
HAL Id: hal-01211167
https://hal.science/hal-01211167

Submitted on 3 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring routing tables in the internet
Elie Rotenberg, Christophe Crespelle, Matthieu Latapy

To cite this version:
Elie Rotenberg, Christophe Crespelle, Matthieu Latapy. Measuring routing tables in the internet.
The Sixth IEEE International Workshop on Network Science for Communication Networks, Apr 2014,
Toronto, Canada. pp.795-800, �10.1109/INFCOMW.2014.6849332�. �hal-01211167�

https://hal.science/hal-01211167
https://hal.archives-ouvertes.fr

Measuring Routing Tables in the Internet

Élie Rotenberg

UPMC Univ Paris 6, LIP6

CNRS, ENS de Lyon

Elie.Rotenberg@lip6.fr

Christophe Crespelle

Université Claude Bernard Lyon 1, DANTE/INRIA

LIP, CNRS, ENS de Lyon, Université de Lyon

Christophe.Crespelle@inria.fr

Matthieu Latapy

UPMC Univ Paris 6, LIP6

CNRS

Matthieu.Latapy@lip6.fr

Abstract—The most basic function of an Internet router is to
decide, for a given packet, which of its interfaces it will use
to forward it to its next hop. To do so, routers maintain a
routing table, in which they look up for a prefix of the destination
address. The routing table associates an interface of the router to
this prefix, and this interface is used to forward the packet. We
explore here a new measurement method based upon distributed
UDP probing to estimate this routing table for Internet routers.

I. INTRODUCTION

The role of Internet routers is to forward packets locally to

ensure that at the global scope, the packets traveling through

the network will reach their destinations. The routing heuristics

are diverse, but the result of routing itself can always be seen

as a collection of pairs of a packet, and an interface of the

router, which it uses to pass the packet to its gateway for its

next hop.

However, the details of how this interface is chosen are

diverse, and generally not publicly disclosed. The exact nature

of the decision leading to the choice of a particular interface

for a given packet can depend on multiple factors, including

the destination address prefix, the AS of the destination, the

packet IP identifier, static configuration, random or pseudo-

random load-balancing factors, and more, implementing the

routing policy of the router. In its most general definition, a

routing table of a router r is a set of rules that design which

interfaces of r should be used to send or forward a message

towards a given destination. It is a set of rules where each

rule D → I indicates that for any given destination d ∈ D, an

interface i ∈ I should be used by r to send a message towards

d. The sets D of destination are either included one in another

or disjoint for consistency. (In practice, each D is often a set

of destination addresses matching a certain binary prefix)

The knowledge of the actual routing tables, resulting from

both static and dynamic configuration, is critical for under-

standing and modelling routing in the Internet topologies. They

define the local behavior of the routers from which the global

behavior of the network emerges.

We present here a measurement method that allows to

estimate partially or totally such “routing tables”. We use

a measurement primitive, UDP Ping, to measure the inter-

face used by a target router to route traffic back towards a

given monitor source (Section II-A). This primitive is used

repeatedly from a large amount of distribution monitors to

gather information (Section II-B). This information is then

processed into constraints on the rules of the routing table

(Section III). Several assumptions may then be used to further

infer these rules, estimating more practically the possible

routing table of the target routers (Section IV). We finally

assess the principle of this method by conducting a series of

practical measurements (Section V).

II. MEASUREMENT METHOD

A. UDP Ping

UDP Ping is a measurement primitive inspired by IP aliasing

techniques that we have developped in the context of router de-

gree measurement [1], which allows to discover the interfaces

used by a target router to send messages towards monitors that

we control.

Let t be an IP adress which we call the target, and r(t)
the node (router or end-host) to which t belongs. RFCs [2]

and [3] state that when a monitor m sends an UDP packet

with destination t on an unallocated port, then r(t) should

answer with and ICMP Destination Unreachable packet to m.

An important detail is that the source of this ICMP packet is

in principle the IP address of the interface i used by r(t) to

send packets towards m. (See Fig. 1)

r(t)

ti
m

Fig. 1. Monitor m sends a UDP packet with destination address t on an
unallocated port; the node r(t) answers with an ICMP packet with source
address i, and thus m discovers interface i of r(t).

We have studied extensively UDP Ping in a previous work

[1]. We concluded that when r(t) properly implements the

RFCs (which we can detect for a given router), then it allows

to reliably discover its interfaces. A single run of UDP Ping

from a monitor m leads to the observation of an interface

i used by r(t) to route towards m. However, r(t) may not

always use i to route towardsm. To capture all such interfaces,

we use UDP Ping repeatedly to observe all of them. The set

m(t) = {i1, i2, . . .} constructed by repeatedly probing r(t)
from m is the set of all the interfaces that r(t) uses to route

towards m.

2

B. Distributed UDP Ping

While UDP Ping itself only provides information on the

interfaces used by a target to route towards a given monitor,

it can be used distributedly to gather complete information

depending on the quality of the monitor set. As explained in

[4], the distributed usage of UDP Ping from a monitor set

that is large enough and well distributed in the Internet allows

to discover all the network interfaces of Internet core routers.

Instead, border interfaces would be very hard to observe.

Depending on the configuration of the target, the topological

meaning of “well distributed”, i.e. “leading to the inference of

many rules”, could be well distributed in the IPv4 adressing

space, or in ASes.

Given a monitor set M = {m1,m2, . . .}, using UDP Ping

from each monitor towards a target t leads to the observation

of a set M(t) = {(m,m(t))}, where m is an IP address and

m(t) is the set of interfaces of r(t) used to forwards packets

towards m.

III. CONSTRAINTS OBTAINED FROM MEASUREMENT

The routing tables of routers have structural specificites

(Section III-A) that allows us to use the results of the measure-

ment method described in Section II-A to deduct constraints

on the routing table of a given target router (Section III-B).

A. Structure of the rules

As presented in Section I, the routing table of a router r is

composed of a list of rules {Dk → Ik}, where Dk is a set of

destination addresses, and Ik is the set of interfaces used by

r to route towards the destinations in Dk.

By design, routing tables share a number of structural

properties resulting from basic optimization concerns. (1) the

interface sets are minimal: each interface in a given Ik is

actually used to route towards each destination in Dk (no

“unused” interface inDk). (2) two destination sets Dk andDk′

are either included one in another, or disjoint, so that the most-

specific destination set lookup for a given destination is fast.

(3) thanks to the very high practictal efficiency of dedicated

hardware, eachDk is usually a prefix class: there exist a binary

prefix pk of length nk such that Dk is exactly the set of IP

addresses that match pk. We then denote Dk = pk/nk. In this

form, the rules can be conveniently represented in an actual

table (See Fig. 2), hence the name “routing table”. (4) as a

consequence of (2) and (3), there can not be two rules p.0→ I
and p.1 → I: they would be replaced by a single, equivalent

rule p→ I .

B. Constraints from Distributed UDP Ping

The results from Distributed UDP Ping from a monitor set

M towards a router r(t) (Section II) can be interpreted in

terms of rules of the routing table of r.
Distributed UDP Ping outputs a list M(t) = {(m,m(t)}

where each m is an IP address and m(t) is the set of all

the interfaces of r(t) uses to route towards m. This means

that for any rule Dk → Ik in the routing table of r(t) such

that m ∈ Dk, then each interface in m(t) is also in Ik, i.e.

Rule k Destination prefix p/n Exit interface(s) I
1 128.32.0.0/13 83.238.96.26

2 128.40.0.0/13 195.114.175.54

3 128.112.139.64/26 83.238.96.26

4 128.112.139.0/26 83.238.96.26,

195.114.175.54

5 128.114.63.0/26 83.238.96.26,

195.114.175.54

.

Fig. 2. Example of a routing table. The router has two interfaces, 83.238.96.26
and 195.114.175.54. If the router needs to route a packet, it choses the longest
matching prefix from its table and forwards it to the next gateway through one
of the exit interfaces. Rule 1 matches a prefix of length 13. Rules 4 and 5 show
examples of multiple exit interfaces configurations, probably implementing a
form of load-balanding.

m(t) ⊆ Ik. Conversely, since all the interfaces used by r(t)
to route towards m are in m(t), then Ik ⊆ m(t). In terms of

prefixes, this means that there must exist a prefix pm/nm such

that m matches pm, pm/nm → m(t), but also that for each

m′ also matching pm, then m(t) = m′(t).
Therefore, the constraints deducted from the observation

from each monitor m are:

• There must exist a rule p/n→ m(t) such that m matches

p. (Existence constraint)

• For each rule p′/n′ → I such that m matches p′, then
I = m(t). (Consistence constraint)

Note that the constraints deducted from the measurement

largely depend on the nature of the monitor set M . For

exemple, let us assume that two monitors m0 and m1 are

such that m1(t) 6= m2(t), and their longest common prefix

is p, such that m0 matches p.0 and m1 matches p.1. Then
their can be no rule p/n → I in the routing table of r for

any I , nor any rule p′/n′ → I where p′ is a prefix of p. The
implications of this constraint largely depends on p, therefore
on the adresses of m0 and m1.

IV. ROUTING TABLE INFERENCE

The constraints retained from observation in III-B don’t

directly provide an estimate of the routing table. Many routing

table are compatible with these constraints. However, combin-

ing the constraints with additional assumptions allows us to

infer realistic rules. We will examine three inference patterns,

using different assumptions to infer the routing table of a

router.

A. Most specific routing table

The most simple inference pattern simply translates the

Existence constraint from Section III-B into rules, using the

trivial prefix m/32 for each monitor m : m/32→ m(t). We

then merge duplicate rules as described in Section III-A(2).

The Consistence constraint is trivially ensured, since each

rule is either of prefix-length 32 or resulting from a duplicate

merge.

This routing table is rigorously consistent with the observa-

tion, and makes no additional assumption at all. However, its

3

reach is very limited, since it only provides routing information

towards destination inside our monitor set. We name this

infered table the most specific routing table.

B. Generalizing hypotheses

At the extreme opposite of the most specific routing table

(Section IV-A), there is another routing table that is compatible

with the observation: the least specific routing table. It consists

on the set of rules with the largest sets of destinations (or

the shortest prefixes) that are compatible with the Consistence

constraint from Section III-B. While this routing table is very

general, however, it is very hard to ensure its completedness:

one may find a destination d which, if added to M , would

produce incompatible rules. For example, if M is a single

monitor m1 such that m1(t) = {i1}, then the least specific

routing table consists in only one rule, {∅/0→ {i1}} (“empty

prefix routes using i1”). If there exists a host m2 such that

m2(t) 6= {i1}, then adding m2 to the monitor set makes the

routing table incompatible. Note that, the larger and the better

distributed M is, the harder it is to find destinations that are

not compatible with the routing table, thus the more relevant

the least specific routing table is.

The actual routing table of a router is somewhere between

the most specific (“least informative but most accurate”)

and the least specific (“most informative but least accurate”)

routing table. Using well-chosen generalizing hypotheses, we

can extend the rules infered from the Existence constraint.

Such a generalizing hypothesis consists in an assumption on

the structure of the prefixes in the ruleset. It can be elaborated

by leveraging knowledge on the networks, such as practical

constraints or common implementations. In addition to the

least specific routing table in Section IV-C, we will discuss

one such generalizing hypothesis based on AS prefixes in

Section IV-D.

C. CIDR prefixes generalization

The least specific, most generalized routing table is actually

a generalizing hypothesis resulting from the CIDR convention.

For many reasons, among which the practical size of the

routing tables, the CIDR address allocation method [5], [6], [7]

was introduced in 1993 and is now a both formal and practical

standard. The adoption of CIDR means that subnetworks are

characterized by address prefixes. This allows for efficient

routing table compression, since the rules can be expressed

in the form of prefix-matching rules, both easy to lookup

using dedicated hardware [8] and of small size compared the

classful rules of the early Internet. From an inference point

of view, this means that each prefix-based rule only needs

one representant to be discovered. The least specific routing

table is the routing table in which the prefixes are as small

as possible while remaining compatible with the observation.

Algorithm 1 is designed to construct this table efficiently.

1) Inference algorithm: I is an associative map indexed

with the monitor adresses that contains the set of observed

interfaces for a given target when responding to each monitor,

i.e. I[m] = m(t), and I[a, b] designates the list of I[k] for

Algorithm 1 CIDR table inference

function SPLIT(I , p, a, b) # Returns a pivot to split the

subset I[a, b] with a 1 increment in prefix length

p′ ← p.append(”1”)
return binary search I[a, b] for the first address starting

with p′

function ALLSAME(I , a, b) # Checks whether all the values
in the subset I[a, b] are identical

for all k ∈ [NEXT(a)..b] do
if H(I[k]) 6= H(I[a]) then # Hashes of the values

are used for constant-time comparisons

return FALSE

return TRUE

function INFERSUBTABLE(I , p, a, b)
if ALLSAME(I , a, b) then

return {”p→ I[a]”} # Adds a rule to the ruleset

else

a′, b′, c′ ← a, SPLIT(I , p, a, b), b
R0 ← INFERSUBTABLE(I , p.append(”0”), a′,

prev(b′))
R1 ← INFERSUBTABLE(I , p.append(”1”), b′, c′)
return R0 ∪R1

function INFERTABLE(I)
Sort I by IP address in binary form # Exposes PREV,

NEXT, BSEARCH, FIRST and LAST for the keys of I .
Hash the values in I # Exposes H for the values in I
return INFERSUBTABLE(I , ””, FIRST(I), LAST(I)) #

Initial call with empty prefix

a ≤ k ≤ b. The algorithm first sorts I by keys so that it

can perform a fast binary search of prefixes cuts. The main

recursive function returns, for a given binary prefix p and

a contiguous subset of I (described by its boundary keys a
and b), the set of rules required to be consistent with the

data containing the least number of rules with the shortest

(most general) prefixes. To do so, it recursively calls itself

with increasingly long prefixes, stopping when the subset is

either empty or all its elements observe the same interface

set (indicating that they can be grouped under a single rule).

If at least two elements of the subset require different rules,

then the prefix length is increased to further differentiate the

subsets.

2) Proof and speed of the algorithm: Algorithm 1 consists

in one entry routine and three subroutines.

The subroutine SPLIT(I , p, a, b) takes 4 arguments: I is

a lexically key-sorted dictionary, containing key-values pairs.

Each key is a monitor identifier (its IP address) and each value

is the set of the interfaces observed by this monitor for the

given target. p is a binary prefix, represented by a byte row.

a and b are monitor addresses. It is assumed that the subset

[a, b] of keys lexically comprised between a and b share a

common prefix p. SPLIT returns the first (in lexical order)

monitor address x such that all the keys x0 < x match the

prefix p.0 and all the keys x1 ≥ x match the prefix p.1. Since

4

I is lexically sorted, then [a, b] is lexically sorted too and a

binary search allows to find x in O(lg(|[a, b]|)).
The subroutine ALLSAME(I , a, b) takes 3 arguments defin-

ing a subdictionary I[a, b] of sets of observed interfaces

indexed by observing monitor. ALLSAME tests whether all

the elements I[x] for x ∈ [a, b] are equal. This is achieved by

comparing each I[x] for a < x ≤ b to I[a]. If at least one

element doesn’t match, the routine returns FALSE. Otherwise,

it returns TRUE. By pre-hashing the values of each I[x], the
equality test is performed in O(1), and the full execution of

the routine completes in O(|[a, b]|).
The core subroutine INFERSUBTABLE(I , p, a, b) takes 4

arguments, under the same restrictions as the arguments of

SPLIT. It returns a list R of rules in the form pk → Ik such

that:

• R is consistent with the observation, i.e if x matches pk
then I[x] = Ik.

• R is minimum, i.e. there exists no ruleset R′ such that

|R′| < |R| and R′ is consistent with the observation.

This can be proven by recurrence on the value of n = Pmax−
|p| where Pmax = 32 is the maximum prefix length.

If n = 0, then p is a full-length prefix, actually matching

exactly one address, a = b. Then L = {p = a→ I[a] = I[b]}
is the minimal solution.

If n > 0, then there are two cases.

• All the elements in I[a, b] are equal, in which case L =
{p → I[a] = I[b] = I[x]} for any x ∈ [a, b] is the

minimal consistent solution.

• There are at least two elements in I[a, b] that are not

equal, say x and y. x and y have atleast one different

bit, proving that p is not specific enough. p is further

specified by appending one bit to the pattern, either 0 or

1, using the least-specific split computed by SPLIT and

calling recursively calling the subroutine with a prefix-

length of |p|+1. By recurrence, the two sub-solutions are

optimal, and therefore the union of the two solutions are

also optimal, since there exist no solution with a prefix-

length of |p|.

The subroutine internal calculations are: the call to the sub-

routine ALLSAME, executing in O(|[a, b]|), the call to the

subroutine SPLIT, executing in O(lg(|[a, b]|)), and finally the

recursive calls. An amortized analysis shows that for each

prefix length l′ ≤ |p|, each element I[x] is only looped trough

once, therefore bounding the complexity to O(|[a, b]|∗(Pmax−
|p|)) where Pmax is the maximum prefix length (32).

The main routine INFERTABLE(I) takes only one parameter

representing the observed data. It returns the minimum CIDR

ruleset consistent with the observation. It firsts builds the

required representation to fit the assumptions above, in partic-

ular that I is a sorted dictionary allowing for efficient binary

searches and a proper chaining allowing the usage of NEXT

and PREV on the keys of I . The values of I are also hashed to

expose a constant-time equality test through the memoized H

hash function. It then calls the INFERSUBTABLE subroutine

with the initialization parameters: a is the first key of I , b is

the last key of I , and the prefix is initially empty, satisfying the

required constraints. This main entry routine performs time-

consuming pre-processing. The sorting of the keys of I is

O(|M | × lg(|M |)) where M is the number of monitors, i.e.

the number of keys in I . The hashing can also be achievement

in O(|M |) since the size of the hashed sets is bounded and

low (no more than a few dozens elements in the worst cases)

allowing for a very efficient binary hashing, regardless of the

specific implementation of the hashing function - any efficient

generic binary hashing function will work. Last but not least,

the execution of the unique call to INFERSUBTABLE has a

time complexity of O(|M |∗Pmax). The speed of the algorithm
has a total complexity of O(|M |×lg(|M |)), but has significant
hidden constants, in particular for the non-dominant terms

of the complexity formula (Pmax = 32 and hash function

calculations hidden constants).

D. AS prefixes generalization

The above method is the most generalizing, least specific

hypothesis that is consistent with the observation and in which

destination classes Dk match destination prefixes. However,

this assumption doesn’t seem realistic, since it can infer very

short prefixes (i.e. very general rules) based on the sparse

nature of the monitor set. To avoid too general assumption,

we restrict the selected prefixes to the prefixes advertised by

ASes.

To do so, we use an algorithm very close to Algorithm 1. To

account for the restriction to AS prefixes, instead of stopping

the recursion whenever a subset of monitors observe the same

interface set, we continue until the prefix is a prefix claimed

by an AS, or the monitor set only has one element (prefix

length is 32), to ensure that each target is in the output table.

This can be done efficiently by looking up the prefix in a

binary search tree, based upon an official prefix registry, such

as Routeviews [9].

V. MEASUREMENT

To assess the feasibility and the relevance of our approach,

we have conducted a practical measurement of Distributed

UDP Ping and then performed the routing table informance

method described above.

A. Repeated Distributed UDP Ping

The repeated Distributed UDP Ping was realized from the

PlanetLab platform, consisting of 548 monitors distributed

among 193 ASes. 2276 targets were chosen among routers

responding to UDP Ping probes from a previous experiment

[1]. The measure consisted in 30 repeated Distributed UDP

Ping measurement towards each target spanning over about

10 minutes.

We combined the output of the repeated measurements for

each target, and for each target, we compute its table using the

methods desbribed earlier: the most specific table, the CIDR

prefixes tables, and the AS prefixes tables.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

F
ra

c
ti
o
n
 o

f
th

e
 m

o
n
it
o
rs

Number of entries

Most specific
CIDR

CIDR + AS

Fig. 3. Inverse cumulative distribution of the number of entries using three
refinement methods: most specific, CIDR prefixes, and AS prefixes.

B. Impact of the inference method

After processing the observation from Distributed UDP

Ping into Existence and Consistence constraints, we used the

three inference patterns describes in Section IV to compute

estimates of the routing tables for the target routers. For each

inference pattern and for each target, we obtain a list of rules

consistent with the constraints, composed of pairs of a prefix

and a list of interfaces used to respond to monitors matching

these prefixes.

We then computed the number of rules obtained for each

target with the three inference methods (See Fig. 3). Intuitively,

for a given observation, less rules means more efficient routing

table, since the CPU and memory required to perform the

routing depend on the number of rules in the table.

The most specific routing tables have a higher number of

entries, since there is one entry per monitor which are able to

observe each target. Using AS-advertised prefixes requires less

rules in the worst cases (when the most high number of rules

is required) but using the shortest CIDR prefixes performs

best for simpler tables. This suggests that in practice, either

of the two methods may be used, or mixed, to provide the

most efficient results.

C. Impact of the number of monitors

We have suggested in Sections II and III that the na-

ture of the monitor set can widely affect the nature of the

observation and of the constraints. To assess the extend of

this phenomenon, we have emulated different monitor sizes by

filtering the data to only keep the results from random subsets

(of given size, lower than the maximum number of available

monitors) of our complete monitor set, and comparing the

results. (See Fig. 4, 5, 6)

We observe that the amplitude of the distribution depends

a lot on the number of monitors, suggesting that even if

colocation is captured by the CIDR prefixes based methods,

the monitor set has not reached a steady size and could be

improved. However, the shape of the distribution remains con-

sistent with the monitor size, suggesting that adding monitors

may give more precise, but not completely different results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

F
ra

c
ti
o
n
 o

f
th

e
 m

o
n
it
o
rs

Number of entries

Distribution of the number of entries - CIDR tables

p = 1.0
p = 0.9
p = 0.8
p = 0.7
p = 0.6
p = 0.5

Fig. 4. Inverse cumulative distribution of the number of entries in the most
specific table for several monitors subset sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

F
ra

c
ti
o
n
 o

f
th

e
 m

o
n
it
o
rs

Number of entries

p = 1.0
p = 0.9
p = 0.8
p = 0.7
p = 0.6
p = 0.5

Fig. 5. Inverse cumulative distribution of the number of entries in the CIDR
prefixes table for several monitors subset sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

F
ra

c
ti
o
n
 o

f
th

e
 m

o
n
it
o
rs

Number of entries

p = 1.0
p = 0.9
p = 0.8
p = 0.7
p = 0.6
p = 0.5

Fig. 6. Inverse cumulative distribution of the number of entries in the AS
prefixes table for several monitors subset sizes.

VI. RELATED WORK

The physical and IP-level internet topologies are extensively

studied since the seminal papers of Pansiot et al. [10] and

Faloutsos et al. [11]. The most classical approach consists in

building maps from traceroute-like measurements. However,

several studies have shown that obtained maps are intrinsically

6

biased [12], [13], [14], and even that traceroute outputs are un-

reliable [15], [16], [17]. The hope that increasing the size and

quality of maps would overcome these issues has led to much

effort, but the situation remains far from satisfactory [14], [18],

[19].

Conducting precise measurements of random nodes to ob-

tain a reliable estimate of their behaviour was first suggested

in [12]. We explored the possibility to do so at IP level in [4]

but we only partly succeeded and we conducted thorought

simulations in [20].

Our work is also closely related to alias resolution (which

plays a key role in the building of maps): while we seek all

(unknown) interfaces of a given router identified by one of its

interfaces, alias resolution aims at identifying in a given set

of interfaces the ones that belong to a same router [21], [22].

Probes similar to ours are used in this context, in particular

by the iffinder tool [23], as well as other techniques. Our use

of such probes was clearly inspired by these works.

Finally, important efforts are devoted to the deployment of

large and distributed measurements infrastructures, which are

crucial for this field of research [24], [25], [26], [27], [28].

Some of them distribute monitoring capabilities at a huge scale

(typically onto thousands of end-hosts) and so are particularily

promising for us [28], [25].

VII. CONCLUSION

In this work, we have exposed the principle of using a

distributed UDP Ping measurement to gain insight on the

routing tables of the measured targets. However, the relevance

of the estimate relies highly on the quality of the monitor set,

since the inference methods only allows to generalize rules in

adress scopes (subnetworks) in which there are monitor from

the monitor set.

Besides the improvement of the monitor set, several factors

could be utilized to further infer the rules: implementation

details of the routing algorithms (namely BGP and OSPF) at

the subnetwork, area and AS level, default routes, and the

usage of looking glasses. The repetition over time of this

measurement and inference method may be used to track the

routing dynamics of a given target, in particular after a BGP

update.

Acknowledgements. This work is partly supported by the

European Commission FP7 EULER project (grant 258307),

Future Internet Research and Experimentation (FIRE), and

by the DynGraph grant ANR-10-JCJC-0202 from the Agence

Nationale de la Recherche.

REFERENCES

[1] M. Latapy, C. Crespelle, E. Rotenberg, and F. Tarissan, “Measuring the
degree distribution of routers in the core internet,” submitted.

[2] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
RFC 1122 (INTERNET STANDARD), Internet Engineering Task
Force, Oct. 1989, updated by RFCs 1349, 4379, 5884, 6093, 6298,
6633, 6864. [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt

[3] F. Baker, “Requirements for IP Version 4 Routers,” RFC 1812 (Proposed
Standard), Internet Engineering Task Force, Jun. 1995, updated by RFCs
2644, 6633. [Online]. Available: http://www.ietf.org/rfc/rfc1812.txt

[4] C. Crespelle, M. Latapy, and É. Rotenberg, “Rigorous measurement
of ip-level neighborhood of internet core routers,” in 2nd IEEE Inter-

national Workshop on Network Science and Communication Networks

(NetSciCom’10), 2010.
[5] Y. Rekhter and T. Li, “An Architecture for IP Address Allocation with

CIDR,” RFC 1518 (Historic), Internet Engineering Task Force, Sep.
1993. [Online]. Available: http://www.ietf.org/rfc/rfc1518.txt

[6] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy,” RFC 1519 (Proposed Standard), Internet Engineering Task
Force, Sep. 1993, obsoleted by RFC 4632. [Online]. Available:
http://www.ietf.org/rfc/rfc1519.txt

[7] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan,” RFC 4632
(Best Current Practice), Internet Engineering Task Force, Aug. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4632.txt

[8] A. J. Mcauley and P. Francis, “Fast routing table lookup using cams,”
in IEEE INFOCOM, 1993, pp. 1382–1391.

[9] A. Broido and k. claffy, “Analysis of RouteViews BGP data: policy
atoms,” in Network Resource Data Management Workshop, Santa Bar-
bara, CA, May 2001.

[10] J.-J. Pansiot and D. Grad, “On routes and multicast trees in the internet,”
SIGCOMM Comput. Commun. Rev., vol. 28, no. 1, pp. 41–50, 1998.

[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in SIGCOMM, 1999, pp. 251–262.

[12] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie, “Sampling biases in
ip topology measurements,” in INFOCOM, 2003, pp. 332–341.

[13] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, “On the bias
of traceroute sampling: or, power-law degree distributions in regular
graphs,” J. ACM, vol. 56, no. 4, 2009.

[14] W. Willinger, D. Alderson, and J. C. Doyle, “Mathematics and the
internet: A source of enormous confusion and great potential,” Notices

of the AMS, vol. 56, no. 5, pp. 586–599, May 2009.
[15] F. Viger, B. Augustin, X. Cuvellier, C. Magnien, M. Latapy, T. Friedman,

and R. Teixeira, “Detection, understanding, and prevention of traceroute
measurement artifacts,” Computer Networks, vol. 52, no. 5, pp. 998–
1018, 2008.

[16] B. Donnet, M. Luckie, P. Mérindol, and J. Pansiot, “Revealing MPLS
tunnels obscured from traceroute,” ACM SIGCOMM Computer Commu-

nication Review (CCR), vol. 42, no. 2, pp. 87–93, Apr 2012.
[17] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush,

“10 lessons from 10 years of measuring and modeling the internet’s
autonomous systems,” Selected Areas in Communications, IEEE Journal

on, vol. 29, no. 9, pp. 1810–1821, 2011.
[18] P. Barford, A. Bestavros, J. W. Byers, and M. Crovella, “On the marginal

utility of network topology measurements,” in Internet Measurement

Workshop, 2001, pp. 5–17.
[19] M. Latapy and C. Magnien, “Complex network measurements: Esti-

mating the relevance of observed properties,” in INFOCOM, 2008, pp.
1660–1668.

[20] C. Crespelle and F. Tarissan, “Evaluation of a new method for mea-
suring the internet degree distribution: Simulation results,” Computer

Communications, vol. 34, no. 5, pp. 635–648, 2011.
[21] M. Gunes and K. Sarac, “Importance of ip alias resolution in sampling

internet topologies,” in IEEE Global Internet Symposium, 2007, 2007,
pp. 19–24.

[22] K. Keys, “Internet-scale ip alias resolution techniques,” ACM SIGCOMM

Computer Communication Review, vol. 40, no. 1, pp. 50–55, 2010.
[23] B. Huffaker, D. Plummer, D. Moore, and K. Claffy, “Topology discovery

by active probing,” in Applications and the Internet (SAINT) Workshops,

2002. Proceedings. 2002 Symposium on, 2002, pp. 90–96.
[24] CAIDA, “Caida, macroscopic topology measurement projects,” 2010,

http://www.caida.org/projects/macroscopic/.
[25] Y. Shavitt and E. Shir, “Dimes: let the internet measure itself,” Computer

Communication Review, vol. 35, no. 5, pp. 71–74, 2005.
[26] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-

ishnamurthy, and A. Venkataramani, “iplane: An information plane for
distributed services,” in In OSDI 2006, 2005.

[27] P. Consortium, “Planetlab: An open platform for developing, deploying
and accessing planetary-scale services,” 2009, http://www.planet-lab.
org/.

[28] RIPE-NCC, “Ripe atlas,” https://atlas.ripte.net.

