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Abstract:

The importance of properly implemented isosurface extraction for verifiable visualization led to a
previously published paper on the general Method of Manufactured Solutions (MMS), inclusive of
a supportive software infrastructure. This work builds upon that foundation, while significantly
extending it. Specifically, we extend previous work on verification of geometrical properties to
ensuring correctness of considerably more subtle topological characteristics that are crucial for
the extracted surfaces. We first show a new theoretical synthesis of results from stratified Morse
theory and digital topology for algorithms created to verify topological invariants and then we
demonstrate how the MMS approach can be extended to embrace topology, consistent with the
design intent for MMS. The transition to topological verification motivated these considerable
theoretical advances and algorithmic development, consistent with general MMS principles. The
methodology reported reveals unexpected behavior and even coding mistakes in publicly available
popular isosurface codes, as presented in a case study for visualization tools that documents the
extensibility of MMS to topological criteria.
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1 INTRODUCTION

Visualization has become a standard component in scientific
software, and is an important aspect of current large-scale
data analysis. Users of such scientific software, however,
are not typically visualization experts, and might rely on
assumed properties of visualization methods to evaluate an-
swers to the original queries that instigated the investigation.
One central concern in this scenario is that they might not
be aware of limitations and properties of the underlying
algorithms and visualization techniques. As visualization
researchers and practitioners, it is our responsibility to
ensure that these limitations and properties are clearly stated
and studied. Moreover, we should provide mechanisms
able to attest to the correctness of visualization system
currently in use. Unfortunately, visualization algorithms
and their implementations have not in general fallen under
rigorous scrutiny as have other components of the scientific
computing pipeline with respect to their accuracy, reliability,
and robustness, introducing distrust in the process of visual
analysis.

Increasing confidence in visualization tools is the main
goal behind verifiable visualization [17], which aims at
developing solid, systematic mechanisms for identifying and
correcting errors in both algorithms and implementations
of visualization techniques. An example is the recent work
by Etiene et al. [13], which presented a scheme to verify
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geometrical properties of isosurface extraction codes. By
writing down the convergence properties that each technique
should exhibit, one can quickly identify subtle bugs in
isosurfacing codes that had not until then been made explicit.

We strive for verification mechanisms which are both
simple and effective. Simple methods are less likely to have
bugs themselves; effective methods make it hard for bugs
to hide. Alas, the mathematical properties of an algorithm
and its implementation are both social constructs of fallible
human beings, and perfection is an unattainable goal. There
will always be the next bug; verification is, fundamentally,
a process. Even when it successfully finds problems with
an algorithm or its implementation, we can only concretely
claim that the new implementation behaves better than it did
before. Crucially, however, the verification process clarifies
how the implementation fails or succeeds.

In this paper, we are concerned with verifying isosurfacing
implementations. Specifically, we are interested in their
topological properties. For example, one desirable property
is for the output of isosurface codes to be homeomorphic
to the level set of the scalar field (as discussed in Section
3). We rely on the broad infrastructure of the method of
manufactured solutions (MMS) to achieve this goal. By
manufacturing a model whose known behavior should be
reproduced by the techniques under analysis, MMS can
check whether they meet the expectations.

While this method has been previously used to verify geo-
metrical properties of isosurfacing codes [13], the essence of
MMS is that each new problem domain requires new theory
and the development of test cases. We choose topological
verification as a domain that has not been addressed in
previous work. An important contribution of this paper is the
selection of significant topological characteristics that can
be verified by software methods. Since no prior theoretical
work on verification of isosurface topology exactly matched
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the problem, we have adapted and extended well-known
areas in computational topology, namely Digital Topology
and Stratified Morse Theory. The selection of compelling
test cases requires not only conceptual insight, but also
experimental testing.

In summary, the main contributions of this work can be
stated as follows:

1) In the spirit of verifiable visualization, we propose,
for the first time, a methodology for checking the
correctness of publicly and commercially available
isosurfacing codes with respect to topological proper-
ties of the extracted isosurface.

2) We show how techniques from digital topology can
be adapted so as to became simple and effective
verification tools for isosurfaces without boundaries.

3) We show a new scheme to compute the Euler char-
acteristic of a level set from a trilinearly interpolated
scalar field. This scheme uses stratified Morse theory,
and allows us to verify topological properties of
isosurfaces with boundaries.

4) We propose a mechanism to manufacture isosurfaces
with non-trivial topological properties. To our surprise,
this very simple mechanism turns out to be quite
efficient at stressing topological properties of the
software being tested.

Finally, we stress that a fortunate by-product of the veri-
fication process is a comprehensive record of the desired
properties of the results of the technique, along with an
objective assessment of whether or not these properties are
satisfied. We argue that this record improves the applicability
of the technique under verification and increases the value
of the contributions of visualization for the computational
science community.

We present a comprehensive set of results obtained using
our method, including the finding of errors in two publicly
available isosurface extraction codes which claim topological
properties.

2 RELATED WORK
The literature comparing and evaluating isosurface extraction
techniques is enormous, with works ranging from mesh qual-
ity [10], [31], [35] to performance [38] and accuracy [30],
[41] analysis. In this section, we mainly focus on methods
intended to deal with topological issues that naturally appear
during the isosurfacing process.

Topology-aware Isosurfacing: Arguably the most pop-
ular isosurface extraction technique, Marching Cubes [21]
(MC) processes one grid cell at a time and uses the polarities
of each grid node (whether the scalar field at the node
is above or below the isovalue) to fit a triangular mesh
that approximates the isosurface within the cell. As no
information besides the polarities is taken into account,
Marching Cubes cannot guarantee any topological matching
between the triangulated mesh and the original isosurface.
In fact, the original Marching Cubes algorithm was prone to
producing surfaces with “cracks” due to ambiguity in cell
faces. An ambiguous face is characterized by alternating ver-
tex polarities when traversing its boundary, a configuration

that can lead to contradicting triangulations in neighboring
cells and cracks [28]. Crack-free surfaces can be ensured
through disambiguation mechanisms, and many schemes
have been proposed, such as the one by Montani et al. [23],
domain tetrahedralization [3], preferred polarity [2], gradient-
based method [39], and feature-based schemes [16]; see
the survey of Newman and Yi for a complete account [26].
Although disambiguation prevents extraneous boundaries,
guaranteeing homeomorphism remains a real issue.

Topological equivalence between the resulting triangle
mesh and the isosurface can only be achieved with additional
hypotheses about the underlying scalar field. Since function
values on grid nodes are typically the only information
provided, assumptions are made on the reconstruction kernel
used, such as the trilinear polynomial for the case of
regular hexahedral grids [27]. In other words, topological
correctness with respect to the trilinear interpolant has
been used as a ground truth by many authors. Nielson
and Hamann, for example, propose a methodology based
on the saddle points of the bilinear interpolant on cell
faces [28]. Still, that approach does not reproduce the
topology of trilinear functions as it cannot deal with
ambiguities internal to a grid cell. This happens because
some non-homeomorphic isosurfaces, when restricted to
the cube faces, are in fact homeomorphic. That problem
has been recognized by Natarajan [25] and Chernyaev [6],
leading to new classification and triangulation schemes.
Those two works have inspired many other “topology-
aware” triangulation methods, such as Cignoni et al.’s
reconstruction technique [7], which, similarly to Natarajan
and Chernyaev’s schemes, still falls short of covering the
full range of topological configurations created in the level
sets of trilinear interpolants. Subsequent work by Lopes and
Brodlie [20] and Lewiner et al. [19] provide triangulation
patterns covering all possible topological configurations of
trilinear functions, implicitly promising a crack-free surface.

Verifiable Visualization: One could argue that many of
the dead-ends in the route from the original MC algorithm
to the recent fully-homeomorphic solutions could have been
avoided with a systematic procedure to verify the algorithms
and the corresponding implementations. Although the need
for verifying both visualization techniques and the corre-
sponding software implementations has been a long term
concern of the visualization community [14], [17], concrete
proposals for how this verification might be carried out
have only fairly recently appeared in the literature. Etiene
et al. [13] was arguably the first paper in the scientific
visualization community to propose a rigorous, practical
verification framework for one particular property of one
particular problem: geometrical convergence of isosurface
extraction algorithms. Their work is based on the method
of manufactured solutions (MMS), building on the fact that
MMS has been widely used in the context of verification
and validation [1], a popular approach for the assessment of
numerical software. In the present paper we are interested
in topological properties of isosurface extraction techniques,
and we also use MMS as a verification mechanism. As we
will show in Section 6, our proposed technique uncovers
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hitherto unseen problems in codes widely used by the
community. We believe that this supports our assertion that
a broader culture of verification in scientific visualization
is likely to be valuable for the field.

There has been significant theoretical investigations in
computational topology dealing with isosurfaces invariants,
persistence, stability, [8], [11], etc. Notice, however, that this
body of work is concerned with how to define and compute
topological properties in computational objects. Our focus
here is to develop methods which stress isosurfacing codes
with respect to their topological correctness. These goals
are complementary: computational topology tools for data
analysis might offer new properties which can be used for
verification purposes, and verification tools can be used
to assess the correctness of the computational topology
implementations. Although we propose a mechanism to
compute topological invariants for piecewise smooth scalar
fields which to the best of our knowledge is novel (see
Section 4.2), our primary goal is to present a topology
verification methodology which developers can use to
increase confidence on the correctness of their code.

3 VERIFYING ISOSURFACE TOPOLOGY

We now start discussing strategies for verifying topological
properties of isosurfacing techniques. We first note that even
stating the desired properties is valuable, especially when
the algorithms assume little to no structure on the inputs.
Consider the typical implementations of Marching Cubes.
In the absence of any clear statement of desired properties,
one limited to manually inspecting the output generated by
inputs which exercise every case in the case table. Such a
procedure would be as complicated as the original algorithm,
and carrying it out would be just as error prone; we need
properties which are simple to state, easy to check, and
good at catching bugs.

Simple example: To start, note that although the
previously mentioned problem with Marching Cubes [21]
and cracks is well-known, it is not immediately clear how
to precisely state what topological properties are not being
honored. For example, “the output of Marching Cubes
cannot contain boundary curves” is not one such property,
for two reasons. First, some valid surfaces generated by
Marching Cubes – such as with the simple 23 case –
do contain boundaries. Second, many incorrect outputs
might not contain any boundaries at all. The following
might appear to be a good candidate property: “given
a positive vertex v0 and a negative vertex v1, any path
through the scalar field should intersect the isosurface an
odd number of times”. It attempts to capture the fact that
the triangle mesh should separate interior vertices from
exterior vertices, and seems to isolate the problem with the
cracks. However, checking this problem, and even stating
it precisely, is problematic. Geometrical algorithms for
intersection tests are notoriously brittle; for example, some
paths might intersect the isosurface in degenerate ways. A
more promising approach comes from noticing that any
such separating isosurface has to be a piecewise manifold,
whose boundary must be contained in the boundary of the

Compute 
expected

Topological 
Invariants

Compute mesh
Topological 
Invariants

Compare  invariants

Isosurface 
Extraction

Random trilinear field

Fig. 1. Overview of our topology verification pipeline.
The first step is to build a random trilinear field and
extract the isosurface using the implementation under
verification. Secondly, we compute the expected topo-
logical invariants from the trilinear field and compare
against the invariants obtained from the mesh. We pro-
vide two simple ways to compute topological invariants
from a trilinear field based on Digital Topology (DT) or
Stratified Morse Theory (SMT).

grid. This directly suggests that “the output of Marching
Cubes must be a piecewise-linear (PL) manifold whose
boundaries are contained in the boundary of the grid”.
This property is simple and easy to test: the link of every
interior vertex in a PL-manifold is topologically a circle,
and the link of every boundary vertex is a line. The term
“consistency” has been used to describe problems with
some algorithms [26]. In this paper, we say that the output
of an algorithm is consistent if it obeys the PL-manifold
property above. By generating arbitrary grids and extracting
isosurfaces with arbitrary isovalues, the inconsistency of
the original case table becomes mechanically checkable,
and instantly apparent. Some modifications to the basic
Marching Cubes table, such as using Nielson and Hamann’s
asymptotic decider [28], result in consistent implementations,
and the outputs pass the PL-manifold checks (as we will
show in Section 6).

Although very simple, the example we have presented
above is a complete instance of the method of manufactured
solutions. We identify a property that the results should
obey, run the implementations on inputs, and test whether
the resulting outputs respect the properties. In the next
sections, we develop a verification method for algorithms
aiming to reproduce the topology of the level sets of trilinear
interpolation [6], [20], [27], thus completely eliminating any
ambiguity. In this paper, we say the output is correct if
it is homeomorphic to the corresponding level set of the
scalar field. This correctness property is simple to state, but
developing effective verification schemes that are powerful
and simple to implement is more involved. We will turn
to invariants of topological spaces, in particular to Betti
numbers and the Euler characteristic, discuss their relative
strengths and weaknesses, and how to robustly determine
and check their values. Figure 1 shows our pipeline to assess
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Fig. 2. The four distinct groups of vertices O,F,E,C, are
depicted as black, blue, green and red points. They are
the “Old”, “Face”, “Edge” and “Corner” points of a voxel
region VG (semitransparent cube) respectively. For the
sake of clarity, we only show a few points.

topology correctness and also the paper organization.

4 MATHEMATICAL TOOLS
This section describes the mathematical machinery used
to derive the topology verification tools. More specifically,
we provide a summary of some important results from
both digital topology and stratified Morse theory; these
make up the foundations of our method. A more detailed
discussion on digital topology can be found in Stelldinger
et al.’s paper [37], and Goresky and MacPherson give a
comprehensive presentation of stratified Morse theory to
which we refer the interested reader [15].

In Section 4.1 we describe a method based on digital
topology, which operates on manifold surfaces without
boundaries and determines the Euler characteristic and Betti
numbers of the level sets. A more general setting of surfaces
with boundaries is handled with tools derived from Stratified
Morse Theory, detailed in Section 4.2. However, this latter
method can only determine the Euler characteristic of the
level set.

Before going deeper in our methodology, let us start by
recalling the definition and some properties of the Euler char-
acteristic, which we denote by χ . For a compact 2-manifold
M , it can be computed as χ(M ) = V −E +F , where V ,
E and F are the number of vertices, edges and faces of any
cell decomposition of M . If M is a connected orientable
2-manifold without boundary, χ(M ) = 2−2g(M ), where
g(M ) is the genus of M . The Euler characteristic may
also be written as χ(M ) = ∑

n
i (−1)iβi, where βi are the

Betti numbers: the rank of the ith homology group of M .
Intuitively, for 2-manifolds, β0, β1 and β2 correspond to the
number of connected components, holes and voids (regions
of the space enclosed by the surface) respectively. If M has
many distinct connected components, that is, M =

⋃n
i=1 M i

and M i ⋂M j = /0 for i 6= j then χ(M ) = ∑
n
i χ(M i). More

details about Betti numbers, the Euler characteristic and
homology groups can be found in Edelsbrunner and Harer’s
text [11]. We are interested in the Euler characteristic and
the Betti numbers because they are topological invariants:
two homeomorphic topological spaces will have the same
Euler characteristic and Betti numbers whenever these are
well-defined.
4.1 Digital topology
Let G be a n×n×n cubic regular grid with a scalar e(s)
assigned to each vertex s of G and t : R3 → R be the

piecewise trilinear interpolation function in G , that is, t(x) =
ti(x), where ti is the trilinear interpolant in the cubic cell
ci containing x. Given a scalar value α , the set of points
satisfying t(x) = α is called the isosurface α of t. In what
follows, t(x) = α will be considered a compact, orientable
2-manifold without boundary. We say that a cubic cell ci
of G is unambiguous if the following two conditions hold
simultaneously:

1) any two vertices sa and sb in ci such that e(sa) <
α, e(sb) < α are connected by negative edges, i. e.,
a sequence of edges smsn such that sas1,s1s2, . . . ,sksb
in ci satisfying e(si)< α, i = 1, . . .k and

2) any two vertices sc and sd in ci such that e(sc) >
α, e(sd) > α are connected by positive edges, i. e.,
a sequence of edges smsn such that scs1,s1s2, . . . ,slsd
in ci satisfying e(si)> α, i = 1, . . . l.

In other words, a cell is unambiguous if all positive vertices
form a single connected component via the positive edges
and, conversely all negative vertices form a single connected
component by negative edges [39]. If these two properties
are not satisfied simultaneously, ci is called ambiguous. The
top row in Figure 3 shows all possible unambiguous cases.

The geometric dual of G is called the voxel grid associated
to G , denoted by VG . More specifically, each vertex s of
G has a corresponding voxel vs in VG , each edge of G
corresponds to a face in VG (and vice versa), and each cubic
cell in G corresponds to a vertex in VG , as illustrated in
Figure 2. Each voxel vs can also be seen as the Voronoi
cell associated to s. Scalars defined in the vertices of G can
naturally be extended to voxels, thus ensuring a single scalar
value e(vs) to each voxel vs in VG defined as e(s) = e(vs). As
we shall show in the following, the voxel grid structure plays
an important role when using digital topology to compute
topological invariants of a given isosurface. Before showing
that relation, though, we need a few more definitions.

Denote by G ′ the 2n×2n×2n regular grid obtained from
a refinement of G . Vertices of G ′ can be grouped in four
distinct sets, denoted by O, F , E, C. The set O contains the
vertices of G ′ that are also vertices of G . F and E contain
the the vertices of G ′ lying on the center of faces and edges
of the voxel grid VG , respectively. Finally, C contains all
vertices of VG . Figure 2 illustrates these sets.

Consider now the voxel grid VG ′ dual to the refined grid
G ′. Given a scalar value α , the digital object Oα is the
subset of voxels v in VG ′ such that v ∈ Oα if at least one
of the criteria bellow are satisfied:
• v ∈ O and e(v)≤ α

• v ∈ F and both neighbors of v in O have scalars less
than (or equal) α

• v ∈ E and at least 4 of the 8 neighbors of v in O∪F
have scalars less than (or equal) α

• v ∈ C and at least 12 of the 26 neighbors of v in
O∪F ∪E have scalars less than (or equal) α

The description above is called Majority Interpolation (MI),
illustrated in Figure 5, and it allows to compute the voxels
that belong to a digital object Oα . The middle row of
Figure 3 shows all possible cases for voxel picked out by
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1 2 3 4 5 6 7 1(b) 2(b) 3(b) 4(b)

Fig. 3. An illustration of the relation between unambiguous isosurfaces of trilinear interpolants and the
corresponding digital surfaces. The top row shows all possible configurations of the intersection of t = α with a
cube c j for unambiguous configurations [20]. Each red dot si denotes a vertex withs e(si)< α . Each image on the
top right is the complement c̄i of cases 1 to 4 on the left (cases 5 to 7 were omitted because the complement
is identical to the original cube). The middle row shows the volume reconstructed by Majority Interpolation
(MI) for configurations 1 to 7 (left) and the complements (right) depicted in the top row. Bottom row shows the
boundary of the volume reconstructed by the MI algorithm (The role of faces that intersect ci is explained in the
proof of Theorem 4.1). Notice that all surfaces in the top and bottom rows are topological disks. For each cube
configuration, the boundary of each digital reconstruction (bottom row) has the same set of positive/negative
components as the unambiguous configurations (top row).

GENUSFROMDS(∂Oα)

1 � Let ∂Oα be a 2-manifold without boundary
2 � Let |Ni| be the number of surface points with

exactly i neighbors.
3 � Let g be the surface genus
4 g = 1+(|N5|+2|N6|− |N3|)/8
5 return g

Fig. 4. A simple formula for genus computation.

the MI algorithm (notice the correspondence with the top
row of the same figure).

The importance of Oα is two-fold. First, the boundary
surface of the union of the voxels in Oα , denoted by ∂Oα

and called a digital surface, is a 2-manifold (See the proof
in [37]). Second, the genus of ∂Oα can be computed directly
from Oα using the algorithm proposed by Chen and Rong
[5] (Figure 4). As the connected components of Oα can
also be easily computed and isolated, one can calculate the
Euler characteristic of each connected component of Oα

from the formula χ = 2−2g and thus β0, β1, and β2.
The voxel grid VG ′ described above allows us to compute

topological invariants for any digital surface ∂Oα . However,
we so far do not have any result relating ∂Oα to the isosur-
face t(x) = α . The next theorem provides the connection.

Theorem 4.1. Let G be a n× n× n rectilinear grid with
scalars associated with each vertex of G and t be the
piecewise trilinear function defined on G such that the
isosurface t(x) = α is a 2-manifold without boundary. If no
cubic cell of G is ambiguous with respect to t(x) = α then
∂Oα is homeomorphic to the isosurface t(x) = α .

Proof: Given a cube ci ⊂ G and an isosurface t =
{x | t(x) = α}, let ti = t ∩ ci. Similarly, denote

∂Oi = clR3 ((∂Oα ∩ ci)−∂ci) .

MAJORITYINTERPOLATION(G ,α)

1 � Let O, F , E and C be the subset of vertices
in G ′ as described in subsection 4.1.

2 � Let N (s,?) be the set of neighbors of s ∈ G ′ in the set ?,
where ?= {O,F,E,C}, with associate scalar less than α

3 for s ∈ G ′

4 do if s ∈ O or
5 s ∈ F and |N (s,O)|= 2 or
6 s ∈ E and |N (s,O)+N (s,F)|> 4 or
7 s ∈ C and |N (s,O)+N (s,F)+N (s,E)|> 12
8 then Select voxel vs
9 return Oα

Fig. 5. Voxel selection using Majority Interpolation (MI).

We note that ∂O is a 2-manifold [33], [37]. There are two
main parts to the proof presented here. For each i,

1) the 2-manifolds ti and ∂Oi are homeomorphic; and
2) both ti and ∂Oi cut the same edges and faces of ci.

Since t is trilinear, each level-set of t cannot intersect an
edge more than once. Hence, if ci is not ambiguous, ti is
exactly one of the cases 1 to 7 in the top row of Figure 3 [20],
ie., either a topological disk or the empty set. The digital
reconstruction of each unambiguous case is shown in the
middle row of Figure 3. By inspection, we can verify that
the boundary of the digital reconstruction ∂Oi (bottom row
of Figure 3) is also a disk for all possible unambiguous cases
and complement cases. Hence, for each i, the 2-manifolds
∂Oi and ti are homeomorphic. Then, for each i, both ∂Oi
and ti cut the same set of edges and faces of ci. Again, we
can verify this for all possible i by inspecting the top and
bottom rows in Figure 3, respectively. Finally, we apply
the Pasting Lemma [24] across neighboring surfaces ∂Oi
and ∂O j in order to establish the homeomorphism between
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∂Oα and t. 2
This proof provides a main ingredient for the verification

method in Section 5. Crucially, we will show how to
manufacture a complex solution that unambiguously crosses
every cubic cell of the grid. Since we have shown the
conditions for which the digital surfaces and the level sets
are homeomorphic, any topological invariant will have to
be the same for both surfaces.

4.2 Stratified Morse Theory
The mathematical developments presented above allow
us to compute the Betti numbers of any isosurface of
the piecewise trilinear interpolant. However, they require
isosurfaces without boundaries. In this section, we provide a
mechanism to compute the Euler characteristic of any regular
isosurface of the piecewise trilinear interpolant through an
analysis based on critical points, which can be used to verify
properties of isosurfaces with boundary components.

Let f for now be a smooth function with isolated critical
points p, where ∇ f (p) = 0. A well-known result from
classical Morse theory is that if we continuously move
along a scalar value α , the topology of two isosurface
f (x) = α and f (x) = α +ε are different only when there is
a critical value in the interval [α,α + ε] ( f (p) is a critical
value iff p is a critical point). Moreover, if εp is a small
neighborhood around p and L−(p) and L+(p) are the subset
of points in the boundary of εp satisfying f (x) < f (p)
and f (x)> f (p) respectively, then the topological change
from the isosurface f (x) = f (p)− ε to f (x) = f (p)+ ε is
characterized by removing L−(p) and attaching L+(p). In
terms of the change in the Euler characteristic, denoted by
∆χ(p), we have:

∆χ(p) = χ(L+(p))−χ(L−(p)), (4.1)

where χ(L−(p)) and χ(L+(p)) are the Euler characteristic
of L−(p) and L+(p), respectively. In the smooth scenario,
χ(L−(p)) and χ(L+(p)) can be inferred from the number
of negative eigenvalues of the Hessian matrix of f in p,
and we have four distinct cases:

min saddle-1 saddle-2 max
χ(L−(p)) 0 2 0 2
χ(L+(p)) 2 0 2 0

The above formulation is straightforward but unfortunately
cannot be directly applied to functions appearing in ei-
ther piecewise trilinear interpolations or isosurfaces with
boundary, both of which appear in some of the isosurfacing
algorithms with guaranteed topology. Trilinear interpolants
are not smooth across the faces of grid cells, so the gradient
is not well-defined there. Identifying the critical points
using smooth Morse theory is then problematic. Although
arguments based on smooth Morse theory have appeared
in the literature [40], there are complications. For example,
the scalar field in a node of the regular grid might not have
any partial derivatives. Although one can still intuitively
argue about the concept of minima and maxima around
a non-differentiable point, configurations such as saddles
are more problematic, since their topological behavior is

Fig. 6. An illustration of a piecewise-smooth immersed
manifold. The colormap illustrates the value of each
point of the scalar field. Notice that although the
manifold itself is not everywhere differentiable, each
stratum is itself an open manifold that is differentiable.

different depending on whether they are on the boundary
of the domain. It is important, then, to have a mathematical
tool which makes predictions regardless of the types of
configurations, and SMT is one such theory.

Intuitively, a stratification is a partition of a piecewise-
smooth manifold such that each subset, called a stratum, is
either a set of discrete points or has smooth structure. In the
case of regular grid with cubic cells, the stratification we
propose will be formed by four sets (the strata), each one a
(possibly disconnected) manifold. The vertex set contains
all vertices of the grid. The edge set contains all edge
interiors, the face set contains all face interiors, and the cell
set contains all cube interiors. We illustrate the concept in
Figure 6. The important property of the strata is that the
level sets of f restricted to each stratum are smooth (or lack
any differential structure, in the case of the vertex-set). In
SMT, one applies standard Morse theory on each stratum,
and then combines the partial results appropriately.

The set of points with zero gradient (computed on each
stratum), which SMT assumes to be isolated, are called the
critical points of the stratified Morse function. In addition,
every point in the vertex set is considered critical as well.
One major difference between SMT and the smooth theory is
that some critical points do not actually change the topology
of the level sets. This is why considering all grid vertices
as critical does not introduce any practical problems: most
grid vertices of typical scalar fields will be virtual critical
points.

Let M be the stratified grid described above. It can
be shown that if p is a point in a d-dimensional stratum
of M , it is always possible to find a (3−d)-dimensional
submanifold of M (which might straddle many strata) that
meets transversely the stratum containing p, and whose
intersection consists of only p (this is a topological analog
of the orthogonal complement). In this context, we can
define a small neighborhood Tε(p) in the strata containing
p and the lower tangential link T−L (p) as the set of point in
the boundary of Tε(p) with scalar values less than that in p.
Similarly we can define upper tangen-
tial link T+

L (p) as the set of points
in the boundary of Tε(p) with scalar
value higher than that in p. Lower nor-
mal N−L (p)) and upper normal N+

L (p))
links are analogous notions, but the
lower and upper links are taken to be
subsets of Nε(p), itself a subset of the
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(3−d)-dimensional submanifold transverse to the stratum
of p going through p. The definitions above are need in
order to define the lower stratified link and upper stratified
link, as follows: given Tε(p), T−L (p), Nε(p) and N−L (p), the
lower stratified Morse link (and similarly for upper stratified
link) is given by

L−(p) = Tε(p)×N−L (p)∪Nε(p)×T−L (p). (4.2)

These allow us to find critical points even in the non-smooth
scenario while making it possible to consistently define
L− and L+ in each critical point. It then lets us compute
topological changes with the same methodology used in the
smooth case. In other words, when a scalar value α crosses a
critical value αp in a critical point p, the topological change
in the isosurface is characterized by removing L−(p) and
attaching L+(p), affecting the Euler characteristic as defined
in Equation 4.1.

The remaining question then is how to determine
χ(L−(p)) and χ(L+(p)). Recalling that χ(A∪B) = χ(A)+
χ(B) − χ(A ∩ B), χ(A × B) = χ(A)χ(B), and χ(Tε) =
χ(Nε) = 1 (we are omitting the point p) we have:

χ(L−) = χ(Tε ×N−L ∪Nε ×T−L )
= χ(N−L )+χ(T−L )−χ(Tε ×N−L ∩Nε ×T−L )

(4.3)

Now, we can define Tε = T−L ∪Tr, T−L ∩Tr = /0 and similarly
for Nε and N−L . Then, expand the partitions and products,
and distribute the intersections around the unions, noticing
all but one of intersections will be empty:

Tε ×N−L ∩Nε ×T−L = ((Tr ∪T−L )×N−L )∩ ((Nr ∪N−L )×T−L )

= ((Tr×N−L )∪ (T−L ×N−L ))∩
((Nr×T−L )∪ (N−L ×T−L ))

= N−L ×T−L

Therefore:

χ(Tε ×N−L ∩Nε ×T−L ) = χ(N−L ×T−L )

= χ(N−L )χ(T−L )

which gives the final result

χ(L−) = χ(N−L )+χ(T−L )−χ(N−L )χ(T−L ). (4.4)

The same result is valid for χ(L+), if we replace the
superscript ‘−’ by ‘+’ in Equation 4.4. If T−L or T+

L are
one-dimensional, then we are done. If not, then we can
recursively apply the same equation to T−L and T+

L and look
at progressively lower-dimensional strata until we reach
Tε(p) and Nε(p) given by 1-disks. The lower and upper
links for these 1-disks will always be discrete spaces with
zero, one or two points, for which χ is simply the cardinality
of the set.

The cases where χ(L−(p)) = χ(L+(p)) have δ χ(p) = 0,
and give the virtual critical points mentioned above, that
is, critical points which do not change the topology of the
surface. Critical points in the interior of cubic cells are
handled by the smooth theory, since in that case that the
normal Morse data is 0-dimensional and, by Equation 4.4,
χ(L−) = χ(T−L ). So the new cases are critical points

occurring in vertices or in the interior of faces of the
grid (no critical point will occur on the edges for trilinear
interpolation). For a critical point p in a vertex, stratification
can recursively be carried out using the edges of the
cubes meeting in p as tangential and normal submanifolds.
Denoting by nl1,nl2,nl3 the number of vertices adjacent to
p with scalar value less than that of p in each Cartesian
coordinate direction, Equation (4.4) gives:

χ(L−(p)) = nl1 +nl2 +nl3−nl1(nl2 +nl3) (4.5)

χ(L+(p)) can be computed similarly, but considering the
number of neighbors of p in each Cartesian direction with
scalars higher than that of p.

If p is a critical point lying in a face r of a cube, we
consider the face itself as the tangential submanifold and
the line segment r⊥ orthogonal to r through p the normal
submanifold. Recursively, the tangential submanifold can
be further stratified in two 1-disks (tangential and normal).
Denote by nl the number of ends of r⊥ with scalar value
less than that of p. Also, recalling that the critical point
lying in the face r is necessarily a saddle, thus having two
face corners with scalar values less and two higher than
that of p, Equation (4.4) gives:

χ(L−(p)) = nl +2−2nl (4.6)

Analogously, we can compute χ(L+(p)) = nu+ 2− 2nu
where nu the number of ends of r⊥ with scalar value higher
than that of p.

A similar analysis can be be carried out for every type of
critical point, regardless of whether the point belongs to the
interior of a grid cell (and so would yield equally well to a
smooth Morse theory analysis), an interior face, a boundary
face, or a vertex of any type. The Euler characteristic χs of
any isosurface with isovalue α is simply given as:

χα = ∑
pi∈Cα

∆χ(pi) (4.7)

where Cα is the set of critical points sorted as αp0 < αp1 <
· · ·< α , where αpi is the critical value corresponding to the
critical point pi.

It is worth mentioning once again that, to the best of our
knowledge, no other work has presented a scheme which
provides such a simple mechanism for computing the Euler
characteristic of level sets of piecewise-smooth trilinear
functions as the one we describe above.

5 MANUFACTURED SOLUTION PIPELINE

We now put the pieces together and build a pipeline
for topology verification using the results presented in
Section 4. In the following sections, the procedure called
ISOSURFACING refers to the isosurface extraction technique
under verification. INVARIANTFROMMESH computes topo-
logical invariants of a simplicial complex.
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MMS-SMT(G )

1 � Let G be a n×n×n rectilinear grid
2 for i← 1 to #tests
3 do randomly sample G
4 CPs← COMPUTECRITICALPOINTS(G )
5 if p ∈CPs is degenerate or
6 p is an internal saddle close to edges or faces
7 then GOTO 3
8 else K← ISOSURFACING(G )
9 (χv)i← INVARIANTFROMCPS(G )

10 (χk)i← INVARIANTFROMMESH(K)
11 Compare (χv)i and (χk)i

Fig. 7. Overview of the method of manufactured
solutions (MMS) using Stratified Morse Theory. INVARI-
ANTFROMCPS is computed using Equation 4.7

5.1 Consistency
As previously mentioned, MC-like algorithms which use
disambiguation techniques are expected to generate PL-
manifold isosurfaces no matter how complex the function
sampled in the vertices of the regular grid. In order to
stress the consistency test we generate a random scalar field
with values in the interval [−1,1] and extract the isosurface
with isovalue α = 0 (which is all but guaranteed not to
be a critical value) using a given isosurfacing technique,
subjecting the resulting triangle mesh to the consistency
verification. This process is repeated a large number of
times. If the implementation fails to produce PL-manifolds
for all cases, then the counterexample provides a documented
starting point for debugging. If it passes the tests, we
consider the implementation verified.

5.2 Verification using Stratified Morse theory
We can use the formulation described in Section 4.2 to
verify implementations of isosurface extraction that promise
to match the topology of the trilinear interpolant. The SMT-
based verification procedure is summarized in Figure 7.
The algorithm has four main steps. A random scalar field
with node values in the interval [−1,1] is initially created.
Representing the trilinear interpolation in a grid cell by
f (x,y,z) = axyz + bxy + cxz + dyz + ex + f y + gz + h, the
internal critical points are given by:

tx =
d∆x±
√

∆x∆y∆z
a∆x

ty =
c∆y±
√

∆x∆y∆z
a∆y

tz =
b∆z±
√

∆x∆y∆z
a∆z

,

where ∆x = bc−ae, ∆y = bd−a f , and ∆z = cd−ag. Critical
points on faces of the cubes are found by setting x,y, and z to
either 0 or 1, and solving the linear equation. If the solutions
lie outside the unit cube [0,1]3, they are not considered
critical points, since they lie outside the domain of the cell.
The scalar field is regenerated if any degenerate critical
point is detected (these can happen if either the random
values in a cubic cell have, by chance, the same value or
when ∆x, ∆y or ∆z are zero). In order to avoid numerical
instabilities we also regenerate the scalar field locally if

Fig. 8. Our manufactured solution is given by t(x) = α.
G is depicted in solid lines while G̃ is shown in dashed
lines. G̃ is a uniform subdivision of G . The trilinear
surfaces ti are defined for each cube ci ∈ G and
resampled in c′j ∈ G̃ . The cubes in the center of G have
four maxima each (left) and thus induce complicated
topology. The final isosurface may have several tunnels
and/or connected components even for coarse G (right).

any internal critical point lies too close to the border of the
domain (that is, to an edge or to a face of the cube).

The third step computes the Euler characteristic of a
set of isosurfaces with random isovalues in the interval
[−1,1] using the theory previously described, jointly with
Equation 4.7. In the final step, the triangle mesh M approxi-
mating the isosurfaces is extracted using the algorithm under
verification, and χ(M) = V (M)− E(M) + F(M), where
V (M),E(M), and F(M) are the number of vertices, edges,
and triangles. If the Euler characteristic computed from the
mesh does not match the one calculated via Equation 4.7,
the verification fails. We carry out the process a number
of times, and implementations that pass the tests are less
likely to contain bugs.

5.3 Verification using Digital Topology

Figure 9 shows the verification pipeline using MI algorithm,
and Figure 8 depicts the refinement process. Once again
a random scalar field, with potentially many ambiguous
cubes, is initially generated in the vertices of a grid G . The
algorithm illustrated in Figure 9 is applied to refine G so as
to generate a new grid G̃ which does not have ambiguous
cells. If the maximum number of refinement is reached and
ambiguous cells still remain then the process is restarted
from scratch. Notice that cube subdivision does not need to
be uniform. For instance, each cube may be refined using a
randomly placed new node point or using ti’s critical points,
and the result of the verification process still holds. This is
because Theorem 4.1 only requires ci to be unambiguous.
For simplicity, in this paper we refine G uniformly doubling
the grid resolution in each dimension.

Scalars are assigned to the new vertices of G̃ (the ones
not in G ) by trilinearly interpolating from scalars in G ,
thus ensuring that G and G̃ have exactly the same scalar
field [27]. As all cubic cells in G̃ are unambiguous, Theorem
4.1 guarantees the topology of the digital surface ∂Oα

obtained from G̃ is equivalent to that of t(x) =α . Algorithm
INVARIANTFROMDS computes topological invariants of
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MMS-DS(G )

1 � Let G be a n×n×n rectilinear grid
2 for i← 1 to #tests
3 do randomly sample G
4 G̃ ← REFINEANDRESAMPLE(G )
5 if G̃ has ambiguous cubes
6 then GOTO 3
7 O ←MAJORITYINTERPOLATION(G̃ )
8 K← ISOSURFACING(G )
9 (β v

0 ,β
v
1 ,β

v
2 )i← INVARIANTFROMDS(∂O)

10 (β k
0 ,β

k
1 ,β

k
2 )i← INVARIANTFROMMESH(K)

11 Compare (β v
0 ,β

v
1 ,β

v
2 )i and (β k

0 ,β
k
1 ,β

k
2 )i

Fig. 9. Overview of the method of manufactured
solutions (MMS) using Digital Topology.

∂Oα using the scheme discussed in Section 4.1. In this
context, INVARIANTFROMDS is the algorithm illustrated in
Figure 4. Surfaces with boundary are avoided by assigning
the scalar value 1 to every vertex in the boundary of G .

6 EXPERIMENTAL RESULTS

In this section we present the results of applying our
topology verification methodology to a number of different
isosurfacing techniques, three of them with topological
guarantees with respect to trilinear interpolant. Specifically,
the techniques are:

VTKMC [36] is the Visualization Toolkit (VTK) im-
plementation of the Marching Cubes algorithm with the
implicit disambiguation scheme proposed by Montani et al.
[23]. Essentially, it separates positive vertices when a face
saddle appears and assumes no tunnels exists inside a cube.
The proposed scheme is topologically consistent but it does
not reproduce the topology of the trilinear interpolant.

Marching Cubes with Edge Transformations or MACET
[10] is a Marching Cubes based technique designed to
generate triangle meshes with good quality. Quality is
reached by displacing active edges of the grid (edges
intersected by the isosurface), both in normal and tangential
direction toward avoiding “sliver” intersections. Macet does
not reproduce the topology of the trilinear interpolant.

AFRONT [35] is an advancing-front method for isosurface
extraction, remeshing and triangulation of point sets. It
works by advancing triangles over an implicit surface. A
sizing function that takes curvature into account is used to
adapt the triangle mesh to features of the surface. AFRONT
uses cubic spline reconstruction kernels to construct the
scalar field from a regular grid. The algorithm produces
high quality triangle meshes with bounded Hausdorff error.
As occurred with the VTK and Macet implementations,
Afront produces consistent surfaces but, as expected, the
results do not match the trilinear interpolant.

MATLABr [22] is a high-level language for building
codes that requires intensive numerical computation. It has
a number of features and among them an isosurface extrac-
tion routine for volume data visualization. Unfortunately,

MATLAB documentation does not offer information on
the particularities of the implemented isosurface extraction
technique (e.g., Marching Cubes, Delaunay-based, etc;
consistent or correct).

SNAPMC [32] is a Marching Cubes variant that aims at
producing high quality triangle meshes from regular grids.
The central idea is to extend the original lookup table to
account for cases where the isosurface hits the grid nodes.
Specifically, an user-controlled parameter dictates maximum
distance for “snap” the isosurface into the grid node. The
authors report an improvement in the minimum triangle
angle when compared to previous techniques.

MC33 was introduced by Chernyaev [6] to solve ambi-
guities in the original MC. It extends Marching Cubes table
from 15 to 33 cases to account for ambiguous cases and
to reproduce the topology of the trilinear interpolant inside
each cube. The original table was later modified to remove
two redundant cases which leads to 31 unique configurations.
Chernyaev’s MC solves face ambiguity using Nielsen and
Hamann’s [28] asymptotic decider and internal ambiguity
by evaluating the bilinear function over a plane parallel to a
face. Additional points may be inserted to reproduce some
configuration requiring subvoxel accuracy. We use Lewiner
et al.’s implementation [19] of Chernyaev’s algorithm.

DELISO [9] is a Delaunay-based approach for isosurfac-
ing technique. It uses the intersection of the 3D Voronoi
diagram and the desired surface to define a restricted
Delaunay triangulation. Moreover, it builds the restricted
Delaunay triangulation without having to compute the whole
3D Voronoi structure. DELISO has theoretical guarantees
of homeomorphism and mesh quality.

MCFLOW is a proof-of-concept implementation of the
algorithm described in the supplementary material [34]. It
works by successive cube subdivision until it has a simple
edge flow. A cube has a simple edge flow if it has only one
minima and one maxima. A vertex s∈ ci is a minimum if all
vertices s j ∈ ci connected to it has t(s j)> t(si). Similarly,
a vertex is a maximum if t(s j)< t(si) for every neighbor
vertex j. This property guarantees that the Marching Cubes
method will generate a triangle mesh homeomorphic to the
isosurface. After subdivision, the surfaces must be attached
back together. The final mesh is topologically correct with
respect to the trilinear interpolant.

We believe that the implementation of any of those
algorithms in full detail is non-trivial. The results reported
in the following section support this statement, showing
how complex and error-prone is the coding of isosurfacing
algorithms, and reinforcing the need of robust verification
mechanisms. In what follows, we say that a mismatch
occurs when invariants computed from verification procedure
disagree with the invariants computed from the isosurfacing
technique. A mismatch does not necessarily mean an
implementation mistakes, as we shall see later in this
section. After discussions with the developers of some
implementations under verification, however, we did find
that there were bugs in some of the implementations.
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6.1 Topology consistency
All implementations were submitted to the consistency
test (Section 5.1), resulting in the outputs reported in
the first column of Table 1. We observed mismatches
for DELISO, SNAPMC (with non-zero snap value) and
MATLAB implementations. Now, we detail these results.
6.1.1 DELISO

We analyzed 50 cases where DELISO’s output mismatched
the ground truth produced by MMS and we found that: 1)
28 cases had incorrect hole(s) in the mesh, 2) 15 cases
had missing triangle(s), and 3) 7 cases had duplicated
vertices. These cases are illustrated in Figure 11. The
first problem is possibly due to the non-smooth nature
of the piecewise trilinear interpolant, since in all 28 cases
the holes appeared in the faces of the cubic grid. It is
important to recall that DELISO is designed to reproduce
the topology of the trilinear interpolant inside each grid
cube, but the underlying algorithm requires the isosurface to
be C2 continuous everywhere, which does not hold for the
piecewise trilinear isosurface. In practice, real world datasets
such as medical images may induce “smoother” piecewise
trilinear fields when compared to the extreme stressing from
the random field, which should reduce the incidence of
such cases. Missing triangles, however, occurred in the
interior of cubic cells where the trilinear surface is smooth.
Those problems deserve a deeper analysis, as one cannot
say beforehand if the mismatches are caused by problems
in the code or numerical instability associated to the initial
sampling, ray-surface intersection, and the 3D Delaunay
triangulation construction.
6.1.2 SNAPMC
Table 1 shows that SNAPMC with non-zero snap value
causes the mesh to be topologically inconsistent (Figure
13(a)) in more the 50% of the performed tests. The reason
for this behavior is in the heart of the technique: the
snapping process causes geometrically close vertices to be
merged together which may eliminate connected components
or loops, join connected components or even create non-
manifold surfaces. This is why there was an increase in
the number of mismatches when compared with SNAPMC
with zero snap value. Since non-manifold meshes are
not desirable in many application, the authors suggest a
post-processing for fixing these topological issues but no
implementation or algorithm is provided with the paper.
6.1.3 MATLAB

MATLAB documentation does not specify the properties
of the implemented isosurface extraction technique. Conse-
quently, it becomes hard to justify the results for the high
number of mismatches we see in Table 1. For instance,
Figure 13(b) shows an example of a non-manifold mesh
extracted using MATLAB. In that figure, the two highlighted
edges have more that two faces connected to them and the
faces between these edges are coplanar. Since we do not
have enough information to explain this behavior, this might
be the actual expected behavior or an unexpected side effect.
An advantage of our tests is the record of the observed
topology behavior of meshes generated by MATLAB.

6.1.4 MACET

In our first tests, MACET failed in all consistency tests
for a 5× 5× 5 grid. An inspection in the code revealed
that the layer of cells in the boundary of the grid was not
been traversed. Once that bug was fixed, MACET started
to produce PL-manifold meshes and was successful in the
consistency test, as shown in Table 1.

6.2 Topology correctness
The methodology described in Section 5.2 and 5.3 was
applied to all algorithms although only MC33, DELISO and
MCFLOW are expected to generate meshes with the same
topology of the trilinear interpolant. Our tests consists of one
thousand random fields generated in a rectilinear 5×5×5
grid G . The verification test using Digital Surfaces demands
a compact, orientable, 2-manifold without boundary, so
we set scalars equal 1 for grid vertices in the boundary
of the grid. As Stratified Morse Theory supports surfaces
with boundary, no special treatment was employed in the
boundary of G . We decide to run these tests in all algorithm
for completeness and also for testing the tightness of the
theory which says that if the algorithms does not preserve
the topology of the trilinear interpolant a mismatch should
occur. Interestingly, with this test, we were able to find
another code mistake in MACET that prevented it from
terminating safely when SMT procedure is applied. By the
time of the submission of this paper, the problem was not
fixed. For all non topology-preserving, there was a high
number of mismatches as expected.

Although our methodology eventually discards scalar
fields because either ambiguous cells are still present after
refining the grid to the maximum tolerance (digital topology
test) or critical points fall too close to edges/faces of the
cubic cells (SMT test), we can ensure that all possible
configuration for the trilinear interpolation are still being
considered in the tests. Figure 10 shows the incidence of
each possible configuration (including all ambiguous cases)
for the trilinear interpolation in the generated random fields.
Dark bars correspond to the number of times a specific
case happens in the random field and the light bars show
how many of those cases are accepted by our verification
methodology, that is, the random field is not discarded.
Notice that no significant differences can be observed,
implying that our rejection sampling method does not bias
the case frequencies.

Another aspect to be considered is that some config-
urations such as 13 or 0 have low incidence rate and
therefore might not be stressed enough. While the trivial
case 0 does not pose a challenge for topology-preserving
implementations, configuration 13 has 6 subcases whose
level-sets are fairly complicated [20], [27]. Fortunately, we
can build random fields in a convenient fashion by forcing
a few cubes to represent a particular instance of the table,
such as case 13, empowering us with more focused tests.

Table 1 shows statistics for all implementations. In the
case of MC33, the tests revealed a problem with configura-
tion 4, 6 and 13 of the table (ambiguous cases). Figure 12
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Fig. 10. The horizontal axis shows the case and
subcase numbers for each of the 31 Marching Cubes
configurations described by Lopes and Brodlie [20].
The dark bars show the percentage of random fields
that fits a particular configuration. The light bars show
the percentage of random fields which fit a particular
configuration and do not violate the assumptions of our
manufactured solution. Our manufactured solution hits
all possible cube configurations.

shows the obtained and expected tiles for a cube. Contacting
the author, we found that one of the mismatches were due
to a mistake when coding configuration 13 of the MC table.
A non-obvious algorithm detail which is not discussed in
either Chernyaev’s or Lewiner’s work is the problem of
orientation of some of the cube configurations [18]. The
case 13.5.2 shown if Figure 12 (right) is an example of one
such configuration where an additional criteria is required
to decide the tunnel orientation which is lacking in the
original implementation of MC33. This problem was easily
detected by our framework, because the orientation changes
the mesh invariants, and a mismatch occurs.

DELISO presented a high percentage of β0 mismatches
due to the mechanism used for tracking connected com-
ponents. It uses ray-surface intersection to sample a few
points over each connected component of the isosurface
before extracting it. The number of rays is an user-controlled
parameter and its initial position and direction are randomly
assigned. DELISO is likely to extract the biggest connected
component and, occasionally, it misses small components. It
is important to say that the ray-sample based scheme tends
to work fine in practical applications where small surfaces
are not present. The invariant mismatches for β1 and β2 are
computed only if no consistency mismatch happens.

In the case of MCFLOW, we applied the verifica-
tion framework systematically during its implementa-
tion/development. Obviously, many bugs were uncovered
and fixed over the course of its development. Since we are
randomizing the piecewise trilinear field, we are likely to
cover all possible Marching Cubes entries and also different
cube combinations. As verification tests have been applied
since the very beginning, all detectable bugs were removed,
resulting in no mismatches. The downside of MCFLOW,
though, is that typical bad quality triangles appearing in
Marching Cubes becomes even worse in MCFLOW, because
cubes of different sizes are glued together. MCFLOW
geometrical convergence is presented in the supplementary
material [34].

Consistency (%) Correctness (%)

Disk Digital Surfaces SMT
β0 β1 β2 χ χ

AFRONT 0.0 35.9 22.8 35.9 47.5 25.5
MATLAB 19.7 32.2 18.9 20.5 49.3 70.3
VTKMC 0.0 27.6 23.2 27.6 43.5 70.7
MACET 0.0 54.3 20.9 54.3 64.0 100.0
SNAPMC1 0.0 45.0 25.4 45.0 57.3 72.0
SNAPMC2 53.7 41.6 17.3 23.1 87.1 74.0
MC33 0.0 2.4 1.1 2.4 3.4 5.4
DELISO 19.1 24.4 0.1 20.0 37.2 33.2
MCFLOW 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 1
Rate of invariant mismatches using the PL-manifold
property, digital surfaces, and stratified Morse theory

for 1000 randomly generated scalar fields. The
invariants β1 and β2 are computed only if the output

mesh is a 2-manifold without boundary. We run
correctness tests in all algorithms for completeness

and to test tightness of the theory: algorithms that are
not topology-preserving should fail these tests. The

high number of DELISO SNAPMC and MATLAB
mismatches are explained in Section 6.1. 1 indicates

zero snap parameter and 2 indicates snap value of 0.3.

7 DISCUSSION AND LIMITATIONS

Quality of manufactured solutions

In any use of MMS, one very important question is that of
the quality of the manufactured solutions, since it reflects
directly on the quality of the verification process. Using
random solutions for which we compute the necessary
invariants naturally seems to yield good results. However,
our random solutions will almost always have nonidentical
values. This raises the issue of detecting and handling
degenerate inputs, such as the ones arising from quantization.
We note that most implementations use techniques such as
Simulation of Simplicity [12] (for example, by arbitrarily
breaking ties using node ordering) to effectively keep the
facade of nondegeneracy. However, we note that developing
manufactured solutions specifically to stress degeneracies is
desirable when using verification tools during development.
We decided against this since different implementations
might employ different strategies to handle degeneracies, and
our goal was to keep the presentation sufficiently uniform.

Topology and Geometry

This paper extends the work by Etiene et al. [13] toward
including topology in the loop of verification for isosurface
techniques. The machinery presented herein combined with
the methodology for verifying geometry comprises a solid
battery of tests able to stress most of the existing isosurface
extraction codes.

To illustrate this we also submit MC33 and MCFLOW
techniques to the geometrical test proposed by Etiene, as
these codes have not been geometrically verified. While
MC33 has geometrical behavior in agreement with Etiene’s
approach, the results presented in Section 6 shows it
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Fig. 11. DELISO mismatch example. From left to right: holes in C0 regions; single missing triangle in a smooth
region; duplicated vertex (the mesh around the duplicated vertex is shown). These behavior induce topology
mismatches between the generated mesh and the expected topology.

Fig. 12. MC33 mismatch example. From left to right: problem in the case 4.1.2, 6.1.2 and 13.5.2 of marching
cube table (all are ambiguous). Each group of three pictures shows the obtained, expected and implicit surfaces.
Our verification procedure can detect the topological differences between the obtained and expected topologies,
even for ambiguous cases.

(a) SNAPMC (snap = 0.3) (b) MATLAB (c) MCFLOW

Fig. 13. Mismatches in topology and geometry. (a) SNAPMC generates non-manifold surfaces due to the snap
process. (b) MATLAB generates some edges (red) that are shared by more than two face. (c) MCFLOWbefore
(left) and after (right) fixing a bug that causes the code to produce the expected topology but the wrong geometry.

does not pass in the topological tests. On the other hand,
after ensuring that MCFLOW was successful regarding
topological tests, we submitted it to the geometrical analysis,
which presented problems. Figure 13(c) shows an example
of an output generated in the early stages of development of
MCFLOW before (left) and after (right) fixing the bug. The
topology matches the expected one (a topological sphere)
nevertheless the geometry does not converge.

SMT vs. DT

The verification approach using digital surfaces generates
detailed information about the expected topology because it
provides β0, β1 and β2. However, verifying isosurface with
boundaries would require additional theoretical results, as
the theory supporting our verification algorithm is only valid
for surfaces without boundary. In contrast, the verification
methodology using Stratified Morse Theory can handle
surfaces with boundary. However, SMT only provides
information about the Euler characteristic, making harder
to find out the source of failure when it happens in the
topological verification process. Another issue with SMT
is that if a code incorrectly introduces topological features
so as to preserve χ then no failure will be detected. For

example, suppose the surface to be reconstructed is a torus,
but the code produces a torus plus three triangles, each one
sharing two vertices with the other triangles but not an edge.
In this case, torus plus three “cycling” triangles also has
χ = 0, exactly the Euler characteristic of the single torus.
Notice that in that case, digital surface based test would be
able to detect the spurious three triangles just comparing β0.
Despite to be less sensitive in theory, SMT-based verification
revealed problems in unison with the digital surface tests,
rendering SMT a quite effective verification mechanism.
We believe this happens partly because of the randomized
nature of our tests.

Implementation of SMT and DT

Verification tools should be as simple as possible while
still effective to reveal unexpected behavior. The pipeline
for geometric convergence is straightforward and thus
much less error-prone. This is mostly because, Etiene et
al.’s approach uses analytical manufactured solutions to
provide information about function value, gradients, area
and curvature. In topology, on the other hand, we can
manufacture only simple analytical solutions (e.g., a sphere,
torus, double-torus, etc) for which we know topological
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invariants. There are no guarantees that these solutions will
cover all cases of a trilinear interpolant inside a cube. For
this reason, we employ a random manufactured solution,
and must then compute explicitly the topological invariants.
A natural question in this scenario is: how reliable is the
implementation of the verification tools? First, notice that
the implementation of both SMT and DT are considerably
simpler than the isosurfacing techniques to be analyzed.
This is itself a good reason to implement such tools.
Nevertheless, there are simple ways to check if the core
part of the verification tools is implemented correctly. In
the case of SMT, one may compute χ for an isovalue that
is greater than any other in the grid. In such case, the
verification tool should result in χ = 0. For DT we can
use the fact that Majority Interpolation always produces a
2-manifold. Fortunately, this test reduces to check for two
invalid cube configurations as described in [37]. Still, it is
certainly the case that there could be bugs in the verification
code. As we have stated before, a mismatch between
the expected invariants and the computed ones indicates
a problem somewhere in the pipeline; our experiments
are empirical evidence of the technique’s effectiveness in
detecting implementation problems.

Another concern is the performance of such framework.
The invariant computation via SMT and DS is faster than
any isosurface extraction presented in this paper for most of
the random grids. In some scenarios, DS might experience
a slowdown because it keeps refining the grid in order to
eliminate ambiguous cubes (we set the maximum number
of refinement to 4). Thus, for SMT and DS (after grid
refinement), both algorithm need to perform a constant
number of operation for each grid cube to determine the
digital surface (DS) or critical points (SMT).

Contour Trees
Contour trees [4] are powerful structures to describe the
evolution of level-sets of simply connected domains. It
normally assumes a simplicial complex as input but there
are extensions to handle regular grid [29]. Contour trees
naturally gives β0 and they can be extended to report β1
and β2. Hence, for any isovalue, we have information about
all Betti numbers, even for surfaces with boundaries. This
fact renders contour trees good candidate for verification
purposes. In fact, if an implementation is available, we
encourage its use so as to increase confidence in the
algorithms behavior. However, contour tree implementation
is more complicated than the techniques presented here. For
regular-grids, a divide-and-conquer approach can be used
along with oracles representing the split and join trees in
the deepest level of the recursion, which is non-trivial. Also,
implementing the merging of the two trees to obtain the
final contour tree is still involving and prone to coding
errors. Our approach, on the other hand, are based on
regular grid refinement and voxel selection for DT method
and critical point computation and classification for SMT
method. There are other tools, including contour trees, that
could be used to assess topology correctness of isosurface
extraction algorithms and an interesting experiment would

be to compare the number of mismatches found by each of
these tools. Nevertheless, in this paper we are focused on the
approaches using SMT and DT because of their simplicity
and effectiveness as we were able to find code mistakes
in publicly available implementations. We believe that the
simpler methodologies we have presented here are more
likely to be adopted during development of visualization
isosurfacing tools.

Topology of the underlying object
In this paper, we are interested in how to effectively verify
topological properties of codes which employ trilinear inter-
polation. In particular, this means that our verification tools
will work for implementations other than marching methods
(for example, DelIso is based on Delaunay refinement).
Nevertheless, in practice the original scalar field will not
be trilinear, and algorithms which assume a trilinearly
interpolated scalar field might not provide any topological
guarantee regarding the reconstructed object. Consider
for example a piecewise linear curve γ built by walking
through diagonals of adjacent cubes ci ∈ G and define
the distance field d(x) = min{||x− x′||such that x′ ∈ γ}.
The isosurface d(x) = α for any α > 0 is a single tube
around γ . However, none of the implementations tested
could successfully reproduce the tubular structure for all
α > 0. This is not particularly surprising, since the trilinear
interpolation from samples of d is quite different from the d.
The inline figure on the
right shows a typical out-
put produced by VTK for
the distance field d = α .
Notice, however, that this
is not only an issue of
sampling rate because if
the tube keeps going through the diagonals of cubic cells
VTK will not be able reproduce d = α yet. Also recall that
some structures can not even be reproduced by trilinear
interpolants, as for example when γ crosses diagonals of
two parallel faces of a cubic cell as described in [6], [29].
The aspects above are not errors in the codes but reflect
software design choices that should be clearly expressed to
users of those visualization techniques.

Limitations
The theoretical guarantees supporting our manufactured
solution rely on the trilinear interpolant. If an interpolant
other than trilinear is employed then new results ensuring
homeomorphism (Theorem 4.1) should be derived. The basic
infrastructure we have described here, however, should be
appropriate as a starting point for the process.

8 CONCLUSION AND FUTURE WORK

We extended the framework presented by Etiene et al. [13]
by including topology into the verification cycle. We used
machinery from Digital Topology and Stratified Morse
Theory to derive two verification tools that are simple and
yet capable of find unexpected behavior and even code
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mistakes. We argue that researchers and developers should
consider adopting verification as an integral part of the
investigation and development of scientific visualization
techniques. Topological properties are as important as
geometric ones, and deserve the same amount of attention. It
is telling that the only algorithm that passed all verification
tests proposed here is the one that used the verification
procedures during its development. We believe this happens
because topological properties are particularly subtle, and
require an unusually large amount of care.

The idea of verification through manufactured solution is
clearly highly problem dependent and mathematical tools
must be adapted/developed for this framework. Thus, the
introduction of these tools is likely to benefit many areas
inside scientific visualization community such as volume
rendering, streamline computation and mesh simplification.
We hope that the results of this paper further motivates
the visualization community to create this culture of verifi-
cation so as to increase confidence in the algorithms and
implementations developed.
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