REF], it aids in the creation of a coarse quadrangulation for the model that captures dominant features with minimal amount of interaction. Furthermore, the related theory of the Reeb graph provides important topological guarantees for our chart segmentation, enabling generic connectivity texture mapping.

Experimental Results

We implemented our interactive quadrangulation framework in C++ using the CHOLMOD libraries for our linear system solver [START_REF] Davis | Dynamic supernodes in sparse cholesky update/downdate and triangular solves[END_REF]. The timings reported in this section are the results collected from experiments run on commodity desktop computers with Linux and MacOS.

The total duration of a quadrangulation session is variable (from a few seconds to several minutes for the models presented in this paper, as demonstrated in the accompanying video), depending on the complexity of the input shape as well as the user skill and design exigence. More interestingly, and quantifiable, are the response timings for computations imposed by our system. The boxplots (Fig. 13), illustrating the median, minimum, maximum, as well as lower and upper quartiles, highlight the timings acquired from our experiments for the scalar field update, Reeb graph computation, Reeb chart parameterization, and connectivity texture subdivision and coarsening operations. The median response timings are well below 0.5s, allowing for real time interaction.

We showcase several models generated using our approach in Figs. 11, 12, and 14, illustrating important features of our framework. The L-shaped meshes, with cube-like and polycube-like connectivity, and the bitori meshes, illustrating a single saddle vertex with valence 8 versus two half-saddles with valence 6, spotlight the design flexibility (Fig. 11). The Moai and Bimba models showcase the removal of polar vertices from genus-0 models. The Botijo model highlights the advantage of the Reeb atlas abstrac-Fig. 13. Boxplot response timings of our system computations, measured in seconds as a function of the number of input triangles. Fig. 14. The comparison of our technique against quad meshes from multiple algorithms illustrates our improved control of extraordinary vertices, i.e. location and valence, as well as element alignment, while producing quality output models for the Rocker Arm and Bimba models. Extraordinary vertices with a valence greater or less than four are respectively reported with blue and green spheres. Shaded quad-strips highlight the twisting occurring with previous approaches along sharp features (blue) or between extraordinary vertices (green). tion, capable of managing a user-driven segmentation of a model with complex topology, while providing topological guarantees necessary for parameterization. Our framework handles mesh boundaries by either constraining a contour of f along the boundary, i.e., the Hand, or by filling the boundary then removing quads from the texture.

In many cases, especially when the Reeb chart describes a cylindrical mesh component, regular subdivision provides fast and easy high-quality quadrangulations of the Reeb charts, i.e., the Botijo handles, the Hand's fingers, the torso's of the Moai and Bimba, as well as pieces of the Blade and Rocker Arm models. The added flexibility of connectivity texturing improves the alignment of the final mesh to surface features (sharp features on the the Rocker arm, Botijo and Blade models) as well as user designed adaptivity to better sample high frequency geometry (the Bimba's bow, zoom inset in Fig. 14).

The number of extraordinary vertices is strictly controlled by the user, and can be maintained to a desired value. The quality of the meshes used throughout this paper is measured in the histograms to the left. The quality of the output models is dependent on the diligence of the user, but, as demonstrated by the histograms, high quality meshes that are numerically stable for finite element simulations can be generated using our system.

Comparison

In this section, we compare our interactive approach to automatic [START_REF] Daniels | Semi-regular quadrilateralonly mesh generation from simplified base domains[END_REF] and semi-automatic techniques [START_REF] Dong | Spectral surface quadrangulation[END_REF], [START_REF] Huang | Spectral quadrangulation with orientation and alignment control[END_REF], [START_REF] Bommes | Mixed-integer quadrangulation[END_REF], [START_REF] Ray | Geometry aware direction field design[END_REF] for a mechanical and an organic model (Fig. 14). Included in Fig. 14 are quality statistics of the assorted models, demonstrating that our approach generates quad meshes with objective quality scores that are on par with other state-of-the-art techniques. More interestingly, the visual comparison highlights advantages of our approach which are not directly reflected by objective quality measurements, such as: sharp feature preservation, extraordinary vertex alignment and localized adaptative sampling.

A key advantage of our approach is its ability to robustly control the number, location, valence and alignment of the extraordinary vertices. In contrast, other techniques (Fig. 14) provide output meshes that approximate the user's input constraints. As a result, these methods may produce undesireable effects related to extraordinary vertices, such as inaccurate approximation of feature corners, misalignment of the emminating mesh edges, and extraordinary vertex clustering. By strictly designing our meshes to align extraordinary vertices through straight edge paths, in contrast to [START_REF] Bommes | Mixed-integer quadrangulation[END_REF], [START_REF] Ray | Geometry aware direction field design[END_REF] but similar to [START_REF] Dong | Spectral surface quadrangulation[END_REF], [START_REF] Huang | Spectral quadrangulation with orientation and alignment control[END_REF], [START_REF] Daniels | Semi-regular quadrilateralonly mesh generation from simplified base domains[END_REF], we design quad models that are conducive to texturing, coarsening and smooth surface fitting via subdivision and spline-based surfaces.

As illustrated in Fig. 14, the extraordinary vertices of both our Rocker Arm and Bimba models are well aligned, placed at strategic locations, and the mesh edges between them are aligned to the sharp features of the models. In particular, we focus the reader's attention to the protruding corners on the top of the Rocker Arm where our approach exactly captures these elements; as well as the bottom of the Bimba model to which our edges are aligned and extraordinary vertices placed within corner regions. In contrast, note the quad strip twisting that occurs across sharp features with the other techniques.

Another major distinction between our approach and the semi-automated techniques is our ability to design a configuration that captures the symmetry of the model that may be difficult to quantify by (semi-)automatic algorithms. For example, the Bimba model contains symmetric extraordinary vertices, i.e., the face and shoulders, with edges aligned to the model's curvature, i.e., the face, neck and chest. Further, the design of the connectivity textures on a local scale allows the user to adapt the sample density, capturing high frequency geometric detail and symmetry of the bow in the Bimba's hair (zoom inset in Fig. 14).

Limitations

An important observation of this work is the link between extraordinary vertices and critical points of the underlying scalar field, handled by the Reeb atlas segmentation algorithm. The system requires training of users to understand the connections between the interactions on the Reeb atlas and the resulting extraordinary vertices, as well as becoming familiar with the interaction tools. Our current interface can benefit from more straightforward control mechanisms to facilitate user interactions. However, as these aspects of the user interface do not affect the discussed underlying technologies, we view this as out of the scope of this research. Furthermore, optimal alignment of quad meshes often requires adaptive sampling, introducing many extraordinary vertices. While this is completely feasible within our framework (demonstrated in multiple models in this paper), it can become time consuming to design and manipulate such models.

CONCLUSION AND FUTURE WORK

Our technique bridges the gap between purely geometrical approaches and combinatorial connectivity techiques to leverage advantages of the two distinct worlds within one coherent system. This study provides interesting insights, linking scalar field topology to extraordinary vertices and their global alignment. Our Reeb atlas, the mechanism by which we induce the alignment and construct a coarse quadrangulation of the model, enriches scalar field design by providing topological structure and awareness.

We develop a multi-level methodology that, in addition to global Reeb atlas updates, supports local editing operations via connectivity textures to explicitly define the final mesh structure. Reeb atlas and connectivity textures are two complementary tools, with partial overlapping scopes, that uniquely provide global and local controls (respectively). Designing a complex Reeb atlas will tend to allow simple connectivity textures (the Hande, Bitorus and Botijo Models, Fig. 12); whereas, designing a simple Reeb atlas will tend to require complex connectivity textures (RockerArm, Fig. 9).

Our connectivity textures completely localize the global effects of quadrangulation design, limited to a single Reeb chart. Relying on the topological information provided by the Reeb atlas, our framework is able to resolve conflicts between regions meshed with different sample densities. The local operations are performed over the unit square for efficient and robust computation and projection. We demonstrate the highly interactive (response times below 0.5s) and extremely flexible nature of our approach throughout the paper.

This paper focuses on developing underlying technologies that provide the flexibility, interactivity and robustness required by a user-centric meshing process. Based on the generality and flexibility of our framework, in future work we intend to enrich our system's interface with additional automated user assistances to augment the designer's productivity. At a global scale, improved heuristics may suggest better initial Reeb atlases, possibly providing hints that contain aligned and/or fractional saddles. At a fine scale, geometrical analysis in the parametric domain of individual Reeb charts can lead to automated initial geometry-aware connectivity textures, on which a user may interactively edit. Finally, it will be interesting to further explore the full potential of connectivity textures to design meshes with arbitrary polygons, i.e., hexagons (right), as well as extensions to volumetric shape representations.

 c o n n e c t i v i t y t e x t u r e s l o c a l e d i t i n g i n t e r a c t i o n s c a l a r f i e l d d e s i g n R e e b g r a p h c o n s t r u c t i o n g l o b a l e d i t i n g i n t e r a c t i o n i n p u t p o l y g o n a l me s h

Fig. 2 .

 2 Fig. 2. The harmonic scalar field f is drafted by the user, modifying the automatically suggested extrema. Reeb charts, constructed from the arcs of the Reeb graph, segment the model into multiple regions with known topology: annuli and discs.

Fig. 3 .

 3 Fig. 3. Our parameterization strategy maps the boundaries of the Reeb chart (homeomorphic to an open annulus or open disc) to the unit square by defining U V Dirichlet boundary conditions within the Laplace system. Open annuli are cut into discs by a streamline guided by the scalar field gradient.

Fig. 4 .

 4 Fig. 4. Reorienting a saddle contour: the original levelset curve (a) is modified through the critical contour widget (b) where the mesh-plane intersection describes the new contour geometry (c). Saddle triangles are constrained (d) to ensure the scalar field respects the critical contours (e).

Fig. 5 .

 5 Fig. 5. Thin Reeb charts (left and top) result where multiple saddles have nearly equivalent scalar values. Our global editing operations support the geometric contol of the contours, linking the saddle vertices and removing thin Reeb charts (right and bottom).

Fig. 6 .

 6 Fig. 6. Fractional poles: a polar vertex (left) split into 2 halfpoles (valence 2, middle) and 4 quarter-poles (valence 3, right).

Fig. 7 .

 7 Fig. 7. Fractional saddles: a saddle vertex (valence 8, left) split into 2 half-saddles (valence 6, middle) and 4 quartersaddles (valence 5, right).

Fig. 8 .

 8 Fig. 8. The torus remeshed with fractional half-saddles (right) does not contain any extraordinary vertices.

Fig. 9 .

 9 Fig.9. Connectivity texturing of a challenging geometry (multiple sharp features) on a purposely coarse segmentation. For a given Reeb chart (left), global subdivisions reproduce meshing results from isocontouring (top). In contrast, connectivity texturing maps user designed quadrangulations of the unit square to the parameterized chart (bottom) for improved flexibility and control. Above, we illustrate snapshots of the design process over time (bottom): in this example, the user triggered a few polychord insertions, followed by cube subdivisions to capture the feature corners at the top of the shape, and finally subdivided the texture to obtain the desired sampling density.

7. 2

 2 Final Mesh Stitching Because the quadrangulations are constructed individually for each Reeb chart region, the final composition of the mesh is handled with a post process stitching and localized vertex relaxation. The stitching algorithm greedily merges pairs of nearest boundary vertices. Two vertices, v a and v b , are merged if the distance between them, d ab = |v av b |, is smaller than a ratio of the minimum distance to the neighboring boundary vertices, d < αd a and d < αd b (in practice α = 0.25), where d a = min(|v i -v a |, |v j -v a |) and d b = min(|v m -v b |, |v n -v b |). The vertices v i,j and v m,n are the neighboring boundary vertices of v a and v b respectively.

Fig. 10 .

 10 Fig. 10. T-junctions are resolved by the stitching process: inserting new quads where multiple T-junctions share a common edge (a), or performing mesh surgery along the path between two nearby triangles and inserting quads along the cut (b).

Fig. 11 .

 11 Fig. 11. Our multi-level approach to quad design (global segmentation and local design) is flexible, making it possible to design different quad connectivities and extraordinary vertex types over the same model. Note that a Reeb graph with a single arc is divided (left), describing two Reeb charts with disc topology.