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Appendix A. 2D ARAP MLS transformation gradient

We provide an analytic expression of the gradient of as-rigid-
as-possible planar maps, for a given constraint qk. A closed-
form formula for planar similarities is provided in [1]. For some
given constraints pi and their mapping qi = ψ̂S(pi), for each
x ∈ D with (u, v) coordinate, the similarity transformation,
noted ψ̂S , is given by:

ψ̂S(x) = q∗ +

∑
i wi q̂i

 p̂i

−p̂i
⊥

 x− p∗
−(x− p∗)⊥

T

µS
(A.1)

where wi = 1
(pi−x)2 , p∗ =

∑
i
wipi∑
i
wi

, q∗ =
∑

i
wiqi∑
i
wi

, p̂i =

pi−p∗ and q̂i = qi−q∗, T denotes the transpose and (u, v)⊥ =
(−v, u) and µS =

∑
i wip̂ip̂i

T

A theorem is provided in [1], noticing that if locally the sim-
ilarity can be re-written as a rotation matrix, it minimizes the
energy functional of rigid transformations (see theorem 2.1).
Then, the closed-form formula for planar ARAP transforma-
tions ψ̂R is the same as Eq. A.1, except that µS is switched for
µR:

µR =

√√√√(∑
i

wiq̂ip̂i
T

)2

+

(∑
i

wiq̂ip̂i
⊥T

)2

(A.2)

For clarity, we derive the first component (u) of ψ̂R, wrt u (i),
then wrt v (ii). The derivation of the second component (noted
v) of the gradient is obtained similarly and will be omitted. ψ̂R

can be re-written in the form:
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ψ̂R(x) = q∗ +
∑

i q̂iAi

µR
(A.3)

where Ai = wi

 p̂i

−p̂i
⊥

 x− p∗
−(x− p∗)⊥

T

=

 ai
0 a

i
2

ai
1 a

i
3


is an expression independent of qi which can be pre-computed.
Then, the u-component of∇k

(
ψ̂R(x)

)
u

, noted∇k
u

(
ψ̂R(x)

)
u

is given by:�

�

�

�
∇k

u

(
ψ̂R(x)

)
u

= ∇k
uqu∗

+
µR ∇k

u (
∑

i q̂iAi)u
− (
∑

i q̂iAi)u
∇k

uµR

µ2
R

(A.4)

Notice µR is a scalar and ()u denotes the u-component of a
vector. The derivation of qu∗ is straightforward (an infinitely
small variation in (qk)u will be multiplied by wk∑

i
wi

while the

v component remains unchanged):

∇kqu∗ = (
wk∑
i wi

0) (A.5)

(∑
i

q̂iAi

)
u

=
∑

i

(
(q̂i)u a

i
0 + (q̂i)v a

i
1

)
(A.6)

∇k
u

(∑
i

q̂iAi

)
u

= ak
0 − wk

∑
i

ai
0∑

i wi
(A.7)

If we re-write µR as µR =
√

(µ2
0 + µ2

1), then we have:

∇k
uµR =

1
2
(µ2

0 + µ2
1)
− 1

2
(
2µ0∇k

uµ0 + 2µ1∇k
uµ1

)
(A.8)

µ0 =
∑

i

((q̂i)u(p̂i)u + (q̂i)v(p̂i)v) (A.9)

µ1 =
∑

i

(
(q̂i)u(p̂i

⊥)u + (q̂i)v(p̂i
⊥)v

)
(A.10)

∇k
uµ0 = wk(p̂k)u − wk

∑
i

wi(p̂i)u∑
i wi

(A.11)

∇k
uµ1 = wk(p̂k

⊥)u − wk

∑
i

wi(p̂i
⊥)u∑

i wi
(A.12)
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Thus (i), ∇k
u

(
ψ̂R(x)

)
u

(Eq. A.4) can be computed by com-
bining the equations A.5, A.7, A.11 and A.12. Now, we need
to derive again the u component of ψ̂R(x), but wrt v:�

�

�

�
∇k

v

(
ψ̂R(x)

)
u

= ∇k
vqu∗

+
µR ∇k

v (
∑

i q̂iAi)u
− (
∑

i q̂iAi)u
∇k

vµR

µ2
R

(A.13)

∇k
v

(∑
i

q̂iAi

)
u

= ak
1 − wk

∑
i

ai
1∑

i wi
(A.14)

∇k
vµ0 = wk(p̂k)v − wk

∑
i

wi(p̂i)v∑
i wi

(A.15)

∇k
vµ1 = wk(p̂k

⊥)v − wk

∑
i

wi(p̂i
⊥)v∑

i wi
(A.16)

Then (ii), ∇k
v

(
ψ̂R(x)

)
u

can be computed by combining the
equations A.5, A.14, A.15 and A.16 into the equation A.13.
Finally, to complete the gradient computation, the v component
of ψ̂R needs to be derived twice in the same manner: (i) with
a small variation of qk in u, (ii) with a small variation of qk in
v. We do not detail this derivation since it is highly similar to
the derivations detailed above (a noticeable difference is that
ai
0 and ai

1 need respectively to be switched for ai
2 and ai

3, while
the derivations of µ0 and µ1 do not change).

The computation of∇ψ̂R is very efficient. The following terms
are computed offline (before the optimization), as soon as the
pi set is known: wi,

∑
i wi, Ai, p̂i and p̂i

⊥. The following
terms are computed during the online reconstruction of ψ̂R: qi,
µR, µ0 and µ1. Thus, for a given constraint qk, the gradient
computation algorithm only needs to directly evaluate the right
hand side of equations A.5, A.7, A.11, A.12, A.14, A.15 A.16,
and A.8 (plus the same operations for the derivation of the v
component of ψ̂R). In practice, this is achieved in twice the
time necessary to reconstruct the map online.
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