
HAL Id: hal-01211129
https://hal.science/hal-01211129v1

Submitted on 3 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inspired quadrangulation
Julien Tierny, Joel Daniels, Gustavo Nonato, Valerio Pascucci, Claudio Silva

To cite this version:
Julien Tierny, Joel Daniels, Gustavo Nonato, Valerio Pascucci, Claudio Silva. Inspired quadrangula-
tion. Computer Aided Geometric Design, 2011, �10.1016/j.cad.2011.08.020�. �hal-01211129�

https://hal.science/hal-01211129v1
https://hal.archives-ouvertes.fr


Inspired Quadrangulation

Julien Tierny ∗,1 Joel Daniels II 2 Luis G. Nonato 3 Valerio Pascucci 2 Claudio T. Silva 2,4

Abstract

This paper presents a new approach for the quadrangulation of triangular surfaces. While previous work focused on fully automatic
computations or explicitly involved user control for the integration of subjective decisions, we introduce a new example-based quad-meshing
paradigm, in order to easily reproduce the subjective decisions made in the design of reference examples found in a corpus. The algorithm
enables to reproduce the subjective aspects of the example (extraordinary vertex layout) while minimizing the induced distortion; allowing
users to leverage reference meshes considered of quality for fast prototyping. At the core of our technique, we provide the analytic gradient
of as-rigid-as-possible 2D transformations. This expression is implemented in a fast solver to automatically register planar unfoldings of the
geometries, yielding low-distortion cross maps of the examples onto the input in 3D. In addition, our technique provides interactive feedback
for user modifications of the cross maps computed automatically. Our technique supports localized mesh composition and enables to reproduce
meshing styles despite intrinsic reflective symmetry, large variation from isometry or even topological variation. Experiments demonstrate the
accuracy of the mimicking process as well as its time efficiency.

Key words: Surface quadrangulation, data-driven geometric modeling, cross-paramaterization

1. Introduction

Surface quadrangulations are desirable shape representations
in computer graphics as their regular structure benefits many
geometry processing tasks. In many contexts, however, sur-
faces are represented with meshes made of arbitrary polygons.
Thus, the generation of quadrangulations from raw polygonal
surfaces is an important task that has received much attention
by the research community in the last few years. Generating
surface quadrangulations is still however a very challenging
problem because many quality criteria of different nature in-
tervene in the evaluation of the output. Low-level quality crite-
ria (edge angles or element planarity) are important for texture
mapping or architectural modeling. Whereas, high-level qual-
ity criteria (alignment to ’shape features’ and layout of the ex-
traordinary vertices) are important subjective design decisions
for application-specific tasks, i.e. producing realistic character
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animation. In this example, the placement of the extraordinary
vertices and alignment of quadrilateral elements plays an impor-
tant role in achieving visually desirable results. The subjective
design decisions are often conditioned by physically plausible
considerations (for instance to roughly model the character’s
muscles) and may be unrelated to the underlying object geome-
try. Consequently, in many contexts, quad-remeshing becomes
not only a geometry processing task but also a subjective model-
ing task. While previous automatic techniques [1–3] often pro-
duce outputs with outstanding low-level quality metrics, they
do not integrate high-level constraints related to the subjective
aspects of the mesh structure. Therefore, in a recent past, many
approaches [4,6–11] have been proposed to address this prob-
lem by allowing users to intervene in the meshing process to
specify structural (extraordinary vertices) and/or high level ge-
ometrical (feature alignment) constraints. However, user-driven
generation of good quadrangulations requires an understanding
of both the application requirements and of the meshing pro-
cess. As such, users need to develop expertise with the software
tools and with the concepts involved in quadrangulation design.

In this work, we present a drastically different approach to sur-
face quadrangulation, called Inspired Quadrangulation, which
aims at reproducing the meshing style of existing quad-meshes
found in a corpus of examples (considered of satisfying subjec-
tive quality by the users). Our approach supports localized com-
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Fig. 1. Generating inspired quadrangulations on a scanned geometry. Given an input triangle mesh (left), the presented technique generates output quad meshes
(in blue) by mimicking the meshing style of geometrically and subjectively relevant meshes (in green) found in a corpus of examples. The process reproduces
the subjective aspects of the example (layout of the extraordinary vertices, blue and green spheres) while enforcing the preservation of its geometrical properties
(histograms). Examples that best fit the input geometry are then presented to the user and mapped onto the input. In this example, the entire corpus ranking
and mapping onto the input geometry took 4.86 seconds without user intervention.

position and enables users to remesh input surfaces with parts
coming from examples with possibly different topology, while
producing a manifold quad-only output. We formulate the prob-
lem of data-driven quad-remeshing as a massive, geometry-
aware, cross-parameterization task and present a new automatic
algorithm computing sequences of low distortion cross-maps at
interactive rates. Experiments demonstrate the accuracy of the
meshing style reproduction as well as its time efficiency.

Contributions This paper makes the following contributions:
(i) To the best of our knowledge, the first data-driven quad-

meshing technique, enabling users to rapidly generate
quadrangulations by leveraging reference meshes;

(ii) A fast and automatic cross mapping algorithm that drives
the searching and ranking of candidate corpus examples
to be mapped onto the input;

(iii) The analytic expression of the gradient of the rigid Mov-
ing Least Squares Deformations [5] (supplemental ma-
terial), allowing their usage in fast iterative solvers for
as-rigid-as-possible 2D registration.

In details, at the core of our technique, we describe a fast cross
mapping algorithm which leverages recent as-rigid-as-possible
2D deformation techniques [5], yielding low distortion cross
maps in 3D in a pose and symmetry oblivious manner. We
provide the expression of their gradient, resulting in a fast op-
timization process. The algorithm is highly parallelizable and
uses a multi-resolution strategy which allows for time execu-
tion constraints (to trade between quality and speed). Finally,
since our algorithm uses a closed-form formula for candidate
map evaluation, it supports at interactive rates optional user en-
hancements of the optimal cross map found automatically.

2. Related Work

While this paper addresses surface quadrangulation, the pre-
sented technique involves multiple research areas. In this sec-
tion, following a discussion of state-of-the-art quad meshing al-

gorithms, we discuss work related to data-driven creative mod-
eling and cross-parameterization.

Quadrangulation Techniques Many quad-meshing tech-
niques have been proposed in the past. While some of them
are automatic [1–3], most of the recent approaches drive the
quad-meshing with geometrical and/or structural constraints,
in order to integrate user decisions in the process. Geometrical
constraints can be given as an input direction field defined on
the surface [6,7] or as sparse directional constraints later inter-
polated [8–11] prior to integration and mesh extraction. Struc-
tural constraints can be provided with a singularity graph [4],
describing the layout of the extraordinary vertices. Singularity
graphs can also be inferred and influenced by the user, from
the Morse-Smale complex of user-constrained eigenfunctions
of the Laplacian [8,11]. Polycubes are another intermediate
representation for such user control [12]. We refer the reader
to a recent survey for further discussion on the topic [13].

While these user-driven techniques can generate outputs with
good low-level quality scores and user prescribed constraints,
they still require an amount of user intervention directly related
to the desired complexity of the output. For instance, generating
a singularity graph or directional constraints for the complex
meshes shown in Fig. 1 (with more than 200 extraordinary ver-
tices) would require significant user interaction. More impor-
tantly, this process still requires advanced modeling skills from
the user, who needs to be knowledgeable about application re-
quirements as well as concepts of quadrangulation design. In
contrast, our approach allows users to leverage the knowledge
and expertise of previous users by mapping regions of refer-
ence meshes onto the input.

Data-Driven Modeling At the global scope, our approach
follows the directions initiated by previous data-driven model-
ing work [14,15]. In these techniques, geometry-based searches
are performed against collections of 3D shapes and composi-
tions with retrieved objects’ parts are suggested to the user. The
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problem addressed in this paper is different. It requires not only
to rank the collection of examples by similarity to the input, but
also to provide decent cross-maps between the input and the
examples of the collection. In this paper, we formulate both the
corpus ranking and cross-parameterization as a single process,
where the isometric error induced by the automatic cross-map
is used to rank the corpus.

Cross-Parameterization Many algorithms have been pro-
posed for cross-parameterization in the past. Given a set of
corresponding landmarks between two surfaces of equivalent
topology, existing techniques aim at interpolating this corre-
spondence all over the surfaces. Some algorithms have been
specialized for distinct topological classes of surfaces, for in-
stance: for discs [16,17], for spheres [18], for non genus-0 sur-
faces [19]. Other algorithms, using base meshes/domains [20–
22] or surface fitting techniques [23], handle surfaces of ar-
bitrary topology; however, these surface must be homeomor-
phic. While they achieve cross-maps with low distortion, the
main drawback of these algorithms is that they depend on land-
mark correspondences provided by the user; typically 10 or
more for models of heads for instance (while the result pre-
sented in Fig. 1 was generated without user correspondences).
While comparing to a corpus of models, ensuring identical land-
marks across all models is an arduous task. Automatic com-
putation of reliable landmark correspondences is a challenging
problem [24,25]. While some techniques explore in a Monte-
Carlo fashion the space of conformal canonical cross-maps
from which near isometries have to be identified [24], our algo-
rithm directly explores the smaller space of as-rigid-as-possible
(ARAP) cross-maps. Moreover, since we introduce the analytic
gradient of planar ARAP transformations, we present a fast iter-
ative solver based on multi-resolution gradient descent, which
enables computations for interactive usage (a few seconds).

3. Overview

We formulate data-driven quad-meshing as a massive,
geometry-aware, cross-parameterization task. Upon initializa-
tion, our framework requires a corpus of example meshes,
whose quality is deemed satisfactory by the user.

First, each example surface is unfolded to a canonical domain.
Its connectivity is indexed in a binary space partition of the
planar domain while its geometry is represented by a multi-
resolution 2D encoding, called quasiconformal surface encod-
ing (Sec. 4.2). Additionally, the user can annotate the example
with a subjective quality score in order to prioritize it at query
time. We study the variability of this quasiconformal encoding
with regard to several types of 3D transformations (Sec. 5.1)
and present a fast iterative solver that registers the 2D encod-
ings while minimizing the distortion of the cross maps in 3D
(Sec. 5.2).

Second, when querying the corpus, the quasiconformal encod-
ing of the input is computed and registered by the solver with
all those found in the corpus. Examples are then presented to

the user, ranked by increasing isometric error, and the examples
are instantaneously mapped on the input upon user selection,
based on the registration of the encodings. Also, the user can
enhance the automatic cross map at interactive rates (Sec. 5.3).

Our technique supports localized mesh composition, in order
to re-use mesh patches coming from examples having distinct
topology or to drive the process on a per region-of-interest basis.
In that case, the examples are pre-segmented and each segment
is stored in the corpus individually. The input is also segmented
in a compatible manner and each segment serves as a query to
the system. Then, all the example patches mapped on the input
are stitched into a manifold quad-only output (Sec. 6).

Fig. 2. Usage scenario with localized mesh composition.

4. Populating the Corpus

To ensure a fast and generic processing of the corpus, we in-
troduce a concise canonical surface encoding. It enables to ef-
ficiently represent each entry of the corpus as a 2D picture,
allowing for fast geometry aware cross map computations. The
corpus examples and the input shape both undergo this unfold-
ing process, off-line and on-line respectively.

4.1. Topological Prerequisites

Since two surfaces need to be homeomorphic to be cross-
mapped, we require the input and the corpus examples to have
a predefined topology. If this is not the case, we pre-segment
them into topological primitives (as done in the case of mesh
composition). In practice, we use the algorithm described in
[26] since it performs semi-automatic segmentation such that
the output is composed of discs and cylinders only. Then each
segment can be processed individually without any further so-
phisticated topological considerations, which allows to handle
examples or arbitrary topology.

In the remaining, we describe the algorithm in the case of
topological discs and show how to extend it to other topological
primitives at the end of Sec. 5.1.

4.2. Quasiconformal surface encoding

Let S be a PL 2-manifold with disc topology embedded in R3.
We call a k−quasiconformal map an application φ : S → D
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Fig. 3. Geometry unfolding procedure. From left to right: initial harmonic field (inset: pole and streamline constraints), parameterization without gradient norm
adjustment (inset: k values in the planar domain), parameterization with gradient norm adjustment, unfolded normal map (top) and unfolded conformal factor
(bottom). This generic unfolding procedure enables to reduce the problem of geometry aware cross parameterization to that of picture registration.

from S to a canonical (u, v) planar domain D ⊂ R2 such that
the following equalities hold for each point of S:

〈∇u,∇v〉 = 0 (1)

||∇u|| = k ||∇v|| (2)

φ maps local circles on S to local ellipsoids on D (and recip-
rocally) and is conformal if k = 1.

For some given boundary constraints φ|∂S , the quasiconformal
encoding of S consists of the normalized conformal factor in-
duced by φ: the scalar field λ(u, v) : D → R which measures
the normalized area distortion of the unfolding. The area of
each triangle in 3D is first normalized by the overall surface
area in 3D and the conformal factor is the ratio between this
normalized area and the area of the triangle once unfolded.

Quasiconformal Unfolding We opt for a polar configuration
on the boundary conditions for φ. Introducing singularities is
known to reduce distortion [27], which contributes to a more
uniform sampling of the surface (Fig. 4), and enables trivial
extensions to other topological primitives (Sec. 5.1). The v
coordinate is computed by solving a Laplace equation (∆v =
0) with the boundary conditions v(∂S) = 0 and v(P) = 1
where P is the pole singularity. The pole can be extracted at the
maximum of the conformal factor induced by a singularity-free
parameterization (Fig. 4) or provided at segmentation time.

Fig. 4. Geometry unfolding without (left) and with singularity (right). The
introduced singularity absorbs the conformal factor, improving the statistics.

Next, we cut S along an arbitrary streamline of v initiated at the
pole and constrain each side of the cut to u = 0 and u = 1. The
u coordinate is also computed by solving a Laplace equation
(∆u = 0) with the additional constraint of orthogonality on
the gradients ∇u and ∇v. The Laplace equation is solved by
using the linear solver described in [28] (with the cotangent
weight discretization of the Laplacian) while the orthogonality
is integrated in the solve by minimizing the dot product of
∇u and ∇v in a least-square sense [29]. Constraining the dot
product of the gradients enforces their orthogonality; however,
it leaves the vector norms free. To obtain a uniform sampling on
the surface (constant k value), we use the following algorithm.

Because the orthogonality of the gradients is already achieved,
one now needs to push and pull the u level lines such that they
become more evenly distributed on the surface. The vertices
of S are visited by increasing u value. For each vertex Vn, its
k value (noted kVn ) is approximated on its triangles (weighted
average based on areas). At the first visited vertex V0, we set
u(V0) = u(V0). For the others, we compute u as follows:

u(Vn) = u(Vn−1) +
(u(Vn)− u(Vn−1))

kVn

(3)

The final u coordinate is computed by normalizing u. In affect,
this simple algorithm pushes the u level lines where k is low and
pulls them where k is high. In practice, this procedure affected
φ by changing the values of the level lines without drastic
changes to their shape, preserving the near orthogonality of∇u
and ∇v. Next, this algorithm is repeated for the v coordinate.
Note that for topological discs ∇v vanishes in theory at the
pole and k is ill-defined around it. To avoid instabilities when
adjusting ∇v, we artificially set k = 0.1 for the vertices for
which v > 0.9. In practice, this heuristic nicely distributes the
samples in the pole’s immediate neighborhood. At the end of
this process, k is approximately constant over the domain and
we associate to S a unique k value, noted kS (average of k on
all the triangles).
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Interpretation The advantage of using k−quasiconformal
maps is twofold. First, since ∇u and ∇v are orthogonal, we
will be able to compensate any variation in the direction of the
streamline cut with a simple translation in the u component (as
described in Sec. 5.1). Second, the gradient norm adjustment
enables to constrain the unfolding to a perfect square with a
uniform sampling, which enables to derive a generic algorithm
for canonical cross map computation.

The unfolding procedure is summarized in Fig. 3 (AVG stands
for average, STD for standard deviation and A represents the
difference between 90◦ and the angle between ∇u and ∇v).
We note the effects of the gradient norm adjustment in the
region of the nose in Fig. 3, where the checkerboard rectangles
have a more uniform width after adjustment. ks provides an
indication about the ratio between the distance from the pole
to the boundary and the representative length of v level curves.

The quasiconformal encoding (i.e. the unfolded conformal fac-
tor) is represented by a color gradient from green to blue in
Figs. 3 and 4. It measures the local uniform scaling stretch that
one has to apply to unfold the geometry to the plane. Intuitively,
it depicts the appearance of protrusions on the shape, such as
the nose and the ears.

At the end of the encoding computation, the geometry of each
surface is represented by the 2D picture of its conformal factor,
and its mesh is stored in a binary space partition of the plane.

5. Querying the corpus

At query time, the 2D quasiconformal encoding of the input is
computed. We describe in this section how to register it with
those of the corpus to generate low distortion cross maps in 3D.

5.1. Coherency of the encodings

The quasiconformal surface encoding computation only relies
on intrinsic surface measurements: it will not vary under global
rotations or translations in 3D. Since we normalized the con-
formal factor, it does not vary under global uniform scaling.
Moreover, the conformal factor is a smooth entity (i.e. it varies
smoothly under surface transformation). As shown in Fig. 5
(top), the quasiconformal surface encoding is relatively stable
under random noise on the surface.

Let S1 and S2 be two surfaces in R3 such that there exists an
isometry ψ∗ : S1 → S2 and that the boundary conditions of
their quasiconformal maps φ1 : S1 → D1 and φ2 : S2 → D2

map exactly through ψ∗. Since isometries are angle-preserving
(i) and area-preserving (ii), by construction, kS1 and kS2 (which
capture the angular distortion (i)) and the conformal factor fields
(which capture the area distortion (ii)) will be identical. Then,
the following equations hold (ψ̂∗ : D1 → D2 is the identity):

(kS1 − kS2)2 = 0 (4)∫
(u,v)∈D1

(
λ1(u, v)− λ2(ψ̂∗(u, v))

)2
dudv = 0 (5)

Fig. 5. Variability of the quasiconformal encoding (from top to bottom):
random noise can be registered with the identity, streamline variability (pure
isometry) translates into periodic translation, intrinsic reflective symmetry
translates into axial symmetry, near isometries and pole variability translate
into as-rigid-as possible planar maps. In the center of each row, the optimal
canonical cross map ψ̂∗ found automatically by the solver.

5



Since the quasiconformal encoding is smooth, if S1 and S2

smoothly vary from being isometric, then the right hand side of
these equations will smoothly increase and the canonical cross
map ψ̂∗ which minimizes the dissimilarity in the encodings will
smoothly vary from the identity. Then, the problem of geometry
aware cross parameterization of S1 and S2 can be formulated as
an optimization problem, where one seeks the canonical cross
map ψ̂∗ which minimizes the following energy:

E(ψ̂) =
∫

(u,v)∈D1

(
λ1(u, v)− λ2(ψ̂(u, v))

)2
dudv (6)

Then the cross map in 3D can easily be reconstructed (the
inverse of a quasiconformal map is quasiconformal):

ψ∗ = φ−1
2 ◦ ψ̂∗ ◦ φ1 (7)

In Fig. 5, φ1 and φ2 are shown with vertical arrows and ψ̂∗ with
horizontal arrows. In the next paragraphs, we describe how to
construct such canonical cross maps ψ̂ and describe in Sec. 5.2
how to explore their space in search of an energy minimizer.

Isometries During the boundary condition settings for the
quasiconformal unfolding, an arbitrary streamline is used to cut
the surface. Since it is hard in practice to find a stable heuristic
for the choice of the direction of descent of the streamline,
we need to consider the variability of the encoding relatively
to the streamline. In particular, given two surfaces S1 and S2

mapping through an isometry ψ∗, if the poles map through ψ∗,
all the level sets of v1 on S1 will map by construction through
ψ∗ to the same level sets of v2 on S2. Since ∇u1.∇v1 = 0
and ∇u2.∇v2 = 0, the level set u1 = 0 on S1 necessarily
corresponds to a level set of u2 on S2 (with value u2 = t∗u).
Then a periodic u-translation by t∗u in the canonical domain
will make the streamlines (and thus the encodings) correspond,
as shown in Fig. 5 (second row). Then to minimize equation
6, one needs to find the optimal t∗u (where T is a periodic
translation whose parameters respectively denote the u and v
components of the translation): ψ̂∗ = T (t∗u, 0).

Intrinsic reflective symmetries We call two surfaces S1 and
S2 intrinsically reflection-symmetric if they are isometric mod-
ulo a 3D reflection (Fig. 5, third row). If the poles map through
such a transformation, then the intrinsic reflective symmetry
can be recovered in the quasiconformal encoding. For topolog-
ical discs, intrinsic reflective symmetries can be recovered by
combining an axial symmetry (horizontal flip) to the previous
expression of ψ̂ (as shown in Fig. 5). Then to minimize equa-
tion 6, one needs to choose the optimal value s∗u ∈ {−1, 1}
(whereM multiplies by its parameters the (u, v) of each point):
ψ̂∗ = T (t∗u, 0) ◦M(s∗u, 1).

Near isometries The problem becomes more interesting
when S1 and S2 are not strictly isometric (but with close kS1

and kS2 values, Fig. 5 fourth row). To register the quasicon-
formal encodings, we consider as-rigid-as-possible (ARAP)
transformations [5] as candidate maps ψ̂. Since they are com-
positions of rotations and translations, they are as-isometric-as-
possible in the canonical domain and consequently introduce
as little distortion as possible. Thus, the main distortion intro-
duced in ψ in 3D will solely come from the unfoldings φ1 and
φ2. If kS1 and kS2 are equal, then the angular distortion intro-
duced by φ1 (captured by kS1 ) will be symmetrically compen-
sated by that of φ−1

2 in 3D (cf. Eq. 7). Then, by using ARAP
transformations in the canonical domain, the only distortion
introduced in the cross map in 3D will be area distortion (λ).

Thus, by using ARAP transformations in the construction of
ψ̂, the minimizer of equation 6 (which precisely minimizes the
difference of conformal factors over the entire domain) will be
as-isometric-as-possible in 3D.

A closed-form formula for planar as-rigid-as-possible transfor-
mations is known and is described in [5]. This formulation
has many nice properties: it enforces hard constraints, it is ex-
tremely fast in practice (many terms can be pre-computed) and
its closed-form formula allows the design of iterative solvers
based on its analytic gradient (which we introduce in appendix).
We refer the reader to the original publication [5] and to the
appendix for further details as well as for the exact expressions.

For some given constraints pi ∈ D1 and their mappings qi ∈
D2, this closed-form expression enables to compute directly
the mapping of each point of D1 onto D2. Then, to minimize
equation 6, one needs to choose the optimal mappings qi of
the constraints pi. We describe in the next subsection how to
automatically extract a relevant set of constraints pi and how
to optimize their mappings qi.

Other topological primitives The reasoning developed above
is valid for other topological primitives than discs, with only
few adjustments. For annuli (topological cylinders), the two
boundary components are respectively set to v = 0 and v = 1
and u is computed exactly as described in Sec. 4.2. However,
admitting an additional boundary component extends the pos-
sibilities of intrinsic reflective symmetries. One needs to con-
sider not only horizontal symmetries but also vertical symme-
tries (in the canonical domain) since the two boundary compo-
nents set at v = 0 and v = 1 can be switched arbitrarily from
one cylinder to another during the parameterization. Then one
needs to consider the four multiplication possibilities, four flips,
M(1, 1), M(−1, 1), M(1,−1) and M(−1,−1) respectively
corresponding to no symmetry, horizontal symmetry, vertical
symmetry, horizontal and vertical symmetry in the canonical

Fig. 6. Canonical domain diagrams for (from left to right) discs, annuli,
spheres and tori. Green arrows indicate boundary periodicity. Blue arrows
indicate potential reflective symmetries.
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domain, as shown in Fig. 6. Spheres with two antipodal poles
are processed the exact same way. For tori (not supported by
our prototype implementation), a handle loop [30] needs to be
extracted (with v set to 0 and 1 on both sides) and periodicity
in the vertical direction needs to be considered.

Subjective coherency and final ranking score The quasi-
conformal encodings are smooth and so are as-rigid-as-possible
transformations. Thus the energy (Eq. 6) should vary smoothly
when S1 and S2 vary smoothly from an isometry. In other
words, after minimization, the resulting energy provides a good
evaluation on how far S1 and S2 are from being isometric. Then
we use the energy after optimization as a coherency score, in
order to rank the corpus examples when presented to the user.
We extend this score in two ways. First, we penalize the dif-
ference in k values (which need to be close to guarantee little
distortion). Second, we prioritize examples for which a good
subjective evaluation has been given a priori. The example cor-
pus is then finally ranked by increasing values of:

E′(ψ̂∗) =
rmax

r(S1) + rmax
(1 + (kS1 − kS2)2) E(ψ̂∗) (8)

where rmax is the maximum relevance score (typically 5) and
r(S1) is the relevance score of the considered corpus example
(cross maps are computed from the example S1 to the input S2).

5.2. Multi-resolution cross map solver

To explore the space of candidate planar cross maps, we use
a gradient descent formulation. Given an initial cross map, the
algorithm will progressively transform it to minimize Eq. 6.
Energy local minima can impair the finding of decent cross
maps. To overcome this issue, we derive the following multi-
resolution strategy. Each quasiconformal encoding (originally
computed at a resolution of 512x512 pixels) is stored in a hi-
erarchy of pictures with decreasing resolutions (decreased at
each level by 2, typically until 32x32 pixels). The advantage
of this strategy is twofold. First, reducing the resolution will
act as a global filter on the images. Thus, only the most im-
portant features will guide the optimization at the beginning at
the coarse level, while more fine-scale features will appear as
the optimization refines the result in the finer levels of the hi-
erarchy. Moreover, the multi-resolution will help the solver to
avoid local minima by bringing it closer to the global solution
at the coarser levels of the hierarchy. Second, proceeding in a
coarse to fine fashion enables to focus the computing resources
on the corpus examples which look more promising. The pro-
cess is illustrated in Fig. 7, where the input appears in gray and
the corpus examples in color. At the first level of the hierarchy,

Fig. 7. Multi-resolution processing of the example corpus.

Fig. 8. Evolution of the optimization process. Small blue and green spheres
are extraordinary vertices. The canonical cross map found automatically by
the solver is shown at the bottom. Colored squares are the ARAP constraints.
In 3D (right), transparent spheres show the locations of the corresponding
constraints after translation optimization; non-transparent spheres show their
location after ARAP optimization. Most of the periodic translation component
is compensated at a resolution of 32x32 and further refined until 512x512,
while the ARAP optimization aligns the features.

the entire corpus is cross mapped at low resolution and ranked
by increasing energy (E′(ψ̂∗)). Each optimization is resumed
at higher and higher resolutions at the next levels, where only
the top half of the corpus of the previous level is used and re-
ranked while the remaining examples are locked in the list. The
process stops when the highest resolution is completed or on
user demand. In practice, we still enforce the computation at
full resolution for the top-n entries (typically n = 4). The ad-
vantage of this strategy is that when two surfaces are far from
being isometric, their quasiconformal encoding will be signif-
icantly different, resulting in high cross map energy. Then our
solver will spend less computation resources on those.

Notice that this strategy aims at quickly presenting to the user
the most relevant examples at the top of the ranked list. Once
this process is finished, the incomplete computation of poorly
ranked examples is resumed if they are selected by the user
for cross mapping. Now, we describe the optimization process
on a per-entry basis, where S1 represents an example from the
corpus and S2 the input.

Intrinsic reflective symmetries Since switching from an ax-
ial symmetry to another in the canonical domain is not a smooth
transition (complete horizontal or vertical flip, or both), the
solver starts by duplicating the quasiconformal encoding hier-
archy of S1 and flipping it, in order to optimize individually
each potential symmetry. For instance, the quasiconformal en-
coding hierarchy of a disc is duplicated once with an extra hor-
izontal flip while that of an annulus is duplicated three times
(one with horizontal flip, one with vertical flip, one with both).
Then, these duplicated entries undergo the rest of the optimiza-
tion algorithm individually and the symmetry which minimizes
E(ψ̂∗) is considered to be the optimal one for S1.

Isometries Periodic translations are needed to compensate
for streamline variability (Sec. 5.1). At the coarsest level of the
hierarchy, the solver evaluates greedily each possible periodic
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translation (translating by one pixel at a time). The translation
which minimizes E(ψ̂∗) is considered to be the optimal trans-
lation for the current resolution. At the next hierarchy level,
the optimal translation of the previous level is re-evaluated and
refined by also evaluating the immediate neighbor translations:
one pixel to the left and one to the right (corresponding to half-
pixel translations in the previous resolution). This process is
then iterated from one level of the hierarchy to the next until
completion, resulting in a progressive adjustment of the trans-
lation component of the optimal canonical cross map (Fig. 8).

Near isometries We now consider that at reach resolution the
periodic translation component of ψ̂∗ is resolved. As-isometric-
as-possible 3D cross maps can be computed through ARAP
canonical cross maps (cf. Sec. 5.1). Those can be computed
with the closed-form formula given in appendix, where pi is the
location of the i-th control feature point in D1 and qi = ψ̂(pi).
We now describe how to compute both pi and qi automatically.

Since the solver tries to minimize the difference of conformal
factors (cf. Eq. 6), local maxima of λ1 are valid candidates to
drive the construction of ψ̂. Starting at the coarsest level, the
solver extracts a handful of maxima of λ1. The pixels of the
encoding are sorted by decreasing λ1 and maxima are added to
the set of pi points if they are sufficiently distant in D1 from
previously selected feature points (at least 10 pixels) and if
their λ1 exceeds a reasonable threshold (typically 4). When this
process is completed, the extracted feature points are projected
at the next level of the hierarchy and the extraction process is
iterated to extend if possible the set of feature points in the new
resolution. As suggested in [5], to speed up the optimization,
the set of pi and their related terms in the closed-form formula
are computed for each entry of the corpus once for all offline,
when the example is added to the corpus. Then, online, to
optimize ψ̂, one needs to move each point qi = ψ̂(pi) on D2

such that Eq. 6 gets minimized, yielding a low distortion cross
map in 3D. Since ψ̂ has a closed-form formula, we can directly
predict the local move of each qi that improves the energy by
deriving Eq. 6:

∇iE(ψ̂) = 2
∑
∀x∈D1

[ (
λ2(ψ̂(x))− λ1(x)

)(
∇λ2(ψ̂(x)) ∇iψ̂(x)

) ]
where ∇λ2(ψ̂(x)) is a vector in row notation (i.e. the gradient
of the conformal factor picture) and ∇iψ̂(x) a 2x2 matrix:

∇iψ̂(x) =

∇i
uψ̂u(x) ∇i

vψ̂u(x)

∇i
uψ̂v(x) ∇i

vψ̂v(x)

 (9)

∇i
u denotes the u component of gradient vectors and ψ̂u denotes

the u component of ψ̂. The derivation of the as-rigid-as-possible
canonical cross map ψ̂ is a bit involved and detailed in appendix.

For each control point qi, we compute ∇iE(ψ̂), revert it and
scale it. The obtained vector points to the next pixel which

Fig. 9. User editing of the inspired quadrangulation. Selected example (left).
Suggested mapping (middle). Subtle user enhancements of the suggested
mapping (right). The addition of the new constraint (in blue on the right), the
cross map update and the re-projection of the mesh took respectively 0.03s.,
0.023s. and 0.18s. (with 10,384 quads in the example).

qi should visit to minimize Eq. 6. Once the gradient is com-
puted for all the control points qi, those are actually displaced
to their optimal neighbor, ψ̂ is reconstructed and the energy
is re-evaluated. This process is repeated until the energy stops
decreasing. The optimization is iterated at the next resolutions,
after projection of the optimized qi in the new resolution, until
completion at the highest resolution. We found in practice that
only very few automatic constraints are needed to achieve vi-
sually appealing 3D cross maps. Notice that the formalism pre-
sented in [5] provides no mechanism to avoid fold-overs. After
each control point displacement, we verify that ψ̂ is monotonic
for each of its component (i.e. one-to-one and onto). If this test
fails, the optimized locations of the control point(s) qi located
on the edge of the fold-over(s) are rolled back until the fold-
over is resolved and qi is locked from any further displacement.

Concurrent execution An appealing aspect of this optimiza-
tion algorithm is that much of the work can be done concur-
rently. The optimization of each example of the corpus is run
in an independent thread. Each symmetry is also run in an in-
dependent thread. Finally, each component∇iE(ψ̂) of the gra-
dient is run in an independent thread. In practice, we imple-
mented a thread pool pattern, in order to control the maximum
number of concurrently running threads.

5.3. Interactive editing of the cross maps

When the corpus processing is completed, the examples are
presented to the user who can select them to trigger their map-
ping on the input. Since some features of the example quad-
meshes can recover more semantic than purely geometrical as-
pects, we allow the user to interact with the cross map. This is
shown in Fig. 9 where there is no well-defined earlobe on the
Max Planck model, while there is one on the example. The in-
teraction with the cross map happens at interactive rates. The
user can modify the constraints automatically optimized or add
new constraints to the system. In both cases, since we use a
closed-form formula for the canonical cross map computation,
this is achieved very efficiently (less than half a second). We
used this interaction feature for instance in Fig. 14 to improve
the alignment of the faces (in particular the eyes of the cat and
the camel, corresponding in both cases to flat regions).
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6. Mesh Structure and Composition

Internally, the mesh connectivity that populates the corpus of
example mesh components is stored as a triangle mesh. The
non-triangular elements of the mesh are tesselated and the in-
serted edges are flagged as phantom edges. While this paper is
aimed at recycling quad-meshes, the phantom edge implemen-
tation supports the construction of arbitrary polygonal meshes.
More importantly, the ability to encode arbitrary polygonal el-
ements allows for a flexible segmentation scheme, such that
boundary curves are not restricted to mesh edges.

The final phase of our mesh generation paradigm involves a
stitching scheme aimed at composing the multiple mesh com-
ponents mapped to the input geometry. The final composition
handles the resolution of the phantom edges and any triangles
resulting along the boundary curves. The following stitching
seamlessly composes the multiple mesh components, resolving
mis-matched boundary elements and phantom edges to generate
quad-only results. The method begins by identifying the multi-
ple double-linked lists describing the boundary components of
the different mesh components. The stitching process manip-
ulates these structures, while (1) merging nearby vertices, (2)
filling holes, (3) resolving triangles, (4) removing quadrilateral
doublets and (5) smoothing the composed elements.

Vertex merging occurs in a greedy fashion. The nearest pairs
of boundary curve vertices are merged iteratively, updat-
ing the double-linked list that maintains the boundary curve
structures. Two vertices va and vb are merged if vb /∈ Na

(the 1-ring neighborhood of va) and the distance between
them is less than or equal to the boundary edge lengths to
which both va and vb are neighbors, as illustrated above.
The double-linked list that describes the boundary curve
orientation plays a critical role during the vertex mergers.

First, the linked lists tem-
porarily allow non-manifold
vertices in the mesh repre-
sentation without loss of the
neighborhood ordering and
boundary components. Sec-
ond, the double-linked lists fa-
cilitate the validation of ver-
tex mergers by tracking the
duplicate vertices encountered
while marching the boundary

curve. As illustrated to the left, duplicate vertices must be en-
countered in pairs, i.e., {v0, v0, v1, v1, ...}. In contrast, when the
duplicate vertices alternate, i.e., {v0, v1, v0, v1, ...}, the figure-8
boundary curve will result in a non-manifold edge construction
during the hole filling.

Following the completion of the greedy merging process, the
automated composition resolves the mesh holes that arise due to

Fig. 10. The quad-dominant hole filling scheme iteratively inserts quadrilat-
erals (tesselated as two triangles) adjacent to the boundary loop’s longest
edge until a terminal case is reached (a 2 or 3 edge loop).

Fig. 11. Triangles are resolved (a) by cutting the mesh along the list of
edges forming the shortest path between them (b), then inserting quads by
connecting the duplicated vertices (c).

t-junctions, as illustrated in Fig 10. This is similar to challenges
addressed by geometry clipmaps [31] and multi-chart geome-
try images [32]. The hole filling begins by identifying and tes-
selating the multiple connected components (loops) within the
linked list of boundary edges. In the simple case a loop consists
of two edges, in which case the edges are in fact neighboring
half-edges, updating the neighborhood information in the mesh
(2-edge termination case). A boundary loop with three edges
defines a triangle inserted into the mesh unflagging any phan-
tom edges it shares (3-edge termination case). Lastly, when
more edges describe the loop, the algorithm inserts a quadrilat-
eral, tesselated as two triangles with a phantom edge between
them, along the longest edge in the boundary loop. The loop
is updated with two fewer edges, and the process is repeated
until one of the terminating cases is reached. If during the ver-
tex merging process all boundary vertices are paired, then all
boundary loops will contain only two edges and no additional
face elements are required to fill the seams.

Next, our algorithm resolves possible triangles at the boundary
of the patches by performing mesh surgery along the sequence
of non-phantom mesh edges that forms the shortest path be-
tween them. Connecting edges between the duplicated vertices
constructs quad elements, Fig. 11, while preserving much of
the original mesh alignment and dual structure. Note that fol-
lowing the hole filling method, the mesh describes a connected
closed manifold, and will always contain an even number of
triangle elements (then triangles can always be paired). If a
boundary component is desired in the final mesh (closed by
the hole filling procedure), then the inserted elements can be
removed during a post-process to re-open the mesh.

The final two stages of the stitching procedure involve mesh
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Fig. 12. Boundary stitching: surface segmentation (left), quad-mesh patches
before (middle) and after (right) the overall stitching procedure.

Fig. 13. Comparison between the inspired quadrangulation algorithm (left)
and the template fitting algorithm (right). The histograms represent the angle
and normalized area distortions induced by the cross map in 3D.

cleanup and vertex smoothing. The cleanup phase replaces
quadrilateral doublets, the neighbor elements of a valence-2 ver-
tex, with a single quadrilateral element, removing the valence-
2 vertex. To this point the connectivity describes a quad-only
mesh. We finalize the stitching procedure with a smoothing op-
eration, iteratively performing Laplacian smoothing and back-
wards projecting to the original model until desirable element
qualities are obtained.

7. Experimental results

We implemented our approach in C++ and ran our experiments
on an i7 CPU (with 4 cores at 2.93 GHz and 8 GB of RAM).
In this section, we first evaluate the performance of the cross
mapping algorithm and next evaluate the efficiency of the quad-
meshing style mimicking process.

Cross parameterization performance In Fig. 13 we compare
our algorithm to the template fitting algorithm [23], on a data-
set kindly provided by the authors. Head data-sets are challeng-
ing test cases for cross map algorithms since inaccuracies are
rapidly identified by human observers. Thus, interpolation-only
cross map algorithms need a large set of user defined corre-
spondences (24 in Fig. 13, right) while our approach extracted
the cross map without any user defined correspondence and still
with less distortion, which is critical to faithfully reproduce the
subjective layout of the examples.

Computational aspects An important aspect of our approach
is response time. First, only the unfolding step is conditioned
in response time by the complexity of the input mesh. As for
the corpus processing (with 45 example segments in our exper-
iments), since we use a multi-resolution strategy, most of the

computation happens for the top-ranked entries only. In detail,
for each entry, the time execution of the cross map optimiza-
tion can be very variable. It first depends on the employed res-
olution of the quasiconformal encodings. Also, it depends on
the number of automatically extracted ARAP constraints. Fi-
nally, the number of iterations required by the solver directly
depends on the similarity between the input and the examples.
In practice, we stop the optimization after a maximum number
of iterations, typically 10. Other aspects contribute to the time
performance: first, the optimization is based on an analytic ex-
pression of the gradient of the candidate maps (which is faster
than naive all-neighbor exploration); then the algorithm permits
parallelization. Query timings are provided in table 1, where
some satisfying cross maps were already obtained at a resolu-
tion of 128x128 or 256x256. We applied the default value of
512x512 for all the other experiments.

Inspired quadrangulations Figure 14 shows some represen-
tative quadrangulations obtained with our approach, where each
surface segment has been processed individually by the auto-
matic cross mapping algorithm (showing 36 cross maps total).
As shown in Fig. 12, quad-mesh parts are stitched seamlessly
on the input. Our approach is oblivious to intrinsic reflective
symmetries, as shown at the third row. A noticeable advantage
of the pre-segmentation of the input is that it enables quad-
meshing mimicking even if the example varies importantly from
an isometry or does not have the same topology as the input
(the camel is genus-1 while the dog is genus-0). In particular,
at the fourth row, an extra piece of geometry (regular quadran-
gulation of a cylinder) has been mapped onto the neck of the
camel (dark blue segment), in between the head and the torso
(where dog parts were mapped). The same process was used to
remesh the knees of the camel where a topological handle oc-
curs. While our approach mimics the edge alignment and the
configuration of extraordinary vertices of the example, it also
enforces the preservation of its low-level geometrical statistics
thanks to the low distortion cross map algorithm. As shown
in the histograms, the overall shape of these distributions are
preserved, with variations if the input is far from isometric to
the example (see cat/dog against camel/dog). In comparison to
previous quadrangulation techniques, our approach enables a
novice user to rapidly generate quadrangulations with profes-
sional looking, by mimicking the quadrangulations of models
produced by artists (Fig. 1). In contrast, user-driven quadrangu-
lation techniques would not only require many interactions, but
also a deep understanding by the user of the meshing concepts

Input #Tri. G.U. (s.) C. P. (s.) Res.
Fig. 1 12k 1.06 3.80 128x128
Fig. 13 92k 6.16 1.09 256x256
Fig. 14, Cat∗ 7k 0.59 2.37 512x512
Fig. 14, Human∗ 13k 1.17 9.40 512x512
Fig. 14, Hand∗ 6k 0.64 1.88 512x512
Fig. 14, Camel∗ 19k 1.65 6.33 512x512
Fig. 15 12k 1.06 7.54 512x512Table 1

Query times for the outputs presented in this paper. #Tri., G.U., C.P. and
Res. respectively correspond to the number of triangles in the input, the
time of the geometry unfolding step, the time of the corpus processing step
and the employed maximal encoding resolution. For the composition results
(∗), these numbers are averages over the set of surface segments.
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Fig. 14. Inspired quadrangulations generated with our prototype (examples
appear in green on the right, segmentations in the top corners of each row).
The histograms respectively show the distributions of all quad angles and
edge lengths (distances are normalized by the bounding box diagonal). Our
approach enables to quad-mesh scanned geometries with the style of cartoon
characters (second row), to mimic meshing style despite intrinsic reflective
symmetry (third row) or even despite important variation from isometry and
topological changes (fourth row).

involved in the production of such outputs. Our algorithm can
also be used as a complementary tool to previous quadrangu-
lation algorithms. This is illustrated in Fig. 15, where the ex-
ample has been generated with the Geometry Aware Direction
Field (GADF) design algorithm [10].

Limitations A limitation of our cross mapping algorithm (al-
though our multi-resolution strategy overcomes this difficulty)
is that the optimization is not global. However, global opti-
mization is recognized to be much less computable than gradi-
ent descent approaches. We believe this limitation is the price
to pay for interactive usage capabilities. Also, since we use a
pixel-based representation for the cross map optimization, it is
possible that some 3D features on the surface go in 2D below
pixel precision. For instance, if the shape exhibits many impor-
tant protrusions, those will undergo important distortion once
unfolded and the exact registration of their extremities will re-
quire high resolution quasiconformal encodings. While the res-
olution of the encodings could be simply increased, we believe
the ultimate solution is to introduce extra singularities in the
unfolding (hence improving the distortion), which is done in
our overall framework through segmentation (one pole per disc
segment). The fact that we use in the framework of composition
pre-segmentations that need to be compatible is also a limita-
tion. However, this user intervention is limited (the segmenta-
tions are coarse and intuitive). Also automatic algorithms could
be used [33]. Moreover, we believe that it is in fact a strength
of our approach. It enables users to refine their example search
on a per region-of-interest basis. Also, as demonstrated in Fig.
14 (fourth row), it enables to exploit examples having differ-
ent topology. However, if adjacent quad-patches exhibit a high
difference in resolution, new extraordinary vertices and small
edges are necessarily inserted by the stitching procedure in or-
der to generate a quad-only output (Fig. 12). Finally, if the user
selects an example mesh that is far from isometric to the input,
distortion inevitably occurs due to the local difference in con-
formal factors. Then, once mapped on the input, the example
mesh may be locally scaled down or up, leading respectively
to local quad shrinking or approximation errors. For instance,
if a feature is present on the input mesh but not on the exam-
ple, the output mesh may not be fine enough to capture finely
the extra feature.

8. Conclusion and future work

In this paper, we presented Inspired Quadrangulation, a new
approach to produce quality quadrangulations from input trian-
gular surfaces, by reproducing the meshing style of reference
examples provided by experts. At the core of our technique, we
provided the analytic gradient of 2D as-rigid-as-possible trans-
formations [5], that we used in a fast multi-resolution solver
which registers unfolded geometries, yielding low distortion
cross maps in 3D. Experiments showed that our algorithm could
be trained with the output of state-of-the-art algorithms or by
meshes designed by professional artists. Our approach enables
to mimic accurately the meshing style of examples despite in-
trinsic reflective symmetry, high variation from isometry or
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Fig. 15. Comparison between the inspired quadrangulation algorithm (cross
map computed automatically, left) inspired by GADF (middle) and GADF
itself (right). By preserving the overall shape of the angle distribution of an
example with better element quality (middle), the inspired quadrangulation
algorithm generated a mesh with a sharp and centered angle distribution (left).

even topological changes. In future work, we would like to con-
tinue our investigation of data-driven geometry processing. We
believe that many challenging problems can be addressed by
exploiting examples recognized as correct solutions, allowing
users to increase their productivity by re-exploiting their own
creations or by leveraging valid examples provided by others.
While our algorithm mimics meshing styles by cross mapping
examples, it would be interesting to develop in the future further
algorithms aiming at actually learning the process of quadran-
gulation design (capable of taking design decisions). The solu-
tion of such a problem would probably require a user-centric
formalization of quadrangulation design as well as the consid-
eration of training data sets capturing the entire history of de-
cisions made by human experts during their meshing sessions.
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