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Integral Backstepping Control for Trajectory Tracking of a Hybrid
Vehicle

J. Colmenares-Vázquez, N. Marchand, P. Castillo, J.E. Gómez-Balderas,
J.U. Alvarez-Muñoz, J.J. Téllez-Guzmán

Abstract— This article is focused on the trajectory tracking
using a hybrid terrestrial aerial vehicle. An integral back-
stepping control is proposed for the UAV vehicle mode. In
addition, a nested saturation control is developed and applied
to regulate the position of the cart vehicle. These control laws
are validated by simulations and some experimental results
on position control was performed by applying the techniques
aforementioned.

I. SYSTEM DESCRIPTION

In this work control laws are developed for trajectory
tracking of a hybrid terrestrial aerial vehicle. These kinds
of vehicles have the advantage to be used as a flying
vehicle or as a cart depending on the situation. Some
situations may be when the vehicle find an obstacle and
it has to take the more convenient mode of operation to
overcome or to avoid the obstacle. Controlling these hybrid
vehicles becomes a challenge. It is necessary to design and
implement control laws for the trajectory following in the
air and over the floor. The control strategy has to generate
a smooth transition when the drone is passing from air to
floor or vice versa.

There are several works dedicated to path following with
hexarotors and also for carts, see for example [1]–[3]. This
work considers a particular hybrid vehicle : a mini-UAV
that is converted in a cart by attaching to it two wheels
without any additional motors as in Fig. 1. The orientation
and position of the cart will be controlled by the yaw and
pitch angles and by the thrust generated by its helices.
Among its characteristics, the thrust direction can be
inversed as a result of the pitch angle variation. Therefore,
the cart-drone can move forward or backward depending
on the sign of pitch angle. This hybrid vehicle in terrestrial
mode can turn around z axis. It is also a nonholonomic
system because it is not capable to move on the wheels
axis direction in terrestrial mode. For more references in
cart control refer to [4]–[6].
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The model of the vehicle can be obtained by using
quaternions, the Lagrangian or the Newton Euler approach.
This work will use a simplified model that can be obtained
by the last approach. For a detailed deduction of the
model of a UAV or of a cart, see [7]–[9]. This simplified
model considers a rigid body perfectly symmetric and
with mass and rotation centers placed at the same point.
It is not taken into account the helix flexibility of the
mini-UAV. Additionally, the effect of battery discharge
is neglected. Some techniques have been developed to
compensate these dynamics not considered here, for
instance those ones in [10]–[15]. The reader may also
find useful to review [16]–[19] related to other control
strategies based in LQR, PID, CLF and saturation functions.

The protoype used is a Flexbot hexarotor. This is a mini-
UAV, low cost, and not represent an hazard. Fig. 1 shows the
drone at issue. The tools used for the implementation of the
control were MATLABr, xPC Target and Vicon System.

Fig. 1. Cart-drone used in the experiments

II. UAV AND CART PROTOTYPE

All experiments were performed in MOCA room. The
MOCA room at GIPSA-LAB is a platform dedicated for
the movement capture using several cameras, cf. [20]. The
Flexbot hexarotor has a microprocessor ATMega32u4, a
gyro and an accelerometer MPU6050 and a flight controller
Microwii Copter. This mini drone can load until 12 grams
in UAV mode. The drone was placed in MOCA room in
order to get its 3D position and orientation angles by the
VICON Tracker System. Once the position and orientation



are passed to the control law and executed by xPC Target,
the desired control laws are sent to Flexbot via Bluetooth
LE. Finally, the Flexbot drone execute the orientation
control programmed inboard.

Fig. 2 summarizes the control process. The parameters
related to the two prototypes are shown in Tables I and II.

Fig. 2. Process flow used to control the hexarotor

TABLE I
HEXAROTOR PARAMETERS

Parameter Value
mass 0.057 kg

payload 0.023 kg
max diameter 0.12 m
helix length 0.05 m

TABLE II
CART PARAMETERS

Parameter Value
mass 0.068 kg

payload 0.012 kg
wheels diameter 0.14 m

III. UAV CONTROL ALGORITHM

Our first approach is to propose a control law for the
vehicle in aerial mode. In the following, the dynamic model
and the control will be described.

A. Mathematical Model

The UAV is considered as a rigid body and the model
is obtained from the Euler Newton approach. The system
considered is show in Fig. 3:

Fig. 3. Forces and torques acting on a simplified model of the hexarotor

The equations of the model are the following:

mr̈ = RF + Fg

η̇ = B(η)Ω

JΩ̇ = τ − ω×JΩ
(1)

where m is the mass of drone and r defines the position of
mass center of the drone in the inertial system. R describes
the rotation matrix generated in the order yaw-pitch-roll.
F means the vector of thrust generated by the helices.
Fg represents the vector of gravity force. η stands for the
vector of Euler angles, Ω is the vector of angular velocities
in the body frame. B(η) represents the matrix relating the
vector of angular velocities and the derivative of the Euler
angles. J is the inertia matrix of the drone. ω× means the
skew symmetric matrix of angular velocity and τ defines
the vector of torques applied to the vehicle.

B. Control Law for Trajectory Following

The approach used for the trajectory tracking is based
in the Backstepping technique. To ensure the convergence
to desired trajectory an integral part is added. The integral
part helps to reduce the error of the tracking and adds a
factor that improves the robustness when the parameters of
the system are not well-known.

Let us define the position error:

er = r − rref =⇒ ėr = ṙ − ṙref = v − ṙref (2)

Let us propose a positive definite function to design a
convenient velocity vυ that ensures the convergence to the
desired position.

VLr =
1

2
< χ1,KIrχ1 > +

1

2
< er, er > (3)

where < ∗, ∗ > means the inner vectorial product, KIr is a
positive diagonal constant matrix that will be used for tuning
the control and

χ1 =

∫ t

0

er dτ (4)



Therefore

V̇Lr =< χ1,KIrer > + < er, ėr > (5)

Now, taking the virtual velocity control as:

vυ = ṙref −KIrχ1 −Krer (6)

and thus,

V̇Lr|v=vυ = − < er,Krer > ≤ 0 ∀ t ≥ 0 (7)

Let us define the velocity error:

ev = v − vυ =⇒ ėv = r̈ − v̇υ =
1

m
u− v̇υ (8)

and let be the following positive definite function:

VLv = VLr +
1

2
< ev, ev > (9)

thus
V̇Lv = V̇Lr+ < ev, ėv > (10)

and taking into account that v = vυ + ev , the expression
V̇Lv can be written as:

V̇Lv = − < er,Krer > + < er, ev > + < ev, ėv > (11)

Choosing the virtual control,

uυ = m
(
v̇υ − er −Kvev

)
(12)

It results that:

V̇Lv|u=uυ = − < er,Krer > − < ev,Kvev >
≤ 0 ∀ t ≥ 0

(13)

where Kv is a positive diagonal constant matrix that will
be used for tuning the control. Keeping in mind that
u = RF + Fg , where R depends on Euler angles vector
η. Hence, there exists a relationship between u and (η, F )
that let us determine the value of u at every time. Let
us call ηref and Fref the Euler angles and the thrust,
respectively, needed to generate u = uυ . Now, the following
development will be focused in designing a torques vector
capable of generating the desired vectors of Euler angles.

The thrust vector F and weight vector Fg are defined as
follows:

F =

 0
0
f

 Fg =

 0
0

−mg

 (14)

where g is the gravity acceleration and considered here as
9.81 m/s2. The rotation matrix R is obtained from Euler
angles in the order yaw-pitch-roll and has the following
expression:

R =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ


(15)
where s· and c· mean cos(·) and sin(·) respectively. The
yaw, pitch and roll angles are given by ψ, θ, φ respectively.

The Euler angles vector and the force vector u are defined
as:

η =

 ψ
θ
φ

 u =

 ux
uy
uz

 (16)

Then, from (1), (14), (15) and (16) it can be deduced the
thrust and the Euler angles needed to generate the virtual
control uυ. The ψref needed can be chosen arbitrarily
or conveniently. θref , φref and fref have the following
expressions:

θref = arctan

(
uysψ + uxcψ

uz +mg

)
(17)

φref = arctan

(
cθref · uxsψ − uycψ

uz +mg

)
(18)

fref =
uz +mg

cθref · cφref
(19)

Define the Euler angles error as:

eη = η − ηref =⇒ ėη = η̇ − η̇ref
= B(η)Ω− η̇ref

(20)

The matrix B(η) has the following form:

B =

 0 sφ/cθ cφ/cθ
0 cφ −sφ
1 sφ · tθ cφ · tθ

 (21)

where t means tan. The matrix B(η) is not singular if and
only if cos(θ) 6= 0.

Let us propose the next positive definite function:

VLη =
1

2
< χ2,KIηχ2 > +

1

2
< eη, eη > (22)

where,

χ2 =

∫ t

0

eη dτ (23)

and KIη is a positive diagonal constant matrix that will be
used for tuning the control. Thus,

V̇Lη =< χ2,KIηeη > + < eη, ėη > (24)

and by choosing the virtual angular velocity Ωυ ,

Ωυ = B−1 (η̇ref −KIηχ2 −Kηeη) (25)

with Kη as a positive diagonal constant matrix, it yields

VLη|Ω=Ωυ = −Kη < eη, eη > ≤ 0 ∀ t ≥ 0 (26)

Now, let us define the angular velocity error as:

eΩ = Ω− Ωη =⇒ ėΩ = Ω̇− Ω̇η (27)

and remember that,

Ω = Ωη + eΩ & Ω̇ = J−1
(
τ − ω×JΩ

)
(28)

Now, consider the following candidate Lyapunov function:

VLΩ = VLη +
1

2
< eΩ, eΩ > (29)



then,
V̇LΩ = V̇Lη+ < eΩ, ėΩ > (30)

therefore,

V̇LΩ = − < eη,Kηeη > + < eη, BeΩ > + < eΩ, ėΩ >
(31)
and by choosing,

τ = ω×JΩ+ J
(
Ω̇η −BT eη −KΩeΩ

)
(32)

it yields that,

V̇LΩ = − < eη,Kηeη > − < eΩ,KΩeΩ > ≤ 0 ∀ t ≥ 0
(33)
with KΩ as a positive diagonal constant matrix used for
control purposes.

IV. CONTROL STRATEGY FOR THE CART
VEHICLE

A control algorithm for the cart vehicle to follow a
desired trajectory is developed in this section. The vehicle
inclination correspond to pitch angle and the cart orientation
to yaw angle. The control law will focus in the pitch and
yaw in order to make the trajectory tracking. The desired
roll angle is zero because the wheels will stay in touch with
the floor. Additionally, the thrust generated by helices has
to be limited in order to avoid the take off. In this work, the
floor is considered as flat.

A. Mathematical Model

The cart-drone is depicted in Fig. 4. The body frame is
represented by (xb, yb, zb) The model of the cart-drone is
obtained from the model of a rigid hexarotor. It is considered
only the projection on xy-plane. Therefore, from Fig. 4, we
can deduce that

Fig. 4. Cart diagram

M
d2

dt2

(
x
y

)
=

(
cosψ
sinψ

)
sin θ · f (34)

where ψ is the yaw angle and θ is the pitch angle. Equation
(34) can be written as:

M
d2

dt2

(
x
y

)
= Rxy

(
ν
0

)
(35)

where Rxy stands for the rotation matrix in xy-plane and ν is
the projection of thrust over xy-plane. Then, the expressions
for Rxy and ν are:

Rxy =

(
cosψ − sinψ
sinψ cosψ

)
ν = sin θ · f

The model corresponding to the cart-drone attitude is the
following:

η̇ = B(η)Ω

JΩ̇ = τ − ω×JΩ+ τfloor
(36)

where τfloor represents torque exercised by the floor when
the cart wheels make contact with it. Notice that the floor
is supposed horizontal and the wheels need to be in contact
permanently with it, thus the desired roll angle will be
φd = 0. Furthermore, the torques, caused by the floor when
the cart wheels touch it, will bring about the cart stay in
contact with the floor.

B. Control Law for Trajectory Following

The control law proposed here is separated in two parts.
The first part of the strategy consists in the design of a
saturation control in order to obtain a desired force such
that the vehicle can perform the tracking. Similarly to the
strategy followed in the control design for the vehicle as a
UAV, the attitude part is modeled by means of the Euler
angles and these ones keep a direct relationship with the
desired force. Hence, there exists a local bijective mapping
between the angles and the required force. Afterwards, the
backstepping control developed for the attitude part in the
previous section is used in order to generate the desired
saturation control.

The saturation control is desired for generating a lesser
aggressive response by limiting the velocity of the vehicle
and as well it will help us to delimit the required thrust and
the maximum desired pitch. The backstepping technique is
used in order to produce the desired force that ensure the
trajectory tracking. The position model showed in (34) can
be rewritten as

ṙ = v (37)
Mv̇ = u (38)

with

r =

(
x
y

)
, rd =

(
xd
yd

)
, u =

(
cosψ
sinψ

)
sin θ · f

(39)
The desired trajectory rd can be included in the model,

thus the model is rewritten as:

ėr = p
mṗ = u−mr̈d

(40)

where
er = r − rd
p = v − ṙd

(41)



The saturation function is defined as

σM (s) =

 M if s ≥M
s if |s| < M

−M if s ≤ −M
(42)

where s is a scalar and M > 0. In the following, it will be
developed the control law corresponding to the x coordinate.

Consider u, p, er and rd as vectors with two components:

u =

(
ux
uy

)
p =

(
px
py

)
(43)

er =

(
ex
ey

)
rd =

(
rdx
rdy

)
(44)

Propose

ux = mr̈dx −mK1xσM1x
(Kpxpx +K−1

1x K2xσM2x
) (45)

with M1x ≥ K−1
1x K2xM2x and K1x, M1x, Kpx, K2x and

M2x ar positive constant used for tuning the saturation
control. Therefore, the second equation of (40) becomes:

ṗx = −K1xσM1x
(Kpxpx +K−1

1x K2xσM2x
) (46)

Then, there exists a time T1 such that:

|Kpxpx| ≤ K−1
1x K2xM2x ∀ t ≥ T1 (47)

Taking
M1x ≥ 2K−1

1x K2xM2x (48)

the saturation σM1x
results in:

σM1x
(·) = Kpxpx +K−1

1x K2xσM2x
∀ t ≥ T1 (49)

which leads to (50)

ṗx = −K1xKpxpx −K2xσM2x
∀ t ≥ T1 (50)

Now, proposing another variable

qx = K1xKpxex + px (51)

and by differentiating this variable it yields:

q̇x = −K2xσM2x (52)

and by choosing σM2x = σM2x(Kqxqx) it results:

q̇x = −K2xσM2x(Kqxqx) (53)

with Kqx as a positive constant used for tuning the con-
troller. From (53) it is deduced that qx converges to 0 and
by consequence

px → −K1xKpxex as t → ∞ (54)

Using this result in the first equation of (40), it yields

ex → 0 (55)

and from (54)
px → 0 (56)

Therefore, the complete desired input, in order to make
converge ex to 0, will have the expression:

ux = mr̈dx−mK1xσM1x
(Kpxpx+K

−1
1x K2xσM2x

(Kqxqx))
(57)
In a similar way, the desired input uy which will make
converge the ey to 0 has the corresponding expression:

uy = mr̈dy −mK1yσM1y (Kpypy +K
−1
1y K2yσM2y (Kqyqy))

(58)
where K1y , M1y , Kpy , K1y , K2y , M2y , Kqy are constant
used for tuning the controller. The variable qy is defined in a
similar way as in (51). Additionally, the system represented
by (34) must satisfy the constraint:

f cos θ ≤ mg (59)

Now, it is necessary to find the desired couple (νd, ψd)
that generates the virtual force ud = [ux uy]

T obtained in
(57) and (58). Thus, from (34), the following equality is
deduced:

ux sinψd−uy cosψd = 0 =⇒
√
ux2 + uy2 sin(ψd+ζ) = 0

There will be two possible solutions for ψd, namely,

ψd = −ζ
ψd1 = arg(ux + i · uy) (60)

and the other possible solution is given by

ψd2 = arg(−ux − i · uy) (61)

These two equations represent the same direction of
vector ud, and therefore the drone must to take the closest
one to its yaw angle ψ. The direction of the thrust can be
changed by means of pitch angle θ to ensure the movement
in the correct sense. This situation is described in Fig. 5.

Fig. 5. Desired yaw angle for minimal effort

The goal is to reach the desired direction with the minimal
effort. The closest angle satisfy cos(ψ−ψd) ≥ 0. Once the
closest desired yaw angle is known, the expression for this
angle will be rewritten in such a way that the cart will do



the minimal effort to reach the desired direction. From (35),
the following equality holds:

Rxy
Tud =

(
νd
0

)
Accordingly,

ux cosψd + uy sinψd = νd (62)

then,

sin θd =
ux cosψd + uy sinψd

f
(63)

which can be simplified as:

sin θd = ±
√
ux2 + uy2

f
(64)

The sign depends on which ψd is taken. It will be positive
if (60) is chosen or negative if (61) is taken. The next step
is to determine the thrust f . The thrust may be chosen
arbitrarily but it must satisfy the conditions in the inequality
(65), deduced from (34) and (63), in order to be capable of
generate the required force ud and the pitch angle θd.

f ≥
√
ux2 + uy2 (65)

Taking,

f =
Kmin + ρ

√
ux2 + uy2

Kf + cos(ψ − ψd)
(66)

where Kmin, Kf and ρ are positive constant. If ρ is chosen
as:

ρ ≥ Kf + 1 (67)

thus, (66) will satisfy (65). The factor Kf + cos(ψ − ψd)
will allow the cart to prioritize finding the desired ψd and
afterwards, the cart will move to desired trajectory with the
pitch angle determined by (63) but it is necessary to take
Kf < 1. By supposing ux = 0, uy = 0, ψ = ψd, the thrust
given by

Kmin

Kf + cos(ψ − ψd)
(68)

will let the cart to use this thrust to compensate the dynamics
not taken into account in the mathematical model, e.g., the
gravity center of cart is not perfectly placed at the rotation
center. This expression allows to have a rotation according to
the Kmin value even when the drone has reached the desired
position. The expression (66) must satisfy the condition in
(59). In order to do this, it is sufficient that,

Kmin + ρ
√
(ux)max

2
+ (uy)max

2

Kf
≤ mg (69)

with 0 < Kf < 1. It follows,√
(ux)max

2
+ (uy)max

2 ≤ mg ·Kf −Kmin

ρ
(70)

Since,

|u| ≤ m|r̈d|max +m
√
(K1xM1x)2 + (K1yM1y)2 (71)

and if

m|r̈d|max + m
√
(K1xM1x)2 + (K1yM1y)2

≤ mg ·Kf −Kmin

ρ

(72)

Then, the inequality in (70) still holds. Therefore,√
(K1xM1x)2 + (K1yM1y)2 ≤ g ·Kf − (Kmin/m)

ρ
−|r̈d|max

(73)
In order to simplify the previous expression, the following
assumption is taken

K1xM1x = K1yM1y = K1M1 (74)

hence,

K1M1 ≤ g ·Kf − (Kmin/m)√
2 ρ

− |r̈d|max√
2

(75)

Regarding the maximum desired pitch angle, from (64) and
(66), it results that:

|θd|max ≤ sin−1

(
1 +Kf

ρ

)
(76)

For the attitude control, a backstepping control is pro-
posed. The desired roll angle will be φd = 0, the desired
pitch angle is given by (63), the desired yaw angle ψd is
given by (60) and (61) and the desired thrust is given by
(66).

V. SIMULATION AND EXPERIMENTAL RESULTS

The integral backstepping control for the UAV and the
saturation control for the cart proposed in previous sections
were validated by simulations. The backstepping control was
compared its performance of the standard backstepping with
respect to the integral backstepping by making a circle at 1
meter over the floor. Likewise, the simulation corresponding
to the cart was carried out in order to test the performance
when the cart is tracking a circle over the floor.

A. Control applied to UAV with a higher mass and inertia
matrix

The following parameters used in the UAV simulations
were:

KI = diag(1, 1, 1) Kr = diag(1, 1, 1)
m = 57 gr g = 9.81 m/s2
Kη = diag(4, 4, 4) KΩ = diag(8, 8, 8)
Jxx = Jyy = 8.833 gr ·m2 Jzz = 0.62993 gr ·m2
Kv = diag(4, 4, 4) KIη = diag(0.01, 0.01, 0.01)
J = diag(Jxx, Jyy, Jzz)

In the first simulation, the UAV mass was 0.075 grams and
the inertia matrix was considered as 1.5 times its nominal
value. The performance of standard backstepping is shown
in Figs. 6, 7. As shown in the corresponding figures, the
standard backstepping control is not quite robust face to
bigger mass. The performance of integral backstepping is
depicted in the Figs. 8, 9, 10, 11.
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Fig. 6. Mini-UAV position under standard backstepping control with
bigger mass and inertia matrix than modeled
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Fig. 7. Euler angles of drone using standard backstepping control with
bigger mass and inertia matrix than modeled

In general, the integral backstepping will help to compen-
sate the uncertainties in the dynamical model and will make
more robust the control law face to little perturbations.

B. Experimental results in position control of UAV

In MOCA room at GIPSA-LAB was tested the integral
backstepping in order to make a position control of an
hexarotor Flexbot. Figs. 12, 13, and 14 show the first results
obtained. There are dynamics not considered as the battery
discharge speed, the mass center is not perfectly in the
rotation center of the vehicle, the drone is considered as
a perfect rigid body. The total effect of these dynamics not
modeled is compensated by the integral backstepping.
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Fig. 8. Mini-UAV position response when using integral backstepping
controller
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Fig. 9. Euler angles of UAV under integral backstepping control with
bigger mass and inertia matrix than modeled

0 5 10 15 20 25 30

1

1.5

2

2.5

Seconds

N
ew

to
ns

thrust

Fig. 10. Thrust generated by integral backstepping control when supposing
bigger mass and inertia matrix than modeled
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Fig. 11. Torques generated by integral backstepping control face to bigger
mass and inertia matrix than modeled
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Fig. 12. UAV position under integral backstepping position control
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Fig. 13. UAV Euler angles under integral backstepping position control
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Fig. 14. Thrust generated under integral backstepping position control

C. Trajectory tracking by the cart

The parameters used in this simulation were:

K1x = K1y = K1 = 4
M1x =M1y =M1 = 0.25
Kpx = Kpy = Kp = 0.3
ρ = 2
Kf = 0.5

K2x = K2y = K2 = 2
M2x =M2y =M2 = 0.25
Kqx = Kqy = Kq = 1
Kf = 0.5
Kmin = 0.05

The inertia matrix is supposed to be the same as the
UAV drone but here the mass value of the cart m = 0.068
kg increased because of wheels mass. The performance on
trajectory tracking of the saturation control design in the
position model are shown in Figs. 15, 16 and 17. As shown,
the cart tracks the circular trajectory over the floor. Then,
a good performance in the tracking can be achieved by
tunning the parameters of the saturation control.
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Fig. 15. Tracking with saturation
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Fig. 16. Euler angles of the cart-drone under saturation control

D. Experiments results in cart position control

The testing results of the proposed saturation law are
shown in Figs. 18 and 19. As depicted in the figures, the
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Fig. 17. Thrust generated by the saturation control

reference position (x, y) = (1, 0.5) m can be reached with
the proposed law.
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Fig. 18. Cart position generated by applying the saturation control
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Fig. 19. Pitch and yaw angles generated by applying the saturation control

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an integral backstepping algorithm
applied to an UAV. The vehicle model is reduced and it
considers the system as ideal. The integral part of algorithm
helped to compensate the uncertainties and dynamics not
modeled, showing that, the backstepping algorithm is robust
when those uncertainties vary sufficiently slow.

The integral backstepping is helpful when there are
uncertainties not modeled, as normally happens. This law
has been applied to a mini-drone acting as a UAV and
adapted as a cart. The observed results in the experiments
were quite satisfactory as a first attempt. In particular, the
discharge speed of batteries play an important roll during
the control time. The control will force the battery to deliver
the same power in order to maintain the required references.



The next step will be to carry out the trajectory tracking
by the vehicle by using the control laws developed in this
article. Afterwards, it will be looked a smooth transition
between the saturation and backstepping control in order to
make a trajectory tracking over floor and in air.

ACKNOWLEDGMENT

The authors would like to thank B. Boisseau, J. Dumon,
J. Minet, G. Hasan and R. Polizzi for fruitful discussions
and help in the platform MOCA, the required electronics
and the UAV structure designs.

REFERENCES

[1] C. B. Low, “A Trajectory Tracking Control Design for Fixed-Wing
Unmanned Aerial Vehicles,” IEEE Conference on Control Applica-
tions, pp. 2118–2123, Sep. 2010.

[2] M. B. H. Bouadi and M. Tadjine, “Sliding Mode Control based on
Backstepping Approach for an UAV Type-Quadrotor,” International
Journal of Mechanical, Aerospace, Industrial and Mechatronics En-
gineering, vol. 1, no. 2, 2007.

[3] M. Tahar, K. Meguenni Zemalache, A. Omari, “Control of an
Under-Actuated X4-flyer using Integral Backstepping Controller,”
PRZEGLAD ELEKTROTECHNICZNY (Electrical Review) ISSN
0033-2097, R. 87 NR 10/2011.

[4] C. Samson, K. Ait-Abderrahim, “Feedback control of a nonholonomic
wheeled cart in cartesian space,” in Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, no. 2, 1991,
pp. 1136–1141.

[5] A. Benalia, M. Djemai, and J.-P. Barbot, “Control of the kinematic
car using trajectory generation and the high order sliding mode
control,” in Systems, Man and Cybernetics, 2003. IEEE International
Conference on, vol. 3, Oct 2003, pp. 2455–2460.

[6] C. Wang, Z. Shen, E. Tian, and Q. Zheng, “Multi-smart car control
system design and research based on zigbee,” in Control and De-
cision Conference (2014 CCDC), The 26th Chinese, May 2014, pp.
1490–1494.

[7] P. Castillo, R. Lozano and A. E. Dzul, Modelling and Control of
Mini-Flying Machines. London: Springer-Verlag, 2005, ch. 2,3.

[8] A. Azzam and X. Wang, “Quad rotor arial robot dynamic modeling
and configuration stabilization,” in Informatics in Control, Automation
and Robotics (CAR), 2010 2nd International Asia Conference on,
vol. 1, March 2010, pp. 438–444.

[9] Y. Naidoo, R. Stopforth, and G. Bright, “Development of an uav for
search amp; rescue applications,” in AFRICON, 2011, Sept 2011, pp.
1–6.

[10] Zachary Thompson Dydek, “Adaptive control of unmanned aerial
systems,” Ph.D. dissertation, Massachusetts Institute of Technology,
Sept 2010, ch. 3.

[11] A. Brezoescu, R. Lozano, and P. Castillo, “Bank to turn approach
for airplane translational motion in unknown wind,” in Unmanned
Aircraft Systems (ICUAS), 2013 International Conference on, May
2013, pp. 1022–1029.

[12] C. B. Low and Q. S. Ng, “A flexible virtual structure formation
keeping control for fixed-wing uavs,” in Control and Automation
(ICCA), 2011 9th IEEE International Conference on, Dec 2011, pp.
621–626.

[13] Q. Gao, F. Yue, and D. Hu, “Research of stability augmentation hybrid
controller for quadrotor uav,” in Control and Decision Conference
(2014 CCDC), The 26th Chinese, May 2014, pp. 5224–5229.

[14] H. Khebbache, M. Tadjine, “Robust Fuzzy Backstepping Sliding
Mode Controller For a Quadrotor Unmanned Aerial Vehicle,” CEAI,
vol. 15, no. 2.

[15] K. Shojaei, A. Shahri, and B. Tabibian, “Adaptive-robust feedback
linearizing control of a nonholonomic wheeled mobile robot,” in
Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME Inter-
national Conference on, July 2010, pp. 497–502.

[16] J. Yang, Z. Cai, Q. Lin, and Y. Wang, “Self-tuning pid control design
for quadrotor uav based on adaptive pole placement control,” in
Chinese Automation Congress (CAC), 2013, Nov 2013, pp. 233–237.

[17] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara, and
J. Guichard, “Lqr control for a quadrotor using unit quaternions:
Modeling and simulation,” in Electronics, Communications and Com-
puting (CONIELECOMP), 2013 International Conference on, March
2013, pp. 172–178.

[18] W. Ren and R. Beard, “Clf-based tracking control for uav kinematic
models with saturation constraints,” in Decision and Control, 2003.
Proceedings. 42nd IEEE Conference on, vol. 4, Dec 2003, pp.
3924–3929 vol.4.

[19] C. Aguilar-Ibanez, J. Martinez-Garcia, and A. Soria-Lopez, “Bounded
control based on saturation functions of nonlinear under-actuated
mechanical systems: The cart-pendulum system case,” in Decision
and Control and European Control Conference (CDC-ECC), 2011
50th IEEE Conference on, Dec 2011, pp. 1759–1764.

[20] GIPSA-LAB. MOCA Platform. [Online]. Available:
http://www.ctan.org/tex-archive/macros/latex/required/babel/


