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Nonlinear control of a nano-hexacopter carrying a manipulator arm

J. U. Alvarez-Muñoz1, N. Marchand1,2, J. F. Guerrero-Castellanos3, A. E. López-Luna3, J. J. Téllez-Guzmán1,
J. Colmenares-Vazquez1, S. Durand4, J. Dumon 1 and G. Hasan1

Abstract— This paper proposes a simple solution for stabi-
lization of a nano-hexacopter carrying a manipulator arm in
order to increase the type of missions achievable by these types
of systems. The manipulator arm is attached to the lower part of
the hexacopter. The motion of the arm induces a change of the
center of mass of the whole body, which induces torques which
can produce the loss of stability. The present work deals with the
stabilization of the whole system - that is hexacopter and arm
- by means of a set of nonlinear control laws. First, an attitude
control, stabilizes the hexacopter to a desired attitude taking
into account the movement of the arm. Then, a suitable virtual
control and the translational dynamics allow the formulation
of a nonlinear controller, which drives the aerial vehicle to a
desired position. Both controls consist in saturation functions.
Experimental results validate the proposed control strategy and
compares the results when the motion of the arm is taken into
account or not.

I. INTRODUCTION

Aerial manipulation has been an active area of research in
recent times, mainly because the active tasking of Unmanned
Aerial Vehicles (UAVs) increases the employability of these
vehicles for various applications. For active tasking one
would consider manipulation, grasping and transporting etc.
Unlike fixed wings UAVs, that are incapable of driving
their velocity to zero, VTOL (Vertical Take-Off and
Landing) vehicles with four, six, or eight rotary wings
(afterwards called multirotors) are ideally suited to the
task of aerial manipulation or grasping. However, there are
many challenges in aerial grasping for these vehicles. The
biggest challenge arises from their limited payload. While
multiple robots can carry payloads with grippers [1] or with
cables [2], their end effectors and grippers have to be light
weight themselves and capable of grasping complex shapes.
Secondly, the dynamics of the robot is significantly altered
by the addition of payloads. This is indeed an attraction
in assembly because aerial robots can use this principle
to sense disturbance forces and moments. However, for
payload transport, it is necessary that the robots are able to
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estimate the inertia of the payload and adapt to it in order
to improve tracking performance.
Numerous approaches have been proposed to deal with
such a problem. In [12], a Newton-Euler approach is used
to model and control a manipulator based quadrotor. In [7],
a Lyapunov based model Reference Adaptive Control is
used to stabilize a quadrotor with multi degree of freedom
(DOF) manipulator. However, the stability analysis is carried
out with a linear approach and only the dynamics of the
quadrotor (considered as a rigid body) was concerned due
to the complexity of the system.
In [4], indoor experiments are performed with a quadrotor
equipped with a gripper, where an IR camera is used to
grip an object with LED placed on it. But this contribution
is limited to the use of a 1-DOF gripper, which reduces the
precision of manipulation.
In [8], Cartesian impedance control and redundancy are
studied using Euler-Lagrange formulation.

The contribution of the present paper is centered on a
nonlinear control design and a formal stability analysis for
the asymptotical stabilization of a nano-hexacopter carrying
a manipulator arm, which is seldom tackled in the literature
reviewed. Contrary to the mentioned research, the design of
the attitude control law uses the quaternion parametrization,
which avoid the presence of singularities. With quaternion
parametrization one proposes a constructive control law for
the attitude and position stabilization. Firstly, the design of
an almost globally asymptotically control law for attitude
stabilization which take into account the arm motion effects,
is carried out. After that, a globally asymptotically nonlinear
controller for the translational dynamics is proposed. In
general the control law is based in the usage of nested and
sum of saturation functions in order to take into account the
actuators limitation. Real-time experimental results validate
the proposed strategy.
The paper is structured as follows. In section II, the attitude
model of the hexacopter with the manipulator arm is given.
Then, the attitude control design is formulated in section
III. Section IV is devoted to the design of the position
controller. Section V presents experimental results. Finally,
some conclusions are presented in section VI.

II. SYSTEM MODELING
A. Unit quaternion and attitude kinematics

Consider two orthogonal right-handed coordinate frames:
the body coordinate frame, B(xb, yb, zb), located at
the center of mass of the rigid body and the inertial



coordinate frame, N(xn, yn, zn), located at some point
in the space (for instance, the earth NED frame). The
rotation of the body frame B with respect to the
fixed frame N is represented by the attitude matrix
R ∈ SO(3) = {R ∈ R3×3 : RTR = I, detR = 1}.
The cross product between two vectors ξ, % ∈ R3 is
represented by a matrix multiplication [ξ×]% = ξ× %, where
[ξ×] is the well known skew-symmetric matrix.

The n-dimensional unit sphere embedded in Rn+1 is
denoted as Sn = {x ∈ Rn+1 : xTx = 1}. Members of
SO(3) are often parameterized in terms of a rotation β ∈ R
about a fixed axis ev ∈ S2 by the map U : R×S2 → SO(3)
defined as

U(β, ev) := I3 + sin(β)[e×v ] + (1− cos(β))[e×v ]
2 (1)

Hence, a unit quaternion, q ∈ S3, is defined as

q :=

(
cos β

2

ev sin
β
2

)
=

(
q0
qv

)
∈ S3 (2)

where qv = (q1 q2 q3)
T ∈ R3 and q0 ∈ R are known

as the vector and scalar parts of the quaternion respectively.
The quaternion q represents an element of SO(3) through
the map R : S3 → SO(3) defined as

R := I3 + 2q0[q
×
v ] + 2[q×v ]

2 (3)

Remark 2.1: R = R(q) = R(−q) for each q ∈ S3,
i.e. even quaternions q and −q represent the same physical
attitude.
Denoting by ~ω = (ω1 ω2 ω3)

T the angular velocity
vector of the body coordinate frame, B relative to the inertial
coordinate frame N expressed in B, the kinematics equation
is given by(

q̇0
q̇v

)
=

1

2

(
−qTv

I3q0 + [q×v ]

)
~ω =

1

2
Ξ(q)~ω (4)

The attitude error is used to quantify mismatch between
two attitudes. If q defines the current attitude quaternion and
qd the desired quaternion, i.e. the desired orientation, then
the error quaternion that represents the attitude error between
the current orientation and the desired one is given by

qe := q−1
d ⊗ q = (qe0 q

T
ev )

T (5)

where q−1 is the complementary rotation of the quaternion
q which is given by q−1 := (q0 − qTv )

T and ⊗ denotes the
quaternion multiplication [13].

B. Model of a hexacopter carrying a manipulator arm

The attitude dynamics and kinematics for the hexacopter
have been reported in many works e.g. [5], [6]. In these
works it is considered that the hexacopter mass distribution
is symmetric. However, the mass distribution of a hexacopter
with a manipulator is no longer symmetrical and varies with
the movement of the arm. Consider a hexacopter with a
manipulator arm with n links attached to its lower part. If

the dynamics of the arm is neglected, the attitude kinematics
and dynamics is given by(

q̇0
q̇v

)
=

1

2
Ξ(q)~ω (6)

J~̇ω = −~ω×J~ω + ΓT (7)

where J ∈ R3×3 is the symmetric positive definite constant
inertial matrix of the rigid body expressed in the body frame
B and ΓT ∈ R3 is the vector of applied torques. ΓT

depends on the control couples generated by the actuators,
the gyroscopic couples, the gravity gradient or, as in the case
of the present work, the couple generated by the movement
of a robot manipulator placed under the body. Here, only the
control couples, gyroscopic couples and the couple generated
by the manipulator is considered in the control design.
Consequently,

ΓT = Γ + Γarm + ΓG (8)

where Γ and ΓG will be described in the section II-C. On
the other hand, the vector Γarm is the torque generated by
the total propulsive force being applied at the hexacopter
geometric center which is displaced from the center of mass,
[14]. This torque can be computed by

Γarm = magζc ×R(q)e3 (9)

where ma = Σn
i=1mmi + ml is the total mass of the

manipulator and the load, mmi is the mass of each link of the
manipulator and ml is the mass of the load, g is the gravity,
ζc = (ζcx ζcy ζcz)

T ∈ R3 is the position of center of mass
of the hexacopter with respect to the pivot point in the body
frame, R(q) is the rotation matrix and e3 = ( 0 0 1 )T .
Then, the center of mass can be computed by

ζc =
1

ma

[
n∑

i=1

mi%i +ml%l

]
(10)

where %i and %l are the position vector of each link of the
manipulator and the load, respectively, both with respect to
the reference body frame given by the hexacopter.

In our case, let’s consider the scheme in Fig. 1, which
shows a two-degrees of freedom manipulator arm then, the
corresponding %i, where i = {1, 2}, is given by

%1 = [ 0 0 −lc1 ]T

%2 = [lc2 sin θa2 cos θa1 lc2 sin θa2 sin θa1

− (l1 + lc2) cos θa2]
T

%l = [l2 sin(θa2) cos θa1 l2 sin(θa2) sin θa1

− (l1 + l2) cos(θa2)]
T

(11)

where lc1 and lc2 are the distances from the respective
joint axes to the center of mass of each link, l1 and l2 are
the total length of the link, and θai measures the angular
displacement from z and x axes.



Fig. 1. Manipulator arm with two degrees of freedom.

C. Actuator model

The collective input (or throttle input) is the sum of
the thrusts of each rotor f1, f2, f3, f4, f5, f6. Therefore, the
reactive couple Qj generated in the free air by rotor j due
to the motor drag and the total thrust T produced by the six
rotors can be, respectively, approximated by

Qj = ks2j (12)

T =

6∑
j=1

fj = b

6∑
j=1

s2j (13)

where sj represents the rotational speed of rotor j. k > 0
and b > 0 are two parameters depending on the density of
air, the radius, the shape, the pitch angle of the blade and
other factors [6]. The vector of gyroscopic couples ΓG is
given by

ΓG =

6∑
j=1

Jr(~ω × ~zb)(−1)j+1sj (14)

where Jr is the inertia of the so-called rotor (composed of
the motor rotor itself with the gears). The components of the
control torque Γ ∈ R3 generated by the rotors are given by
Γ = [Γ1 Γ2 Γ3]

T , with

Γ1 = d

√
3

2
b(s22 + s23 − s25 − s26) (15)

Γ2 =
db

2
(2s21 + s22 − s23 − 2s24 − s25 + s26) (16)

Γ3 = k(s21 + s22 + s23 + s24 + s25 + s26) (17)

where d is the distance between the rotor and the center of
gravity of the hexacopter

III. ATTITUDE CONTROL DESIGN

A. Problem statement

The objective is to design a control law which drives the
hexacopter to attitude stabilization under the torques and
moments exerted to this from the movement of a manipulator
arm attached to its lower part. In other words, let qd denote
the constant hexacopter stabilization orientation, then the

control objective is described by the following asymptotic
conditions

q → [±1 0 0 0]T , ~ω → 0 as t→ ∞ (18)

Furthermore, it is known that actuator saturation reduces
the benefits of the feedback. Then, besides the asymptotic
stability, the control law also takes into account the physical
constraints of the control system, in order to apply only
feasible control signals to the actuators.

B. Attitude control with manipulator arm

In this subsection, a control law that stabilizes the system
described by (6) and (7) is proposed. The goal is to design
a control torque that is bounded.

Definition 3.1: Given a positive constant M , a continuous,
nondecreasing function σM : R → R is defined by

(1)σM = s if |s| < M ;
(2)σM = sign(s)M elsewhere.

(19)

Note that the components of Γarmi
are always bounded,

i.e. | Γarmi
|< δi. Then, one has the following result.

Theorem 3.2: Consider a rigid body rotational dynamics
described by (6) and (7) with the following bounded control
inputs Γ = (Γ1 Γ2 Γ3)

T such that

Γi = −σMi2
(Γarmi

+ σMi1
(λi[ωi + ρiqi])) (20)

with i ∈ {1, 2, 3} and where σMi1
and σMi2

are saturation
functions. Assuming δi < Mi2 −Mi1 and Mi1 ≥ 3λiρi. λi
and ρi are positive parameters. Then the inputs (20) asymp-
totically stabilize the rigid body to the origin (1 0T 0T )T

(i.e. q0 = 1, qv = 0 and ~ω = 0) with a domain of attraction
equal to S3 × R3 \ (−1 0T 0T )T .
Due to space constraints, the proof of this Theorem is not
presented here.

Remark 3.3: Note that the stability analysis has been
carried out considering the asymptotic condition q → qd =
[±1 0 0 0]T . In the case where the asymptotic condition
q → qd with qd 6= [±1 0 0 0]T is considered, the control law
applied will be

Γi = −σMi2
(Γarmi

+ σMi1
(λi[ωi + ρiqei ])) (21)

where qe represents the attitude error between the current
orientation and the desired one.

IV. POSITION CONTROL DESIGN

A. Problem statement

The objective is to design a control law which stabilizes
the hexacopter to a desired position, having the attitude
stabilization problem solved. In other words, once the control
law has stabilized the attitude of the system, limt→∞(q, ~ω) =
(qd,~0), the position control law should stabilize the hexa-
copter in a desired position, limt→∞(~p,~v) = (~pd,~0), even
under the disturbances from the manipulator arm.



B. Position stabilization strategy

Fig. 2. Schematic configuration of the hexacopter carrying a manipulator
arm.

The schematic representation of a hexacopter carrying a
manipulator arm can be seen in Fig. 2, where the body
reference frame B(xb, yb, zb), the force u (thrust) and the
weight vector m~g are depicted. The dynamics of the whole
system is obtained with the Newton-Euler formalism and the
kinematics is represented using the quaternions formalism:

ΣT :


~̇p = ~v

mT ~̇v = −mT~g +R

 0
0
u

 (22)

ΣO :

{
q̇ = 1

2Ξ(q)~ω

J~̇ω = −~ω×J~ω + ΓT
(23)

where ~p and ~v are linear position and velocity vectors, mT

is the total mass of the system (hexacopter and manipulator),
~g is the gravity, R is the rotation matrix, given in (3).
Note that the rotation matrix R can also be given in function
of the Euler angles [3].

Equations (22) and (23) show that the translational dynam-
ics (22) depends on the attitude (23), but not the opposite.
This property will be used to design the control law. Now,
assume that using the control law (20) one can stabilize the
yaw dynamics, that is ψ = 0, then after a sufficiently long
time, system (22) becomes: ṗx

ṗy
ṗz

 =

 vx
vy
vz

 , (24)

 v̇x
v̇y
v̇z

 =

 − u
mT

sin θ
u

mT
sinφ cos θ

u
mT

cosφ cos θ − g

 (25)

With an appropriate choice of the target configuration, it will
be possible to transform (24)-(25) into three independent
linear triple integrators. For this, take

φd := arctan

(
r2

r3 + g

)
,

θd := arcsin

(
−r1√

r21 + r22 + (r3 + g)2

) (26)

where r1, r2 and r3 will be defined after. Then, choose as
positive thrust the input control

u = mT

√
r21 + r22 + (r3 + g)2 (27)

Let the state be p = (p1, p2, p3, p4, p5, p6, p7, p8, p9) =
(
∫
px, px, vx,

∫
py, py, vy,

∫
pz, pz, vz), then (24)-(25) be-

comes:

Σx :

 ṗ1 = p2
ṗ2 = p3
ṗ3 = r1

Σy :

 ṗ4 = p5
ṗ5 = p6
ṗ6 = r2

Σz :

 ṗ7 = p8
ṗ8 = p9
ṗ9 = r3

(28)

Note that u will be always positive, and u ≥ mg, in order
to compensate the system’s weight.

Since the chains of integrators given in (28) have the same
form, a control law can be proposed as in [3], and can be
established by the next theorem:

Theorem 4.1: Consider the hexacopter translational dy-
namics expressed in (24-25). Then, the thrust input u given
by (13) with r1, r2, r3 as in (29), where σM1

(·) is defined
in (19) with M1 = 1 and ςi are given by (30), where
a(1,2,3), b(1,2,3), c(1,2,3) > 0 tuning parameters.

r1 := −ς1{a3σM1[
1

ς1
(a2p1 + p2 + p3)]

+ a2σM1[
1

ς1
(a1p2 + p3)] + a1σM1[

1

ς1
(p3)]},

r2 := −ς2{b3σM1[
1

ς1
(b2p4 + p5 + p6)]

+ b2σM1[
1

ς2
(b1p5 + p6)] + b1σM1[

1

ς2
(p6)]},

r3 := −ς3{c3σM1[
1

ς1
(c2p7 + p8 + p9)]

+ c2σM1[
1

ς3
(c1p8 + p9)] + c1σM1[

1

ς3
(p9)]}

(29)

ς1 = r̄1/(a1 + a2 + a3),

ς2 = r̄2/(b1 + b2 + b3),

ς3 = r̄3/(c1 + c2 + c3)

(30)

The proof of this Theorem is not presented here, but
it can be derived from the seminal work of [9], [10] and [11].

Remark 4.2: In the above Theorem, the stabilization goal
is the origin. When the asymptotic condition is different, the
variables p2, p5, p8 should be replaced in the control law (29)
by e1 = p2 − pdx, e2 = p5 − pdy , e3 = p8 − pdz , respectively.
Here, pdx, p

d
y, p

d
z represent the desired position in the space.

V. EXPERIMENTAL SETUP

A. Hardware setup

The aerial system consists on the Flexbot hexacopter set
[15], which structure was modified. The arm length is 7.1cm,
the weight is 70g and the carrying capacity 32g. On the



other hand, a manipulator arm was designed and built for
this project, whose length links are 5cm for the first one and
3cm for the second one and its weight 28g. The total weight
of the system is 98g and its carrying capacity is about 4g. The
attitude control law (20) for the hexacopter was programmed
in a Microwii Copter board. The Vicon Tracker system [16],
MATLAB/Simulink and the xPC target toolbox [17] are used
to implement the position control. Fig. 3 shows an overview
of the whole hardware architecture.

Fig. 3. Block diagram of the system.

B. Experimental scenario

Two experiments are performed in order to compare the
performance of the proposed control with and without taking
into account the torque generated by the manipulator. The
parameters of the control law are selected according to the
characteristics of the actuators and those of the hexacopter
presented previously. The initial position and attitude of the
hexarotor for both experiments are close to zero.
The scenario for the experiments is divided in two parts.
For the first 10s, the hexacopter is driven to the position
pd =

(
0 0 1

)T
. The manipulator arm orientation is

initialized at θai =
(
0 0

)T
and it does not change during

the stabilization. Then, two movements are performed with
the manipulator. At time 10s, θa1 and θa2 are oriented at
60◦ and 45◦ respectively. At time 15s, the orientations are
changed to −60 and 90◦ respectively. At time 20s, the full
system returns to its initial position.

In Fig. 4 and Fig. 5, angular position of the manipulator,
linear and angular position, linear and angular errors position,
average attitude error (Ave), attitude control torques of the
hexacopter and estimated torques for the manipulator are
depicted. Note that even when the quaternion parametrization
is considered, Euler angles are used in order to have a better
perspective of the behavior of the system. In the first case,
attitude stabilization is reached, but some oscillations are
present. Then, the response is improved in Fig. 5 when the
estimation of the torque is taken into account, the attitude
stabilization is achieved. The study of the position errors
and the average value attitude error show that the response
of the system is improved when the estimation of the torque
from the manipulator is used. In order to calculate the attitude
error, ‖2 arccos q0‖ was used, where ‖·‖ represents the norm
value. The average attitude error values obtained from the
experiments are Ave = 0.9955, 0.7944, where the lower one

is obtained when the proposed method is applied, which also
reduced the torque generated from the arm.

VI. CONCLUSIONS

In this paper, a control law was designed to asymptotically
stabilize the attitude and position of a hexacopter carrying
a manipulator arm. Moreover, this work has presented a
method for aiding the solution through the design of a feed-
forward term which allows the estimation of the torques
exerted by the manipulator. Also, the control law takes
into account the actuators saturations. Experimental results
show the effectiveness of the proposed control law face
to the disturbances coming from the manipulator. Multiple
trials and scenarios are carried out in order to statistically
determine the effectiveness of the method. Experimental load
mass estimation will be pursued as a future work.
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Fig. 4. Experimental results when the torque is not taken into account.
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Fig. 5. Experimental results when the torque is taken into account.


