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COMPLETENESS OF SUMS OF SUBSPACES OF BOUNDED
FUNCTIONS AND APPLICATIONS

JOEL BLOT! AND PHILIPPE CIEUTAT?

ABSTRACT. We give a new proof of a characterization of the closeness of the range of a
continuous linear operator and of the closeness of the sum of two closed vector subspaces
of a Banach space. Then we state sufficient conditions for the closeness of the sum of
two closed subspaces of the Banach space of bounded functions and apply this result on
various pseudo almost periodic spaces and pseudo almost automorphic spaces.

2010 Mathematic Subject Classification: 42A75, 42A99, 47A05.

Keywords: Closed range operator, closed sum of subspaces, completeness theorem,
pseudo almost periodic function, pseudo almost automorphic function.

1. INTRODUCTION

The origin of this work is the important work of Zheng and Ding [34] on the complete-
ness of the space of weighted pseudo almost automorphic functions. Here we identify two
abstract general tools which we used to give a new proof and to generalize the result of
Zheng and Ding. Then we apply these general tools to state the completeness of various
spaces of pseudo almost periodic functions or pseudo almost automorphic functions.

The first general tool is a characterization of the closeness of the sum of two closed
vector subspaces of a Banach space. Such a characterization is established from a char-
acterization of the closeness of the image of a continuous linear operator. The second
general tool is a radial retraction, a notion which is associated to the names of Dunkl and
Williams [21].

We describe the contents of this work. In Section 2 we give a new proof of a theorem
on the characterization of the closeness of the image of a continuous linear operator, we
prove that this result of characterization is equivalent to Inverse Mapping Theorem of
Banach, and we extend this characterization to unbounded closed linear operators. In
Section 3 we provide a characterization of the closeness of the sum of two closed vector
subspaces of a Banach space. In Section 4 we provide sufficient conditions to ensure
the closeness of the sum of two closed vector subspaces of the Banach space of bounded
functions under the supremum norm by using a result on a radial projection. In Section
5 we apply these general tools to state the completeness of the spaces of pu-pseudo almost
periodic and p-pseudo almost automorphic functions without restrictive hypothesis on the
measure p. In Section 6 we study the completeness of the spaces of square-mean p-pseudo
almost periodic and square-mean p-pseudo almost automorphic processes which are used
in stochastic evolution equations. We states similar results in Section 7 for the space of
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2 J. Blot and P. Cieutat

p-pseudo almost periodic functions defined on the half-line and in Section 8 for the spaces
of weighted pseudo almost periodic sequences and weighted pseudo almost automorphic
sequences.

2. CLOSED RANGES
We provide a characterization of the closeness of the range of a linear operators.

Theorem 2.1. Let E and F' be two Banach spaces and L : E — F' be a continuous linear
mapping. The two following assertions are equivalent.

i) Im L is closed into F'.
ii) 3¢ > 0, Yy € ImL, 3z € E such that L(x) =y and ||z|| < c|ly||.

Remark 2.2. A proof of i1) = 1) is given in [5], Lemma 3.4, and the proof of i) = i)
is given in [20], Lemma 1 in Section 6 of Chapter IV. Following our own knowledge, this
result was first established by Ganesa Moorthy and Johnson in [25]. We give now another
proof of Theorem 2.1. The proof given below is very different and shorter than the two
previously cited.

Proof of Theorem 2.1. We consider the following equivalence relation on E:
x~y<= Lx)=L(y) <= x —y € Ker L.

We consider the quotient space E® := E/ ~. An element z°* of E® is 2* = x + Ker L
when z € F. We know that E*® is a vector space. Since L is continuous, Ker L is closed
into F, that permits to [|z*]|* := inf{||u|| : v €  + Ker L} to be a norm on E*. Since E
is complete, (E*®, || - ||*) is a Banach space, cf. [30] p. 299. We define L* : E* — F by
setting L*(2*) := L(x) when x € E. L*® is linear and continuous. L°® is clearly injective.
We define the following abridgement of L®: the mapping K : E* — Im L defined by
K(z®) := L*(2®*). K remains linear, continuous, injective and moreover K is surjective.
And so we can define the inverse of K, K~!:Im L — E*®, which is linear.

i) = ii). Since Im L is closed in the Banach space F, it is a Banach space. Since E*®
is a Banach space, we can use the Inverse Mapping Theorem of Banach and obtain that
K1 is continuous. Therefore we have

Joo >0, Yy eImL, K ()] < collyll.

Let y an element of Im L. We arbitrarily fix zyp € K '(y). When y # 0, we have
K~ Y(y)]|* < 2co ||ly|| which means that inf{||u]| : u € z¢ + Ker L} < 2¢ ||y||, so there
exists x € xg + Ker L such that ||z|| < 2¢ ||y||; and moreover L(z) =y. When y = 0 we
take = 0 and we obtain the same inequality. Therefore ii) is proven with ¢ = 2¢.

ii) = i). Let y € Im L. From ii) we know that there exists x € L™'({y}) = K~ '(y)
such that [|z|| < c¢|ly| that implies: [[z*]|* < ||z|| < ¢|ly||. And so we have proven

de>0,vyeImL, K (y)ll* < cllyll

Since K ' is linear, this last assertion means that K ' is continuous. Let (y.)x be a
Cauchy sequence in Im L. Since K ! is Lipschitzian, (K ~*(yx))s is also a Cauchy sequence
in £°. Since E* is complete, there exists 2* € E* such (K~ '(yz))) converges toward 2°.
Since K is continuous (yx)r = (K (K '(yx)) converges toward K(2°) into Im L. And so
Im L is complete and therefore it is closed. O
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Remark 2.3. The previous proof shows that Theorem 2.1 is a consequence of Inverse
Mapping Theorem of Banach. In fact, Theorem 2.1 is equivalent to Inverse Mapping
Theorem of Banach. If we assume that Theorem 2.1 is true, and if we consider

L € L(E,F), where E and F are Banach spaces and L is bijective, since L is surjective,
we have Im L = F'is closed in F' and consequently, using Theorem 2.1, we obtain: Je¢ > 0,
Vy € F, |[L7 (y)|| < c|ly||, which means the continuity of the inverse L.

We can extend Theorem 2.1 to unbounded closed linear operators.

Theorem 2.4. Let E and F' be Banach spaces and T : ©(T) C E — F be a unbounded
linear operator. We assume that T s closed. Then the two following assertions are
equivalent.

i) Im T is closed into F.
ii) 3¢ > 0, Vy € Im T, 3z € D(T) such that T'(x) =y and ||z||g < ¢ ||y F-

Proof. First recall that ||z||g := ||z||g+||T(x)||F defines a norm on ®(7") and the closeness
of T implies that (D(T),] - ||g) is complete (cf. [26] p.164). We define the following
abridgement of 7" the mapping L : ©(T') — F defined by L(x) := T'(z) for x € ©(T).
Since, Vo € D(T), [ L(z)|[r = [T(2)||lr < [lz]lg, we have L € £((D(T), || - llg), (£, ]| - [[#))-
We introduce the following new condition.

(2.1) dd > 0,Vy € Im L,3x € D(T) such that L(z) =y and ||z||g < d||y||F.

The equivalence i) <= (2.1) is a consequence of Theorem 2.1 applied on the continuous
linear mapping L € £((D(T), | - lg), (F, ] - ||r)) by remarking that Im L = Im T

Let us prove the equivalence (2.1) <= ii). For the implication (2.1) = i) it suffices
to take ¢ = d and to note that ||z||g < ||z|lg. Now we prove the reciprocal implication.
Let y € Im7T. Then, from ii), 3z € ©(T') such that T'(z) = y and ||z||g < ¢||ly||F which
imply |[zllg = [lzlle + |1 T(@)[[r = llzlle + lylle < (¢ + 1) lyllr. Setting d := ¢+ 1 we
obtain ||z||g < d||y||r. And so we have proven the following assertion ii) = (2.1). O

3. GENERAL CLOSED SUMS

In this section we provide necessary and sufficient conditions to have the closeness of
the sum of two closed vector sunspaces in a Banach space.

Theorem 3.1. Let E be a Banach space, and M and N be two closed vector subspaces
of E. Then the three following conditions are equivalent.

i) M + N is closed into E.
ii) 3¢ >0,Vz€ M+ N, 3(x,y) € M x N such that x +y = z and ||z|| < c||z]|.

Proof. Let us consider the following assertion
(3.1) Id>0,Vz€ M+ N,3(z,y) € M x N st. c+y=z|z| <d|z|, |yl <dJz].

The equivalence i) <= (3.1) is a consequence of Theorem 2.1 by using the continuous
linear mapping L : M x N — E defined by L(x,y) := x + y and endowing the product
M x N with the norm ||(z,y)| = max{||z||, [|y||}. The implication (3.1) = i) is obvious
with ¢ = d and for the reciprocal implication, note that if ||z|| < ¢ ||z]|, we have

Iyl =1l < [ly = 2l = llzll < ellzll = llyll < (e+ D)),
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then the implication ii) = (3.1) is proved with d = ¢+ 1. O

Remark 3.2. There exists another proof of Theorem 3.1 due to Zheng and Ding in [35].
The proof of i) = (3.1) is given in [12] (Theorem 2.10, p. 37). A result as Theorem 3.1
is established by Kober [27] under the additional assumption M NN = {0}.

4. CLOSENESS OF THE SUM TWO VECTOR SUBSPACES OF A BANACH SPACE OF
BOUNDED FUNCTIONS

In this section U is a set and X is a Banach space. B(U, X) denotes the Banach space
of all bounded functions from U into X, equipped with the norm || f|| ., = sup || f(u)]| for
uclU

f € B(U,X). Here we establish sufficient conditions to have the closeness of the sum
of two closed subspaces of the Banach space of bounded functions using a result on the
radial retraction.

Theorem 4.1. Let Fi and Fy be two closed vector subspaces of B(U, X) satisfying the
following hypothesis:

i) The map ® : X — X s Lipschitz and f € Fy, then ® o f € Fy.
ii) g € F1 and h € F; such that Vu € U, ||g(u)|| < ||h(w)]|, then g € Fo.

Then Fi + F» is a Banach space endowed with the norm ||-|| .

For the proof of Theorem 4.1, we use the radial retraction Pr on the ball of radius R
and with the center at the origin.

Lemma 4.2. Let R > 0. We define the function Pr : X — X by selting

x if xS R
(4.1) Pr(z) = . .
Tal® if |z|| > R.
Then the following assertions hold:
i) Pg is 2-Lipschitz: Yxy, x9 € X, ||Pr(z1) — Pr(x2)|| < 2|21 — 22|
ii) For allz € X, || Pr(z)|| < R.

Proof. 1) If
(4.2) 21|l < R < |2
then
R
| Pr(71) — Pr(x2)|| = (|71 — 7om2|| < |21 — 22| + [|72 — 72|,
|| [
from ||z — ng = |||z2]] — R| and (4.2) we obtain
T2
R
Ty — || <[22 = (o] < |lzy — 22,
[kl
therefore

(4.3) | Pr(21) — Pr(22)|| < 2|z — 22| .
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If ||z1] € R and |[z2]] < R, then we have (4.3), since Pr(z1) = x1 and Pr(zs) = 9.
Dunkl and Williams have proved in [21] that for all nonzero x; and x5 € X

X1 )
(4.4) - ' < |21 — 22]|.
ETE BT
From
R R
| Palar) — Palas)]| = ' L
™ ool

and (4.4) it can be seen that (4.3) is fulfilled if ||| > R and ||z2|| > R. This ends the
proof.

ii) From (4.1) we deduce ii). O

Proof of Theorem 4.1. We use Theorem 3.1 by setting £ = B(U,X), M = F; and
N = F,. Let us prove that

(4.5) Vfe Fi+F,, 3g" € F, 3Th" € Fysuchthat f=¢"+h" and ||g"|| . < ||fll.-

Let f € F1 + F5. Then there exist g € F; and h € F; such that f = g + h. Define ¢g* by
setting ¢* = Pg o g, with R := || f||_, and Pg the radial retraction of Lemma 4.2. Define
h* by setting h* = f — ¢g*. Then we have f = ¢* + h*.

Since Pgr : X — X is Lipschitz and ¢g € Fj, from Hypothesis i), we obtain Pg o g =
g* € Fi. Inequality |g*||., < R = ||f||., results of ii) of Lemma 4.2.

Since || f(u)|| < R := || f||, for all w € U and from the definition of Pg, we deduce that
Ppo f = [; therefore ||h*(u)|| = [|f(u) = g*(u)|| = | Pr(f(u)) = Pr(g(u))|. The radial
retraction Pg being 2-Lipschitz, we obtain that

VueU,  ||h*(u)ll = [|1Pr(f(u)) = Prlg(w)ll < 21 f(u) — g(u)l| = 2{|h(u)] -

From h € F, and Hypothesis ii), we deduce that h* € Fy; so (4.5) is fulfilled, which is
assertion ii) of Theorem 3.1 with ¢ = 1.

By using Theorem 3.1 with £ = B(U,X), M = F;, N = F, and ¢ = 1, we obtain the
closeness of the vector subspace F; + F» in the Banach space (B(U, X), ||-||.)- O

Remark 4.3. Under the hypotheses of Theorem 4.1, if in addition we assume that FiNFy =
{0}, the proof of this theorem is more simple. In this case, the decomposition (which
becomes unique) f = g+ h with g € F; and h € Fy, we obtain ||g||c < || f|leo from (4.5).
This fact and the closeness of F; and F, imply the completeness of the sum.

5. SPACES OF H-PSEUDO ALMOST PERIODIC AND AUTOMORPHIC FUNCTIONS

In this section X is a Banach space.

5.1. Almost periodic case. The pseudo almost periodic functions were introduced in
the literature in the early nineties by Zhang [31, 32|, as a natural generalization of the
classical almost periodic functions in the sense of Bohr. The notion of p-pseudo almost
periodicity initiated by Blot, Cieutat and Ezzinbi [10] is a generalization of the weighted
pseudo almost periodicity due to Diagana [16, 17] which generalizes the one of pseudo
almost periodicity.
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Definition 5.1. [15]. f € C(R, X) (continuous) is said to be almost periodic (in the Bohr
sense) if for all € > 0, there exists £ > 0, such that for all « € R, there exists 7 € [a, a+ /]
with

sup [[f(t+7) = f®)]] <=

We denote the space of all such functions by AP(R, X).

We denote by B the Lebesgue o-field of R and by M the set of all positive measures
p on B satisfying u(R) = +oo and p(fa,b]) < +oo, for all a, b € R (a < b). BC(R, X)
denotes the Banach space of all continuous and bounded functions from R to X, equipped
with the norm

1£lloc = sup £

Definition 5.2. [9, 10]. Let p € M. f € BC(R, X) is said to be p-ergodic if
) 1
lim —— /[ ) dut) =0

r+oop([=r,7])
We denote the space of all such functions by (R, X, p).

Definition 5.3. [10]. Let p € M. f € BC(R, X) is said to be p-pseudo almost periodic
if

f=g+¢ wherege AP(R, X), ¢€ &R, X,p).
We denote the space of all such functions by PAP(R, X, p).

Remark 5.4. In general the sum PAP(R, X, u) = AP(R, X) + £(R, X, 1) is not direct
([10], Remark 2.26).

Theorem 5.5. Let p € M. Then (PAP(R, X, u), ||-|l..) is a Banach space.

Proof. We use Theorem 4.1 by setting U = R, F; = AP(R, X) and F;, = E(R, X, p).

i) AP(R,X) is a closed vector subspace of BC(R,X) ([15], Theorem 6.1 and 6.2,
pp. 138-139), then a closed vector subspace of B(R, X). Moreover if & € C'(X, X) and
f e AP(R,X) then ®o f € AP(R, X) (2], VII, p. 5); so Hypothesis i) is satisfied.

ii) £(R, X, ) endowed with the norm ||-||  is a Banach space ([10], Proposition 2.11),
then a closed vector subspace of B(R, X). By using Definition 5.2, we deduce that the
pair AP(R, X) and E(R, X, u) satisfies Hypothesis ii).

By Theorem 4.1, we obtain that PAP(R, X, u) = AP(R, X) 4+ £(R, X, uu) is a Banach
space endowed with the norm ||| .. O

Remark 5.6. With restrictive conditions on the measure pu, this result is proved ([10],
Corollary 2.31).

Remark 5.7. Theorem 5.5 generalizes Corollary 2.4 in [34] of Zheng and Ding from the
space of weighted pseudo almost periodic functions to the space of p-pseudo almost peri-
odic functions.
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5.2. Almost automorphic case. The notion of p-pseudo almost automorphy due to
Blot, Cieutat and Ezzinbi [9] is a generalization of the weighted pseudo almost automorphy
initiated by Blot, Mophou, N'Guérékata and Pennequin [11] which generalizes the one of
pseudo almost automorphy introduced by Liang, N’Guérékata, Xiao and Zhang [28].

Definition 5.8. [29]. f € C'(R, X) is said to be almost automorphic if for every sequence
of real numbers (s/,),, there exists a subsequence of (s,), denoted by (s,), such that

g(t) = lim f(t+ s,) exists for all ¢ in R
n—o0

and

lim g(t — s,) = f(t) for all ¢ in R.

n—oo
We denote the space of all such functions by AA(R, X).
Definition 5.9. [9]. Let p € M. f € BC(R, X) is said to be p-pseudo almost automor-
phic if

f=g+¢ wherege AAR, X), ¢€ &R, X, pu).

We denote the space of all such functions by PAA(R, X, ).
Remark 5.10. In general the sum PAA(R, X, ) = AAR, X) + E(R, X, i) is not direct

([9], Remark 4.4). A sufficient condition for PAA(R, X, u) = AAR, X) P ER, X, p) is
that PAA(R, X, ) be translation invariant.

Theorem 5.11. Let yp € M. Then (PAA(R, X, p), ||-|l..) s a Banach space.
Proof. We use Theorem 4.1 by setting U = R, F; = AA(R, X) and F2 = E(R, X, p).

i) AA(R, X) is a closed vector subspace of BC(R, X) ([29], Theorem 2.3, p. 11 and
Theorem 2.10, p. 16), then a closed vector subspace of B(R, X). Moreover if ® € C'(X, X)
and f € AA(R, X) then ®o f € AA(R, X) ([29], Theorem 2.5, p. 13); so Hypothesis i) is
satisfied.

ii) is similar to ii) in the proof of Theorem 5.5.

By Theorem 4.1, we deduce that PAA(R, X, u) = AA(R, X) + E(R, X, i) is a Banach
space endowed with the norm ||| . O

Remark 5.12. In the particular case where PAA(R, X, u) is translation invariant, this
result is proved in ([9], Theorem 4.9).

Remark 5.13. Theorem 5.11 generalizes Theorem 2.3 in [34] of Zheng and Ding from the
space of weighted pseudo almost automorphic functions to the space of u-pseudo almost
automorphic functions.

6. SPACES OF SQUARE-MEAN H-PSEUDO ALMOST PERIODIC AND AUTOMORPHIC
PROCESSES

Throughout this section, we denote by H a Banach space, (2, A, P) a probability space
and L*(Q, P, H) the space of all H-valued random variables x with a finite quadratic-
mean:

E|z||’ = / |z||”> dP < +oo.
Q

1
When = € L*(Q,P,H), we set ||z],, = (E||ac||2)2 Endowed with the norm |[-||,.,
L?*(Q, P, H) is a Banach space.
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Definition 6.1. [7]. Let z : R — L*(Q, P, H) be a stochastic process.

i) x is said to be stochastically continuous if

Vit € R, hIT%E |z(s) — z(t)]|* = 0.
5—

ii) z is said to be stochastically bounded if

sup F ||z(t)||> < +oo.
teR

Remark 6.2. Tt is easy to verify that a stochastic process z : R — L*(§), P, H) is stochas-
tically continuous and bounded if and only if x is a continuous and bounded map from R
to the Banach space X = L?(§2, P, H) in the ordinary sense, i.e. z € B(R, X).

The square-mean almost periodic stochastic processes were introduced in the literature
by Bezandry and Diagana [7]. They established the existence and uniqueness of square-
mean almost periodic mild solutions to some stochastic differential equations and some
functional integro-differential stochastic evolution equations in [7, 8]. Then Fu and Liu
generalize this one to the square-mean almost automorphy in [24]. The notion of square-
mean p-pseudo almost periodic and automorphic processes due to Diop, Ezzinbi and
Mbaye [18, 19] is a generalization of the pseudo almost automorphic stochastic processes
[14] and the weighted pseudo almost automorphy [13] due to Chen and Lin.

The definition of the square-mean p-pseudo almost automorphy given in [19] is slightly
different from the one given by Bedouhene, Challali, Mellah, Raynaud de Fitte and Smaali
in [6]. A continuous and bounded stochastic process z : R — L*(2, P, H) is square-mean
p-ergodic in [19] if

: 1 2
Jim s /H E ()] dp(t) = 0
and in [6] if
. 1 2 5
lim ——— E ? =0.
Jim ey L (Bl dn =0

We will see that these definitions are equivalent (cf. Proposition 6.6 and 6.12).

6.1. Almost periodic case.

Definition 6.3. [7]. A continuous stochastic process r : R — L*(Q, P, H) is said to be
square-mean almost periodic if for all € > 0, there exists ¢ > 0, such that for all a € R,
there exists 7 € [, a + €] with

sup E || z(t + 1) — z(t)|]* < .

teR
Remark 6.4. Tt is easy to verify that a stochastic process r : R — L*(2, P, H) is square-

mean almost periodic if and only if = is an almost periodic function from R to the Banach
space X = L*(Q, P, H) in the Bohr sense, i.e. x € AP(R, X) (cf. Definition 5.1).

As in Section 5, we denote by B the Lebesgue o-field of R and by M the set of all
positive measures p on B satisfying pu(R) = +oo and p([a,b]) < +oo, for all a, b € R
(a <D).
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Definition 6.5. [19] Let 4 € M. Let z : R — L*(Q2, P, H) be a continuous and bounded
stochastic process.

i) x is said to be square-mean p-ergodic if
1

Jim s /H E o] du(t) = 0.

ii) z is said to be square-mean p-pseudo almost periodic if
rT=y+z
where y is square-mean almost periodic and z square-mean p-ergodic.
Proposition 6.6. Let € M. Let x : R — L*(Q, P, H) be a stochastic process.

i) x is square-mean p-ergodic if and only if x is a p-ergodic function from R to the
Banach space X = L*(Q2, P, H) in the sense of Definition 5.2, i.e. x € E(R, X, ).

ii) x is square-mean p-pseudo almost periodic if and only if x is a p-pseudo almost
periodic function from R to the Banach space X = L*(Q), P, H) in the sense of Definition
5.3, i.e. v € PAP(R, X, p).

Proof. Recall that the Banach space X = L*(Q2, P, H) is endowed with the norm ||-||,2
1
defined by ||z||;. = (E ||9c||2)2 for z € X.
i) Let z : R — L*(Q, P,H) be a stochastic process. It suffices to prove that z is

square-mean p-ergodic if and only if

(6.1) lim é/[ ](E||x(t)||2)% du(t) = 0.

r=too p([—r,7])
( /. Baur))
1 1 2

m/{} (Elz(®)[7)? du(t) < (m /[T’T]EHaz(t)H d/,L(t)) ,

consequently if z is square-mean p-ergodic, then x satisfies (6.1).

Secondly x is stochastically bounded: there exists M > 0 such that E ||z(t)|* < M,
then

First from Cauchy-Schwartz inequality, it follows

[ ol duty < ([ el auto)

=
SIS

then

1
2

E (0] = ()32 < Je(0) |2 509 a0, < 243 (2 Ja(0)])?

therefore

Mz

1 2
[ Bl aut) < s

T, [ El)?

consequently if x satisfies (6.1), then x is square-mean p-ergodic.

ii) results of i) and Remark 6.4. O

o e



10 J. Blot and P. Cieutat

Remark 6.7. A consequence of Proposition 6.6 is that all results of [10] on p-pseudo
almost periodic functions are directly applicable to square-mean p-pseudo almost periodic
stochastic processes.

In view of Proposition 6.6, we denote by PAP(R, L?($2, P, H), 1) the space of all square-
mean p-pseudo almost periodic stochastic processes x : R — L*(), P, H). We denote by

1
||l the norm of PAP(R, L*(Q2, P, H), j1) defined by ||z||, = stu]g (E ||x(t)||2) °.
€

Theorem 6.8. Let 1 € M. Then (PAP(R, L*(Q, P,H), ju),|||l..) is a Banach space.
Proof. Tt is a consequence of Theorem 5.5 and Proposition 6.6. U
6.2. Almost automorphic case.

Definition 6.9. [24]. A continuous stochastic process z : R — L*(, P, H) is said to be
square-mean almost automorphic if for every sequence of real numbers (s/,),, there exists a

subsequence of the sequence (s!,), denoted by (s,), such that for some stochastic process
y:R— L*(Q,P,H)

vteR,  lim Bt +s,) — y®)|> =0
— 00
and

vteR,  lim Ely(t - s,) - z(t)||> = 0.
— 00

Remark 6.10. Tt is easy to verify that a stochastic process z : R — L*(Q, P, H) is square-
mean almost automorphic if and only if x is an almost automorphic function from R to
the Banach space X = L?(Q, P, H) in the sense of Definition 5.8, i.e. x € AA(R, X).

Definition 6.11. [19] Let x € M. A continuous and bounded stochastic process = : R —
L*(Q, P, H) is said to be square-mean p-pseudo almost automorphic if

r=y+z

where y is square-mean almost automorphic and z square-mean pu-ergodic.

From i) of Proposition 6.6 and Remark 6.10, we obtain the following result:

Proposition 6.12. Let p € M. Let v : R — L*(Q, P, H) be a stochastic process. x is
square-mean p-pseudo almost automorphic if and only if x 1s a p-pseudo almost automor-
phic function from R to the Banach space X = L*(), P, H) in the sense of Definition 5.9,
i.e. v € PAAR, X, ).

Remark 6.13. A consequence of Proposition 6.12 is that all results of [9] on p-pseudo
almost automorphic functions are directly applicable to square-mean pu-pseudo almost
automorphic stochastic processes.

In view of Proposition 6.12, we denote by PAA(R,L*(Q, P, H),u) the space of all
square-mean j-pseudo almost automorphic stochastic processes r : R — L?(Q, P, H). We

denote by |||, the norm of PAA(R, L*(2, P, H), ;1) defined by ||z = sup (E H:z:(t)HQ)E
teR

Theorem 6.14. Let yp € M. Then (PAA(R, X, n), ||-||l..) s a Banach space.
Proof. 1t is a consequence of Theorem 5.11 and Proposition 6.12. U
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7. SPACES OF H-PSEUDO ALMOST PERIODIC FUNCTIONS DEFINED ON THE HALF-LINE

In this section X is a Banach space. We study the case where the functions are defined
only on the half-line.

Definition 7.1. f € C(R", X) (continuous) is said to be almost periodic (in the Bohr
sense) if for all £ > 0, there exists £ > 0, such that for all @ > 0, there exists 7 € [o, a + /]
with

sup [|f(t +7) = f(O)]| <e.

>0

We denote the space of all such functions by AP(R*, X).

BC(R*, X) denotes the Banach space of all continuous and bounded functions from
R* to X, equipped with the norm

1flloe = sup [ F )]

One should point out that combining the extension theorem of an almost periodic function
on R* to an almost periodic function on R ([4], Proposition 4.7.1, p. 305) and the
recurrence property of an almost periodic function on R which is a consequence of the
definition of the almost periodicity: there exists a sequence of real numbers (¢, ),en such
that lim,, o t, = 400 and lim,,_, o f(t +t,) = f(t), one can prove that the restriction
operator

(7.1) R:AP(R,X) — AP(R*,X) defined by R(f) = f_,
is well-defined, maps AP(R, X) onto AP(R™, X') and satisfies for f € AP(R, X)
1 ap@ x) = sup [[F (@) = sup | FO]] = IR apes x) -
teR 0

Similarly as for p-pseudo almost periodic functions defined on the whole real line, we
define below the p-pseudo almost periodic functions defined on the half line.

We denote by B, the Lebesgue o-field of R, and by M the set of all positive measures
won By satisfying u(RT) = +o00 and u([a,b]) < 400, for all 0 < a < b.

Definition 7.2. Let p € M,. f € BO(R', X) is said to be p-ergodic if

o -
S iy o L@ o =0

We denote the space of all such functions by E(R™, X, p).
Theorem 7.3. Let € My. Then (E(RT, X, u), |||l.) is a Banach space.

Proof. 1t is a slight adaptation of the proof of the completeness of the space of p-ergodic
functions defined on the whole real line: (£(R, X, i), ||-||..) ([10], Proposition 2.11). O

Definition 7.4. Let p € M. f € BO(R™, X) is said to be p-pseudo almost periodic if
f=g+¢ wherege AP(R",X), ¢ &R, X, pu).

We denote the space of all such functions by PAP(R', X, u).

Theorem 7.5. Let p € My. Then (PAP(RY, X, u), |I-|.) is a Banach space.
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Proof. We use Theorem 4.1 by setting U = R*, 7} = AP(R', X) and F, = E(RT, X, p).

i) AP(R", X) is isometrically isomorphic to the Banach space AP(R, X), then it is a
Banach space. Let ® € C(X,X) and g € AP(R*, X). First there exists f € AP(R, X)
such that R(f) = g (see (7.1)). Secondly by using the definition of the restriction operator
R we obtain ®og = ®o [R(f)] = R(P o f). From the fact that ®o f € AP(R, X) (see
proof of Theorem 5.5) we deduce that ® o g € AP(R*, X); so Hypothesis i) is satisfied.

ii) By using Definition 7.2, we deduce that the pair AP(R*, X)) and £(R™, X, ;1) satisfies
Hypothesis ii).

By Theorem 4.1, we obtain that PAP(R", X,u) = AP(RT, X) + E(RT, X, p) is a
Banach space endowed with the norm ||-|| . O
The following definition is due to Maurice Fréchet [22, 23].
Definition 7.6. f € BC(R", X) is said to be asymptotically almost periodic if

f=g+¢ wherege APR", X), ¢€ C(R" X) and tliin o(t) = 0.
—+00

We denote the space of all such functions by AAP(R™, X).
We will see that the following well-known result is a simple corollary of our main result.
Theorem 7.7. (AAP(R™, X), ||-||..) is a Banach space.

Proof. We use Theorem 4.1 by setting U = R*, F; = AP(R", X) and F» = Co(R*, X)
where Cy(RT, X) = {¢p € C(R", X); limy_, o ¢(t) = 0}

i) is proved in i) of the proof of Theorem 7.5.
ii) It is obvious.

By Theorem 4.1, we deduce that AAP(RT, X) = AP(R*, X) + Cyp(R*, X) is a Ba-
nach space endowed with the norm ||-|| . Note that this sum is direct: AAP(R",X) =
APRT, X) P Co(RT, X).

U

8. SPACES OF WEIGHTED PSEUDO ALMOST PERIODIC AND AUTOMORPHIC SEQUENCES

In this Section we provide results of completeness on the space of weighted pseudo
almost periodic sequences and of the space of weighted pseudo automorphic sequences
without any assumption on the weight of the ergodic part of these sequences.

8.1. Almost periodic case. The notion of weighted pseudo almost periodicity of se-
quences is a generalization of pseudo almost periodicity of sequences ([32], Definition
7.11, p. 84). The notion of weighted pseudo almost periodicity of sequences is due Zhang
and Li [33].

Denote by XZ the set of all two-sided sequences u = (u, )nez With values in the Banach
space X. (*(Z, X) denotes the Banach space of all bounded two-sided sequences of X7
equipped with the norm

[ull oo = sup [|u||-
ne’l
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Definition 8.1. ([15], p. 45). u = (uy)nez € X% is said to be almost periodic if for all
e > 0, there exists N € N*, such that for all m € Z, there exists p € {m, m+1,--- ,m+N}
with

SUP |[Untp — Uy < €.
nez

We denote the space of all such sequences by AP;(Z, X).

The following well-known statement ([15], Theorem 1.27, p. 47) clarifies the relation
between almost periodic sequences and functions: a necessary and sufficient condition
for a sequence u = (up)nez € APy(Z,X) is the existence of f € AP(R, X) such that
u, = f(n) for all n € Z. This permits us to assert that the restriction operator

(8.1) R:APR,X) — APy(Z,X) defined by R(f) = f,

is well-defined and maps AP(R, X) onto AP,(Z, X). Let Q = AP(R, X)/Ker R and let
[Ty : AP(R, X)) — @ be the quotient map, so the surjective linear map R induces a unique
isomorphism

R:Q — APy(Z,X) defined by R = Ro Tl
satisfying for f € AP(R, X)

IMo(/)llg = inf {izﬂi’ It + 90l s g € KerR} = sup | 7(n)] = || R(1Lo(1)

therefore @Q = AP(R, X)/Ker R is isometrically isomorphic to AP;(Z, X).

We denote by by My the set of all two-sided sequences p = (pp)nez € RZ satisfying
pn > 0, for all n € Z and an=+oo

nez

Definition 8.2. [1, 33] Let p = (pn)nez € Ma. u = (Un)nez € (*(Z,X) is said to be

weighted 67g0di6 if
li E —
N—>1mc: § :n* N n pn= Hu”” Pn = 0.

We denote the space of all such functions by c‘fd(Z, X, p).

Proposition 8.3. Let p € M. Then (£4(Z, X, p), ||||) is a Banach space.

Proof. 1t is enough to prove that £4(Z, X, p) is closed in £>°(Z, X). Let (u™),, be a sequence
in £4(Z, X, p) such that lim «" = wu (cv in £>°(Z, X)). Then we have

n—-+400

N N N
0 Mumllpm < D Nm = upllpm+ D lullpm
m=—N m=—N m=—N

APY(Z,X)]

we deduce that

1
P [l P < SUp fftm = ]| + [ | P
Z —NPn mZN Z _ND nmz
it follows
N
1
lim sup ——— Z |t || D < sup |t — ur || for all m € N.
N—+o0

anm* N



14 J. Blot and P. Cieutat

. . o — _.n _
Since ngrfoo [ = ][ oo (z,x) ngrfoo (Tsnlg% || tm, um||) 0, we deduce that

lim Z [t | P =

N—+o00 Zn— NDn

O

Definition 8.4. [33] Let p = (Pu)nez € My u = (Up)nez € (*(Z,X) is said to be
weighted pseudo almost periodic if

u=v+w wherev e APyZ,X), w e &(Z,X,p).
We denote the space of all such functions by PAP,(Z, X, p).

Remark 8.5. Contrarily to the pseudo almost periodic case: p, = 1 for all n € Z, in
general the sum is not direct for the weighted pseudo almost periodic case. For example
if p = (pn)nez is defined by py, =0, papy1 = 1 and u = (Up)nez by Uzn = 1, Ugpy1 = 0 for
all n € Z, then u € AP,(Z,R) N E4Z, R, p).

Theorem 8.6. Let p € M. Then (PAPy(Z, X,p),||||..) is a Banach space.

Proof. We use Theorem 4.1 by setting U = Z, F; = APy(Z,X) and Fy = E4(Z, X, p).
Remark that the Banach space B(Z, X) used in Theorem 4.1 is (*°(Z, X).

i) APy(Z,X) is isometrically isomorphic to the Banach space AP(R, X)/Ker R, then
it is a Banach space. Let ® € C(X, X) and u = (up)nez, € APy(Z, X). First there exists
[ € AP(R, X) such that R(f) = u (see (8.1)). Secondly by using the definition of the
restriction operator R we obtain ® ou = ® o [R(f)] = R(® o f). From the fact that
P o f e AP(R,X) (see proof of Theorem 5.5) we deduce that ® o u € AP;(Z, X); so
Hypothesis 1) is satisfied.

ii) By using Definition 8.2, we deduce that the pair AP;(Z, X ) and £4(Z, X, p) satisfies
Hypothesis ii).

By Theorem 4.1, we obtain that PAP,(Z, X,p) = APy(Z, X) + E4(Z, X, p) is a Banach
space endowed with the norm ||| .. O

8.2. Almost automorphic case.

Definition 8.7. [3]. u = (un)nez € X7 is said to be almost automorphz’c if for every
sequence of integer numbers (k/),en € ZY there exists a subsequence of (s'),, denoted by
(Sn)n such that

vp = lim u,y, exists for all p in Z
n—oo

and

lim v,_x, = w, for all p in Z.
n—o0

We denote the space of all such functions by AA4(Z, X).

The following definition is due to Abbas in [1] but it is not proved that this space is
closed in (>*(Z, X).
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Definition 8.8. Let p = (pn)nez € My. u = (Up)nez € £°(Z, X) is said to be weighted
pseudo almost automorphic if

u=v+w wherev e AAHZ,X), w e E(Z,X,p).
We denote the space of all such functions by PAA4(Z, X, p).

Theorem 8.9. Let p € M. Then (PAALZ, X,p),||||..) is a Banach space.
Proof. We use Theorem 4.1 by setting U = Z, F; = AA4(Z, X) and Fy = E4(Z, X, p).

i) AA4(Z,X) is a closed vector subspace of (*(Z,X). If & € C(X,X) and v €
AAY(Z, X) then ® ov € AA(Z, X) [3]; so Hypothesis 1) is satisfied.

ii) is similar to ii) in the proof of Theorem 8.6.

By Theorem 4.1, we obtain that PAA4(Z, X,p) = AA4Z, X))+ E4(Z, X, p) is a Banach
space endowed with the norm ||| .. O
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